[The following paper was read 14th June 1895.]

A Summary of the Theory of the Refraction of Thin
Approximately Axial Pencils through a series of Media
bounded by Coaxial Spherical Surfaces, with application
to a Photographic Triplet, etc.

By Professor CHRYSTAL.

The optical theory referred to in the title of this communication
is now fully half a century old¥*; and has, moreover, been well ex-
pounded in the standard English treatises of Pendlebury and Heath.
Still, notwithstanding its elegunce and simplicity, and its great
practical importance as giving the first approximation to the theory
of the great majority of the optical instruments in ordinary use, its
filtration into the stratn of popular knowledge has been remarkably
slow. 1t seems, therefore, to he worth while to ofter a brief sum-
mary of its leading principles, freed as much as possible from the
detailed calculations which become necessary when the constants of
the optical system have to be deduced from the data of construction,
and to indicate methods for experimental verification. 1In giving
this summary, I shall omit the demonstrations of some of the pro-
positions, which can be found by those who desire them in the well
known Tveatise on Qeomelrical Optics, by Heath.

The whole theory may be made to depend on two elementary pro-
positions regarding the refraction of a thin pencil at a single spherical
surface, viz., the Law of Conjuyate Focal Planes and Helmholty's
Lo of Magnification.  These laws may be stated as follows :-—

Let P (Fig. 1) be any point; C the centre of the refracting
surface considered, then

Law or Cowsucare Focan PLANEs.

Every pencil, all of whose rays diverge from (or converge to) a
point lying 1 a small area through I’ perpendicular to the axis PC,
will after vefraction diverge from (or converge to) a point lying in a
small area also perpendicular to the axis PC, provided we consider
only rays whose inclinations to PC are small. The point P, where
the second plane meets the axts, is called the conjugate focus to P, and
18 in direct projective correspondence with P; that is to say, if  and

* As to its first beginnings much older : these date back to Harris’s Treatise of
Optics. London: 1775,
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a’ denote the distances of P and I, both measured from a point O
in the axis in the same direction (which we take to be that in which
the leght is proceeding, always in our diagrams from left to right),
then

Awx' +Bx+Ca' + D=0 - - - (1),
where 4, B, C, D are constants depending on the radius of the
refracting swrface and on the indices of refraction of the media of
which it is the boundary.*

The fact that the correspondence is direct, ¢.e., that if P moves
then P’ always moves in the same direction, imposes a certain
restriction upon A, B, C, D, viz,, that BC - AD must always be
negative, as we shall see presently.

The Law of Conjugate Focal Planes is accurate to a first approxi-
mation only, viz.,, we must suppose that the square of the distance
of the point of incidence on the spherical surface from the axis is
negligible in comparison with x, «/, or the radius of the surface.
To this degree of approximation the points corresponding to the
points in any plane avea (the object) perpendicular to the axis at P
generate another similar plane area (the image) perpendicular to the
axis at P’

The residual phenomena which arise when we proceed to higher
orders of approximation are included uuder the various heads of
Spherical Aberration, Astigmatism, Distortion, and Curvature of
the Image, with which we have nothing to do at present.

Since the object and image are similar, all that is necessary in
order to determine the one when the other is given is to know the
ratio of similarity, i.e., the ratio of the distance between any two
points in the one to the distance between the corresponding points
in the other. Regarding this ratio, we have the following

Law or HeLMHOLYZ.

If B and B be the lincar dimensions of an olject at P and its
image at P’y P and P’ being axial points, and a and o' the inclina
tions to the axis of an incident ray through P and the corresponding
emergent ray through P, then

pftana = p'S'tana’ - - - - (2);

* See Heath, § 41-46. The theory is here stated throughout for refraction only ;
the case of reflection may be included by putting p=—1 for every refracting
surface,
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where p and p' are the refractive indices of the media in the order
of the passage of the rays.*

These laws can at once be extended to any number of coaxial
spherical surfaces. For, if P, be the conjugate of P’ in the second
surface, P, the conjugate of P, in the third surface, and so on,
then, since each of these points is in direct projective correspond-
ence with the one immediately preceding, the last of all, which is
the image point corresponding to P after refraction by the whole
system, will be in direct projective correspondence with P.

(Analytically, this involves merely the repeated application of
the easily verified proposition that, if

Azz' +Bx +Ca’ + D =0,
A'x'm"+B'w’+C’w"+D'=O,

where A, B, C, D are constants, and BC—~ AD, B'C’ - A’lY both
negative, then

A"Q}.’L‘" + B'r + C”ac" + D' = 0,

where A", B", C", D" are constants depending on A, B, C, D -
A’, B, C, D" and such that B"C” - A”"D" is negative.)

It follows therefore that, if P and P’ be conjugate foci with
respect to any system of coaxial spherical surfaces, and x and 2
denote the distances of P and P’ from any fixed point O, then

Axx’' + Bx+Cr' + D=0 - - - (3),

where A, B, C, D are constants depending on the radii and mutual
distances of the refracting surfaces and on the refractive indices of
the media which separate them.

Since the successive pairs of images are similar to each other,
the final image will be similar to the original object at P. Also, if
o’ be the inclination to the axis of the system of an emergent ray
through the final image point P’ corresponding to an incident ray
through P whose inclination to the axis is «, and B and B the linear
dimensions of the original object and of the final image at P, then,
by successive applications of the Law of Helmholtz, we have

pftana =p'/Btana’ - - - - (),
where p’ 18 the index of refraction of the final medium.

* See Heath, §50.
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PrixciraL Foci, MoMENT, DoUBLE POINTS, AND STATIONARY
PoINTS OF A SYSTEM.

If A do not vanish, a condition which we shall indicate when
necessary by calling the system Non-telescopic, then the equation (3)
can always be thrown into the form

(EF-gfe'=g)=-v - - - - ()
where g= - C/A, g'= —-B/A, and y*= - (BC- AD)/A?% so that
9, ¢, v are all real finite constants, and y may be taken to be either
positive or negative. The constant y* we shall call the Moment of
the System.

We see at once from (5) that, when z=ow, &’'=g/, and, when
=g, «’=w. The two points F' and F thus determined we call the
Principal Foci of the System. The planes through F and ¥’ per-
pendicular to the axis we call the Principal Focal Planes. The
optical property of these points is that any nearly axial pencil of
parallel incident rays finally converges to or diverges from a point
in a plane perpendicular to the axis through ¥, and that any
incident pencil converging to or diverging from a point in a plane
perpendicular to the axis through F finally emerges as a parallel
pencil.

When it is necessary to distinguish between these points, we
may speak of I’ as the Principal Focus for incident rays, and F as
the Principal Focus for emergent rays.

If we denote (see Fig. 2) the distances of the two conjugate foci
P and P’ from F and I’ respectively by w and w’, the former
distance being reckoned positive when measured in a direction
opposite to the passage of the light through the system, and the
latter positive when measured in that direction, then we have the
important relation

uw =y> - - - - - (6).

If p and p’ denote the distances from F and F' of any pair of
conjugate foci P and P’ for incident and emergent rays respectively,
and v and v’ the distances of any other pair of conjugate foci Q and
Q' for incident and emergent rays from P and P’ respectively, the
conventions as to sign for p and p’ and for v and ¢’ being the same
as for u and u’, then from (6) we deduce at once

plo+p=1 - - - - (6%).
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Returning to the equation (5), and taking the principal focus for
emergent rays, F, for origin, if we denote the distance FF’ by ¢, 0
being positive or negative according as F’ is right or left of F (the
passage of the light being supposed from left to right as usual), then
(9) may be written

(e —0)= —9° - - - - (7).

Let now y denote the distance between any incident focus P and its
conjugate P’, then we have from (7)

et e I O

The points for which y vanishes, i.e., the points whose conju-
gates are coincident with themselves, are given by

2 —Ce+yi=0- - - - - (9

These points we may call the Double Points of the Optical System :
the image of any object (actual or virtual) placed at a double point
has the same position as the object, although it is not in general of
the same size.

The double points are real, coincident, or imaginary according as
> = <4yt We name the optical system Ilyperbolic, Parabolic, or
Elliptic accordingly.

When the douwble points are veal they lie vight or left of I accord-
ing as 0 is positive or negative.

Farther, since the sum of the distances of the double points
from F is 3, we see that the double points are symmetrically situated
with respect to I' and F.

Since dy/dx= — 1+ y*/+*, we see that the stationary values of y
correspond to x = 7, the corresponding values of 2’ being 6F .

ELLIPTIC SYSTEMS.

If we trace the graphs of (8) for the Hyperbolic and Elliptic
systems, we see at once that in the case of Elliptic systems both the
stationary values of y are scalar minima, while in Hyperbolic
systems the one is a scalar minimum the other a scalar maximum,
the incident point corresponding to the maximum being on the same
side of F as F', We may call the conjugate pairs whose existence
we have just established the stationary points of the system, and the
corresponding distances the stationary distances.
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In every system theve are two real pairs of stationary points.
Each patr is symmetrically situated with respect to I' and I, the
ancident points of the two pairs lie at a distance y right and left of ¥
respectively. In Elliptic or Parabolic systems the stationary distances
are both minvma.  In Hyperbolic systems one of the stationury dis-
tances is a maximum the other « mintmum ; the incident point
corresponding to the maximum always lies on the same side of F

as F'.

MaagNiFicatIoN, PriNcipaL Pornis, PriNcipaL FocaL LENGTHS, AND
Nopar PoinTs.

In order to deduce a rule for calculating the dimensions of the
image of any given object we must combine the Law of Conjugate
Focal Planes with the Law of Helmholtz

‘Let Pp (Fig. 3) be a linear object of length 3 in the plane of the
paper, P'p’ its image of length f3" also in the plune of the paper.

It is obvious that PF and I'P’ are incident and emergent parts
of an axial ray. Let pF and Qp’ be incident and einergent parts of
another ray, Q' being a point in the Principal Focal Plane for
incident rays. Since pF and PI converge to a point in the principal
focal plane for emergent rays, Q’p’ is parallel to F'P'. If we now
join QP and take this for the emergent part of a third ray, then,
since Q' is in the principal focal plane for incident rays, the incident
part of this third ray will be PQ parallel to pF.

Now, by the Law of Hclmbholtz,

pPEanQPL =4/ 5 tanQ P'L,
that is,
pPtanPFp = p/FtanP' Q).

Hence, » and «' having the same meanings as in (6),

e = BE,

Hence

pB* op W
By w

pnoou”?
== —

ey

_r
pooad’
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Food D)) b o

the upper or lower signs to be taken according as the image is
erect or inverted or wice versa. By means of this relation the
magnification of an object placed at any given point may be
calculated.

There are two pairs of conjugate foci for which the magnification
is unity corresponding to

u= Sy, W= JERy - - A1)
= Jir)yn W= - Yy - - (12)
For one of these pairs the image is equal to the object and erect;
for the other equal and inverted. Which is which depends on the
absolute sign of y, a quantity whose square alone has hitherto been
defined; so that we cannot distinguish between the two pairs
without farther examination of the special system. We know,
however, that there are always two real pairs of the kind described.
The pair for which the image is erect are called the principel
points of the system (H, H'); the other pair we may call the
anti-principal points (K, K').

The distances of the principal points of incidence and emergence
from the principal foci of incidence and emergence respectively are
called the principal focal lengths of the system. If we denote these
by fand /', we have

S= W)y S =iy - - (18);

and we observe that

M=7 S (M)
50 that (6) and (10) may now be written
ww =ff" - - - - (18);
Bt ) et s
£ il — A - - (16),
A AT VA (o

Farther, if we take the two principal points H and I as points of
reference, (6¥*) becomes

S+ fip=1 - - - - (17).
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It will be observed that in the general case which we are now
considering the principal poiuts coincide neither with the stationary
points nor with the double points. The magnification for the

former is + J(ule);
for the latter J(u/u) {32y = J(@/27) - 1)}.

The line joining the points where any incident ray and s
corresponding emergent ray meet the principal planes of incidence and
emergence respectively is parallel to the axis.

A similar proposition holds for the unti-principal planes, with the
variation that the joining line passes through the point bisecting KK,

To prove the first of these propositions we have only to remark
that, since the principal planes are conjugate, the points Q and @’
(Fig. 4) in which any ray meets them are conjugate foci, and so also
are the principal points H, H’ themselves. Hence H'Q' is the
image of HQ; and therefore by the fundamental property of the
principal points H'Q'=HQ, both being like directed. Hence QQ’
is parallel to HH'. A similar proof establishes the second
proposition.

By meaus of the principal planes we can rveadily construct in
a variety of ways the emergent ray corresponding to any given
incident ray.

Let the incident ray meet the principal foeal plane of emergence
in R (Fig. 3), and the principal plane of incidence in 8. Draw
S8’ and RT’ parallel to the axis meeting the principal plane of
emergence in 8" and T"; then 8P’ parallel to 'I'F’ is the emergent
ray corresponding to PS, as is at once obvious if we notice that
RS, RT form a pencil diverging from a point in the principal focal
plane of emergence. P’ is of course the conjugate of P.

‘We can also construct the conjugate of any point P not lying on
the axis as follows :—

Let PR (Fig. 6) parallel to the axis meet the principal plane of
emergence in R/, and PF mcet the principal plane of incidence in S.
Then the parallel to the axis through S mecets R'F" in P’ the con-
Jugate of P.

Similar constructions can be effected by means of the anti-
principal planes, if we replace the parallels to the axis by lines
drawn through the middle point of FF’.
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By means of Helmholtz’s Law and the relations of (13) and (16)
we find
tana’ "
S = ¥ - - - - - (18
tana T A (18),
where o and «’ are the inclinations to the axis of any incident ray
passing through P and the corresponding emergent ray passing
through the conjugate focus P".
We see from (18) that in every optical system there are two real
pairs of axial conjugates, given by

w=~f=-f - - - - (1)

U= ./"7 "= /

which have the property that the corresponding incident and emergent
rays passing throwgh them make cqual angyles with the axis. For one
of these pairs, which are called the nodal points, the incident and
emergent rays are parallel : for the other pair, which may be called
the antinoda! points, the incident and emergent rays are equally but
oppositely inclined to the axis.

By considering o figure in any special case it is easy to see that
if N and N (Fig. 7) be the nodal points, H and 11’ the principal
points, then N and H on the one hand and N” and H' on the other
must always lie on the same side of F and F’ respectively.

From (16) we see that the maguification corresponding to the
nodal points is + /" = u/ju'.

By means of the nodal planes we can construct very neatly the
position of the conjugate of any point P and also the emergent ray
corresponding to any incident ray passing through P.

Let any vay through P (Fig. 8) meet the principal focal plane of
emervgence in Q, join PN and QN.  Draw N'Q’ parallel to PQ to
meet the principal focal plane of incidence in Q') then QP parallel
to QN and NP’ parallel to PN will meet in P’ the conjugate of P
and QP will he the emergent ray corresponding to PQ. (See
Heath, §71.)

NON-TELESCOPIC SYSTEMS IN WHICH THE INITIAL AND Finar Mepia
ARE TIIE SAME.

In the special case where the initial and tinal media are the
same the above general theory undergoes considerable simplification.
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Since p=p, we have from (13) =)=y - - - (13
Hence the stationary points and the nodal points coincide with the
principal points. It is therefore sufficient in any such system to
confine our attention merely to the four points F, F', H, H'. Since
these are now symmetrically disposed about the middle point of
FI', we may speak of this point as the centre of the system and call

the system symmetrical.
The fundamental formule (1), (1), (16), (17), (18) now become

[tana = f3'tana’ - - (4,
i =% - - (1Y
e Wy oy L
‘/?'—tV/*—lz‘)*'f'ju—'f'Tll - - (1())7
11 1 -
e - - - (17);
tanae’ _ "
T TRk S )

CLASSIFICATION OF SYMMETRICAL OPTICAL SYSTEMS.

Since synnuetrical systems ave of great importance, it seems to
be worth while to classify the fundamentally distinet kinds that can
arise and to indicate how typical models of them can be constructed
for the purposes of laboratory instruction.

We may suppose one of the four determining points ¥, ¥, H, H’
kept fixed. There arise therefore as many distinet cases as there
are distinct topological arrangements of the three remaining points
relative to F and to each other.  Bearing in mind the symmetry of
the system, we thus get the following cight distinet cases :——

FHHTI, FHHEF, 'FY'H, HFTFH;

FYHHF, WY HHF, HFFH, HF F'H
To remove the latent ambiguity arising from the indeterminate
sign of y in the general theory we divide the eight systems into two
classes, viz., Inverting Systems, which give an inverted image of a
distant object ; and Erecting Systems, which give an erect image of a
distant object. By considering the construction given above for the
image of a non-axial point, it is easily seen that a system is Invert-
ing or Frecting according as the direction of FH is the same as or
opposite to the divection of the passage of the light through the
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system. If, therefore, we suppose, as hitherto, the light to pass
from left to right, we see at once that the first four systems above
set down are inverting and the rest erecting.

The following table indicates farther the nature of the systems
as to the reality of the double points and the nature of the stationary
distances HH' between the principal points and KK’ between the
anti-principal points.

Inverting | Erecting | Nature as to

Systems. | Systems. | Double points. HH KK

FHHTY |FHHF | Hyperbolic | Maximum| Minimum

FHHY |FHHF | Elliptic Minimum | Minimum
HFFH HFFH | Eliptic Minimum | Minimum

g 1y | j Elliptic or . Minimum or |
HFFH HFFH Hyperbolic} Minimum | §3mieee o |

There are of course transition cases such for example as a system
for which F}¥'=0, FH'=0, FH=0, or HH'=0. The last corres-
ponds to the “thin lens” of the older theory, which still occupies
the attention of the writer of elementary text books exclusively.
We see however that a thin lens is not representative of optical
systems in general ; and it is not easy by means of experiments
with lenses of moderate thickness to bring home to the beginner in
optics the characteristic properties of a general system, because in
such lenses the distance between the principal points barely exceeds
the errors of such measurements as can be made without special re-
finements which are out of place in elementary instruction. The
construction of thick lenses of special kinds would meet the difficulty,
but would be troublesome and somewhat costly. On the other hand
a doublet of thin lenses can always be constructed so as to have the
same fundamental points as any given system.

If we take FHH'F' as the standard case, and construct a doublet
of two thin lenses whose focal lengths are /" and f, the distance
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between the lenses being ¢ (positive), then by specialising the
formulse given by Heath, § 60, we find

HH' = - ¢/(f+/ ~);

FE = (Y - S+ -0 ]

FH = (/) +/ ~); . (20)
FH' = (/1 - A(f+F ~o). ‘

KK’ = (4~ &)/ +/ - 0)

7/

The following table, therefore, gives the conditions of construec-
tion for our eight types :—

1| FHHF |c>f+f /<0

w

FHHYF |c<f+f />0 ff >c

Inverting

3| HFFH |c<f+/f |/ >0| ¢>fr>1e

4| HFFH |c<f+f |fr>0| ff <l

5| FHHF |c<f+/ |ff <0

s

6 FHH'F |e>/f+/ |f>0] fF>¢

Erecting

7| HRFH |e>f+/ |17 >0] ¢spr>ye

8| HRFH' [e>f+) |1/ >0] jr' <l

The only systems for which lenses of negative focal length are
absolutely required are (1) and (5). All the others, except (7), can
be constructed with two identical lenses of equal positive focal
length placed at the proper distance apart. Perhaps the simnplest
way to work out a complete set of models is to take advantage of
the fact that (5) can be derived from (1) merely by altering ¢; and
that (2), (3), (4) can be converted into (6), (7), (8) respectively by
changing the signs of fand /"

The following table gives a convenient set of models. As it is
convenient to know the positions of the anti-principal points when
the combinations have to be measured experimentally, I have indi-
cated them by the letters KK’ in the table:—

2 Vol.14
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With six lenses which can be bought for a few shillings, and a
couple of draw-tubes for adjusting them at different distances apart,
apparatus can be constructed by means of this table for illustrating
the various typical systems and for exercising students in measuring
their constants.

TELESCOPIC SYSTEMS.

Hitherto we have supposed that the constant A in the equation
Azx' +Bx+C2' + D=0 - - - (3)

does not vanish. We shall now briefly consider systems for which
A =0. In this case the equation (3) reduces to

Bx+Ca'+D=0 - - - - (238)

We may pass over the cases where either B=0 or C=0, which are
of no practical interest. They correspond to systems having an
infinitely small focal length.

A system in which A=0, B+ 0, C+0 we shall call a ZTelescopic
System.

The special case where B = ~ C is worthy of separate considera-
tion. The equation (23) in this case takes the form

¥=x-d - - - - (24),

where d is a constant positive or negative according to the nature
of the system. The meaning of (24) is that the conjugate focus P’
corresponding to any given point P always lies at a fixed distance
d from P in the direction of the passage of the light or in the con-
trary direction according as d is positive or negative. In particular,
we see that to a point at infinity corresponds a point at infinity.
Hence any incident pencil of parallel rays emerges as o parallel
pencil. It is obvious in fact, from the more general equation (23),
that this is a property of any Telescopic System.

Let Pp (Fig. 9) be any linear object in the plane of the paper
perpendicular to the axis of the system and meeting it in P, and let
P’p’ be the image of Pp. To the incident ray pQ parallel to the
axis will correspond the emergent ray »'Q’ also parallel to the axis.
Let PQ, P'Q be any incident and corresponding emergent rays
through P and P’, then Q and Q are conjugate foci. Hence, if
QM and Q'M’ be perpendicular to the axis, it follows from (24) that
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MM =d=PP. Hence PM'=PM. Now, by Helmholtz’s Law, we
have
pBtana = p/B'tana’
Hence B PM =/ B2/ P'M’;
and therefore, since P’M’' = PM,

BiB= % J(u/r) - - - (25).

In systems of the present kind, therefore, the image is always shifted
througk a constant distance depending on the nature of the system ;
the magnification 13 constant and depends merely on the initial and
Jinal media ; and the image may be erect or inverted according to the
nature of the system.

If the initial and final media be the same, the image is equal to
the object. A plane-parallel plate of glass is an example, and lenses
can be constructed having the same property, as may easily be seen
by working out the characteristic equation (3) for a pair of coaxial
spherical surfaces and then applying the conditions A=0, B+C=0.

Next suppose B+ C=+0. Then, by shifting, the origin through
a distance = — D/(B + C), the equation (23) may be reduced to the
form

deke - - - - (0)
where k= — B/C. The definite point O which is now the origin we
may call the centre of the telescopic system.

We see from (26) that the law of conjugate foci reduces now to
the statement that the distance of the image point from the central
plane is proportional to the distance of the object point from the same
plane. In particular, infinity corresponds to infinity, and the centre
to atself.

Since image and object move always in the same direction, the
constant £ must be positive.

Let now Pp (Fig. 10) and P'p’ be a linear object and its image
as before. To the ray Op will correspond the emergent Op’, since
O corresponds to itself. Also, if PQ and P'Q’ be parallel to Op and
Op' respectively, then PQ and P'Q’ will be a pair of corresponding
rays, since the incident parallel pencil Op, PQ must emerge parallel.
Applying Helmholtz’s law, we therefore have

pftana = p/B'tana’;

R
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Hence BB =+ Juk/w) - - - (27);
tane'/tana= + [(u/kp') - - - (28).

From (27) and (28) we see that the magnification of the image is
constant ; and so also i3 the ratio of the tangents of the inclinations to
the axis of any incident and corresponding emergent rays. The ymage
may be erect or inverted according to circumstances.

We may call the telescopic system Erecting or Inverting accord-
ing as the image of an infinitely distant point is erect or inverted.

Taking the simple case where the astronomical telescope consists
of a field glass of focal length f and an eye piece of focal length g
placed at a distance apart equal to f+g, if we take the common
principal focus for origin, the equation (23) is, if we neglect the
thickness of the lenses, and suppose the field-glass turned towards
the incident rays,

- g -2/ (f+g9)=0 - - - (29).

Hence we have
o =2y (f-9y - - - - (30);
h-g=g(f+9)i(f-9) - - - (81),

The centre therefore lies at a distance from the eye lens somewhat
exceeding its focal length.

From (29) we see that k=g%/f%. Hence, since, under ordinary
circumstances, p = ', we have

BB =x9lf - - - (3%;
tana'/tana = + flg - - - (83):

the latter ratio, for reasons into which it is not necessary to enter
here, is commonly called the magnifiying power of the telescope.

MoODIFICATION OF A SYMMETRICAL PHoToGRAPHIC DOUBLET BY THE
INTRODUCTION OF A THIN LLENS BETWEEN ITs ELEMENTS.

For the purposes of landscape photography it is essential to have
a series of lenses of widely different focal length. The best possible
arrangement would of course be to have a specially constructed lens
for each of the focal lengths required ; but such a battery of lenses
is expensive, and, if doublets are used, it is heavy to carry. More-
over, while the requirements of pictorial perspective absolutely
demand variability in the focal length of the photographer’s lens, for
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many purposes the utmost refinement in definition and flatness of
field is not necessary, or, it may be not desirable.

For general photographic purposes the handiest lens is a sym-
metrical doublet of the rapid rectilinear or euryscope type; and it
has long been known that the focal length of such a combination can
be varied within wide limits without destroying its efficiency as a
photographic instrument by inserting between its elements a thin
lens of positive or negative focal length. Asan example of the fore-
going general theory, we propose to calculate the effect of such a lens
in shifting the principal points and in altering the focal length of
the doublet.

We shall suppose the thickness of the inserted lens to be negli-
gible ; i.e., we shall take its principal points to be coincident with
the middle point of the substance of the lens; and in the first
instance we shall suppose the inserted lens to be actinically achro-
matised, so that it has no ‘focal difference,” in other words that its
principal foci for the rays of maximum visual and maximum chemical
intensity coincide.

Let /' (Fig. 11) be the focal length of each of the components of
the doublet, F and ¢ the focal lengths of the doublet itself and of
the adjuster respectively, we take ¢ to be positive as usual when the
adjuster is of positive focal length.

Let L (Fig. 11) be the position of the adjuster; C the central
point of the doublet ; H, H’, K, K’ the principal points of the com-
ponents of the doublet; P, P, Q', Q successive congugate foci with
respect to the three lenses :

CL =d, positive when L is right of C;
CH= CK'=4,CH=CK=4;

CP =a,C P’ =2 measured to left ;
CQ =y, C Q =y measured to right.

Then we have, by (17') above,

Y@ -k -1@ -1)=1f - - (34);
Wy -k -1y ~B)=1f - - (35);
1)@ +d)+1/(y -d)=1/¢ - - (86).

From (34) and (35) we get

o —d={(K -W)f+hW +d(f+R)+ (-} -d}[(f+h-x); (37).
y —d={(A =R+ —d(f+h)+ (/- +d)y}/(f+h-y) }
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If we put (' = 2)f+ 2 =14 f+h=1 f-} =m,

s
so that &= (2f~l-m)f+(f-m) - )=/ ~-Im, - ] (38)

then we may replace A, %, f by k, I, m, or by I, m, f'; where it will be
observed that ! and m are the distances from the central point of
the doublet of the outer and inner principal focal points of either of
its elements.

If now we substitute the expressions just found for «'+d and
o' —d in (306), we get

Bl — ) &2~ dl+ (m+d)y ) + Sl — ) {F +dl+ (m ~ d)x)}
={F+dl+(m-d)x}{k - dl+ (n+d)y}.

Hence the characteristic equation for the triplet is

Azy+By+Cr4+ D=0 - - - (39),
where A =2m¢p+m*-d,
B = (8 + dl)(m + &) + (£ ~ In)q, (40)
C =& -dl)(m - d) + (k* — Tm)p, ’ '
D= k- d* - 284, )
For the coordinates of the principal focal points of the triplet we
have '
B (Im-i)¢-(F+d)(m+d); )
$="A° Imd +m* ~ d* l
2 2 (41).
, C (Im-k)p—(F-di)m—d)
T=TAT Ime +m? ~ d°

Also, if F, be the principal focal length of the triplet,

BC-AD ( (K + Im) ¢ )‘-‘ )
TTAT T Qme+mr-dY

Et+bnyp S - - (42
T omp et~ & Imp +m? - d? 2

F: :2

whence

If =0, F,=F; so that F=/?/2m, and we may put the last equa-
tion into the form

F¢
—_— 43)..
F3_¢+~.}—m—d“/2m (43)
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If x, X’ be the coordinates of the principal points of the triplet, we

have
_ P 28 + (P +dl)(m+d) “
X =4 e 2mnd +m? - d* ’ ! ,
L (44).
' _F 28 + (A* — dl)(m - d) ,
X=4=E= Imep +m? — d?
CASE WHERE TIIE ADJUSTER IS CENTRAL.
Then d =0 ; and we have F,=F¢ /(¢ + im) - - - (43):
whence ¢ =ImF,/(F-T,) - - - (46):

these formul® give the focal length of the triplet corresponding to a
given adjuster and the focal length of the adjuster required to pro-
duce a triplet of given focal length.

The coordinates of the principal points now become

x=X=-Fm=1—-fYm=f+h-2F 47):

Since thesc are the values of x and x' given by the general
formule (44) when ¢ =oc , we see that a central adjuster leaves the
principal points of the doublet unaltered.

No~N-CENTRAL ADJUSTER.

Returning to the general expression for F,, we have

_Fe o F
P+ dml \ T 2m(p+Im))

A

Taking the case of the Voigtlinder’s Euryscope with which I
experimented, we have F=9-85", f=18:06", A’ =1-66", A=182",
m =16-4". The utmost possible value of d is 1”: so that, if we take
the extreme case where ¢= —16 (which about doubles the focal
length of the Euryscope), we find d*/2m(¢ + }m) numerically less
than 1/255. We thus arrive at the remarkable conclusion that, so
far as the focal length of the triplet is concerned, the position of the
internal adjuster is practically a matter of indifference.

The effect on the principal points under the circumstances just
supposed is that the distance between them is practically unaltered,
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while each is shifted towards the inserted lens through a distance A

which is given approximately by
A=Fdj(p+im) -
or A=d(F - F;)/im - -

The result just stated may be put into another form.

to the expression for F, when d =0, we have

1 1 m | R
F,-FTare~F ToFg
Now 12 20
For 7
Hence 1 1 1/,’
T

A first approximation to the value of /'is f'=2F
For a second approximation
1 1 &
FoFTIFE

and for a third approximation

Hence, to a third approximation, we get
KoY
T

To the same degree of approximation

J- /L'=2F{l -

1 1 1 n L*

EF g
If, therefore, A?/4F*$ be negligible, we get

I_L 1 I/
A T S

- (48);
- (49)

Reverting

(50).

In other words, the triplet behaves, qua focal length, as if the
doublet were replaced by a thin lens of its own focal length placed
at its centre and the adjuster were placed at the inner principal

point of one of its components.

https://doi.org/10.1017/50013091500031692 Published online by Cambridge University Press

This agrees with what we have


https://doi.org/10.1017/S0013091500031692

22

already said regarding the indifference of the position of the adjuster
so far as the focal length of the triplet is concerned.

When a negative adjuster is used to lengthen the focus of the
doublet, there is a practical advantage in placing it as near the
back component as possible, because the effect of this is to shift
the principal points forward (A being negative) so that less camera
extension is required. Thus, for example, my camera scarcely allows
me to use the back lens (f=18:06") of my Voigtlander’s Euryscope
as a single landscape lens, whereas I can readily use the Euryscope
adjusted to a focus of 20" by inserting an adjuster for which ¢ = — 16
near the back lens.

Tun practice the simplest method for obtaining data for the con-
struction of adjusters of a given symmetrical doublet is to measure
the focal length of the doublet itself ; this gives F; then to measure
the distance behind the central point of the doublet (usually the
place where the diaphragm is put) of the inner principal focal point
of its front element ; this gives m. The formule (45) (46) will then
give F, or ¢ as may be required. 1f there is any reason to doubt
the accuracy of the approximation when the adjuster is non-central,
the more accurate formula (43) may bé used.

The following table gives the results of several (visual) experi-
ments made to test the foregoing results. The doublet was the
Euryscope above mentioned ; and the formula used for calculating
F, was F,=9:85¢/( + 8-2).

¢ F. Obs. F., Cale.
+ 3760 8-00 808
— 2497 1474 14:67
- 1938 17-00 17-08
~15-89 20-39 20-35

As the experiments were roughly made, without special appli-
ances for centering the lenses or measuring distances, the agreement
between observation and caleulation i3 all that could be expected.
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CHroMATIC ABERRATION CAUSED BY A NON-ACHROMATIC ADJUSTER.

Hitherto the adjusting lens has been supposed to be actinically
achromatic. As a matter of fact, the lenses used in my experiments
were simple lenses of crown glass. 1t is easy to calculate, by means
of the formule given above, the chromatic aberration or actinic focal
difference produced by the non-achromatic adjuster. The elements
of the Euryscope itself are approximately corrected for actinic chro-
matism: We have therefore only to deal with the dispersion of
the adjuster itself. Assuming the lens to be of hard crown glass,
and taking the rays of maximum visual and maximum chemical
intensity respectively to be D and G, we may suppose p,=13167,
te=1"5280: hence w==0op/(j;, — 1) =022, say.

Frow the approximate formulw for the triplet we have

LFE, =1 F+1m P, A=d(¥F - F,) lm.

Hence* R ( 1 )_l—,ﬁl . ( 1 ) Imo
o E = (4] E = *ﬁ .
thevefore oF, = - ImF0/); (51)
oA = —doF/lm= dFe/d. (52).

Let us suppose the adjuster placed behind the centre of the doublet
as before ; let » and « be the distance of object and image (corres-
ponding to the ray D of the spectrui) from the first and second
principal points of the triplet respectively ; and let us calculate the
longitudinal aberration of the ray G. This is caused partly by the
shifting of the principal points and partly by the alteration of the
focal length. The first principal point is shifted to the right through
oA ; and u as measured from the new first principal point is increased
by the same amount : » as nmeasured from the new second principal
point is increased by an amount v which is given by

M u? + 0v/v* = OF,/F,’,
that is, by (51) and (52)

fr= o%F,F7 - oM,

= - \mifo[Fp — dv’Fyo/u?d, (53).

“See Heath, §182.
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To this must be added the shift, 9\, of the second principal point
to the right. If, therefore, a denote the whole longitudinal aberra-
tion of the ray G, we have

olFyd  wr*lm  w'Fyd (5
= - _—— - - - (54).
TS T RG T W
If we consider only the correction for very distant objects, we
may put u =0, v=F;: we then get

a=o(d - km)F,/¢ - - - (D).
Taking d = 6", Jm = 82", and o= 022, we tind
a= —"167F,/¢ - - - (56),

by means of which we can calculate the actinic focal difference for
any given adjuster. Thus, for example, when ¢= -1589" and
F;=20-85", a= + 22" ; that is to say, the camera must be racked
out a little over ‘2" after the view has been focussed on the ground
glass.

EXPERIMENTAL DETERMINATION OF THE CONSTANTS OF A
SYMMETRICAL SYSTEM.

Since this paper is intended mainly for the use of laboratory
students, a word or two on the experimental determination of the
characteristic points of a symmetrical optical system may not be
out of place. In what follows, when Object and Image are spoken
of, they are assumed to be real, .., such that rays actually pass
through them. When the object is virtual, it can be generated by
means of an auxiliary optical system, say a simple biconvex lens,
whose optical constants are accurately known ; and a virtual image
can be dealt with in like manner if necessary.

The first step usually consists in determining the positions of the
principal foci F and F'. This is done by centering the optical
system in the axis of a telescope of moderate power focussed for
infinitely distant objects. An object w is moved backwards and
forwards on the axis until its image can be seen sharp on the cross
wires of the telescope : w is then at one of the principal foci, say F,
whose distance from any arbitrarily chosen point, O, on the axis of
the system is thus determined. Reversing the system and again
adjusting w we determine in like manner OF',
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If now we determine the position P’ of any axial object P, we
can find FP and F'P’ and hence /, by the equation FP-F'P’ = f* and
it only remains to note whether the system is erecting or inverting
in order to be able to lay down the principal and anti-principal
points H, H' and K, K. 1In the case of a convex lens, for example,
this is readily done by a method given by Gauss, which consists in
focussing a microscope on an object in the axis of the lens in contact
with its surface, first through the lens and then after the lens has
been removed : the amount by which the draw tube has Leen dis-
placed between the two focussings is the distance between P and P,
from which FP and FP’ can be found.

We may also determine the principal or the antiprincipal points
directly. For this purpose two identical photcgraphic negatives
O and O of the same object, say a divided scale, may be used.
O is placed perpendicular to the axis of the system and its image
received on O’ similarly placed as a focussing screen, so that the
two scales overlap. When the image of O is exactly of the same
size as O, O and O are in the positions H, H’ or else K, K’ respec-
tively. The coincidence may be very accurately determined by
observing O’ and the image of O by means of a microscope or other
wagnifier of moderate power carefully focussed on O’ beforehand.

These measurements are susceptible of considerable accuracy if
monochromatic light of suflicent intensity be used, and the experi-
menter is provided with an optic bench fitted with telescope and
low power microscope with micrometer eyepiece and micrometer
displacement screw, together with arrangements for fixing and
centering the systems to be measured.

The observations quoted above, which are probably accurate to
about 17/, were made in my own library, with white light, the only
apparatus available being a small pocket telescope, the debris of o
toy microscope, a steel measuring tape and a couple of retort stands.
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