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WEIGHTED NORM INEQUALITIES FOR FRACTIONAL
INTEGRAL OPERATORS WITH ROUGH KERNEL

YONG DING AND SHANZHEN LU

ABSTRACT. Given function Q on R", we define the fractional maximal operator and
the fractional integral operator by

1
Mo f00 == [ 1001110yl

r>0

and

Taat0= [ S fx—y)ay

respectively, where 0 < o« < n. In this paper we study the weighted norm inequal-
ities of Mg, and Tq, for appropriate «,s and A(p. q) weights in the case that
Q € L3S Y)(s > 1), homogeneous of degree zero.

1. Introduction. Supposethat 0 < o < n, Q is homogeneous of degree zero, and
Q € LS(S"1),where S™* denotesthe sphere of R" and s > 1. Then we will consider the
fractional maximal operator Mg ,, defined by

1
Moo f() =sup = [ 1Q(y)f(x—y)|dy

r>0

and the fractional integral operator defined by

Q(y)
|y|r—e

Toof() = [ f(x—y)dy.
When o = 0, we denote Mg  and Tq o by Mg and T, respectively, where the integration
is taken by the Cauchy principal value.

Itiswell known that Kurtz and Wheeden [KW] had proven certain weighted normin-
equalitiesfor To under theassumptionthat Q € LS(S"1) and Q satisfiesan LS(S*~1)-Dini
smoothness condition. Using Fourier transform methods, Watson [W] and Duoandikoe-
texea [Du] showed that the smoothness requirement in [KW] was in fact unnecessary.
However, the corresponding results for fractional maximal and singular integral oper-
ators have not been proven even for smooth Q. This paper aims to establish weighted
norm inequalities for Tq , and Mg, with 0 < o < nand Q € LS(S"1). To do this, we
require some techniques related to weights from a (p, p) setting to a (p, q) setting.
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A locally integrable nonnegative function w on R" is said to belong to A(p, 9)(1 <
p, q < oo) if there exists C such that

(1.1) 1/ xd 1/q 1/ ()p'd 1/rY<C
. sup(— w(X x) (— w(X)~ x) < C < o9,

Q \[Q /e QI /e
wherep’ = p/(p—1). Q denotesacubein R" with itssides parallel to the coordinate axes
and the supremum is taken over all cubes. In 1971, Muckenhoupt and Wheeden [MW1]
studied the weighted norm inequalities for Tq ,, with the weight w(x) = |x|°. Recently,
weak type inequalities with power weightsfor Tq  and Mg  have been obtained by one
of the authors of this paper [D]. Moreover, Muckenhoupt and Wheeden [MW2] gavethe
following weighted resultsfor My, and Ty, with Q = 1.

THEOREM A. If0<a<n1<p<n/e,1/q=1/p—a/nandw(x) € A(p.q),
then there isa constant C, independent of f, such that

(/Rn[Ml,(,f(x)w(x)]“ dx) Yo ¢ (/R £ ()P dx)l/p

and
1 1
([ Moo t0w0070x) " < o ([ 17090017 o) ™"

On the other hand, Duoandikoetxea[Du] obtained the weighted norm inequalities for
Mg and T with theweight w(x) € A,. Moreover, asusual, A, denotesthe Muckenhoupt's
class.

In this paper we shall study the weighted norm inequalities for Mq , and Tg o With
more general weights, that is, we will look for some appropriate indices p, g, «. S such
that for w(x) € A(p. q), Q € LS(S™ 1),

(12) (/[T f09269]" ax) M ¢ (), 1£6909/P dx) P

holds,where C isindependent of f. The same conclusion is true for Mq . Precisely, we
obtain the following

THEOREM 1. LetO< a<n,s <p<n/e,andl/q=1/p—a/n.IfQ € L3S 1)
and w(X)® € A(p/s,q/s), then thereis a constant C, independent of f, such that

1/p

([ [Too f0w00]"ax) " < ([ 110w00P a)

THEOREM 2. Let0 < a < n, 1 <p < n/ea, 1/q=1/p—a/n, ands > q. If
Qe LS Y andw(®) S € A /S, p'/S), then thereis a constant C, independent of ,
such that

([ [T fee00]"ax) " < ( [, 1109e00P ax) .
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THEOREM 3. Let0 < o < n, 1 < p < n/a,and1l/q=1/p—a/n If Qis
homogeneous of degreezero, Q € LS(S' 1) for somes > 1witha/n+1/s < 1/p< 1/s,
and thereexistsanr, 1 <r < s/(2)', such that w" € A(p. ), then there is a constant
C, independent of f, such that

1/q
( [ [Toaf0w(]’ dx) <c ( [, 11 0wGoP dx)
To prove Theorem 1, let usfirst set up the following Proposition 1.

1/p

PROPOSITION 1. Let0 < a < n, s <p<n/a,andl/q=1/p—a/nlIfQ €
LS Y and w(x)® € A(p/s.q/s), then there is a constant C, independent of f, such
that

/a 1/p
(], M. f(0017ax) " < C ([ 1Fxw09Pax) .
Asacorollary of Theorem 2, we have the following

PROPOSITION 2. Let0 < a <n 1<p<n/a,1/q=1/p—a/nands> q.lf
Qe LS Handw(®)~° € A(q'/S. p’/s), then thereis a constant C, independent of f,
such that

1/a 1/p
(/Moo f(0917ax) " < C( [ 1F0909Pax) .
As adirect corollary of Theorem 3, we also have

ProPOSITION 3. Under the assumption of Theorem 3, Mq ,, is also a bounded oper-
ator from LP(wP) to LA(w9).

2. Somepropertiesof A(p, g) weightsand proof of Proposition 1. Some elemen-
tary properties of A(p, g) weights will be first given in this section. Then we shall give
the proof of Proposition 1. Let usrecall the elementary properties of A, weight. A locally
integrable nonnegative function » on R" is said to belong to Ay(1 < p < o0) if there
exists C such that

(2.1) sgp(ﬁ /Q V(%) dx) (6 /Q y(x) Y/ (P dx) i <C< oo,

where Q denotes a cube in R" with the sides parallel to the coordinate axes and the
supremum is taken over all cubes. When p = 1, a nonnegative measurable function v is
said to belong to Ay, if there exists C such that for any cube Q,

1
o] /Q y(y)dy < Cr(x). aexeQ.

THE ELEMENTARY PROPERTIES OF A, (SEE [GRY).
(22) Ap, C A, IT1<p < p2 <00
(2.3) v(x) € Agif andonly if v(X)1 P € Ay.
(2.4) If v(x) € Apthenthereexistsane > 0suchthatp—e > 1andv(x) € Ap_..
(2.5) If v(X) € Ap then there existsan e > 0 such that v(X)1** € Ay,
(26) v € Ap(1 < p < oo) if and only if there exist u(x), v(x) € As such that v(x) =
u(x) - v(x),.
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THE ELEMENTARY PROPERTIES OF A(p, (). Supposethat 0 < o <n,1<p<n/q,
and1/q=1/p— «/n. Then

wX) € A(p. Q) <= wX)T € Agn_o/n
= w7 € Auy/q

(2.8) w(X) € A(p,g) = w(X)! €Ay and w(X)P € Ap.

PrOOF. (2.7) can be deduced from the definitions of A, and A(p, g). Let us now
prove (2.8) by (2.2), (2.3) and (2.7). Sinceq(n— @) /n < g, wehavew(X) € Ayna)/n C
Aq.From1/q=1/p—a/n,itfollowsthat1/q<1/p=(p'—1)/p,i.e.1+p’/qa<p.
Using (2.7) and (2.2), we have w(x) ™ € Asip /g C Ay. However, this is equivalent to

w(X)P € Ay by (2.3).
We shall give the proof of Proposition 1 in the following. The proof is based on the
following observation.

LEMMA L IfO<a<ns>11<p/s <n/a,1/(q/s)=1/(p/s)—a/n,and
w(X)® € A(p/s.q/s), then

2.9) ([Nt 0909 o) Yo (f, 17696oP dx)l/ .

where N, ¢ is the fractional maximal operator of order s’ defined by
_ 1 g l/S’
Nesf(X) = Sup (r“—*“ /\y\<r [f(x—y)| dY)
PROOF. Since Ny ¢f(X) = (Mua(| F$)(9) "%, we have

/
( A n[Nmf(x)w(x)}qu)l/ = ( LMo ¥ )09]YS (e o|x)l !
) [ (Ax Mo f|d)(X)V(X)F/§ dx)g/q}

where v(x) = w(x)* and v(x) € A(p/s’,q/s). By Theorem A, we have

¢/

([, MeaQ )00 0]" @) < ¢ ([ [1160157]”° o)

= ([ IFRPr09Ps dx)g/p.

1/¢
s/p

Thus,

1/p

([ [Nasf900]'a) " < ([, 11aPre0P* i)
c( [, 1109u09P ax)”"
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This proves (2.9).
L et us now give the proof of Proposition 1. By s > 1, Q(x') € LSS 1), we have

Moo f09 = sup = Sy 1O fx =yl dy
1 1/s 1/¢
< Q(y)|°d f(x—y)° d )
< sup (_/Mql ) y) (‘/MGI (x—y)I¥ dy

since (Jiyj<r IQ(y)Ide)l/S < Cr/s||Qs, where [|Ql|s = (Jgrs IQ(V)ISdo(V))l/S, then
we have

1 1/¢
< .¢n/s WIS ) .
Moo f() < CsUp = -1 (/Mqlf(x yI¢ dy

1 ¢ 1/s
Csup (m Jyes 11X =) dy)

r>0

C- Nas’,s’f (X)

From1l < s < p < n/aand1l/qg=1/p— a/n it followstha 0 < as < n,
1<p/s<n/asandl/(q/s)=1/(p/s)— as'/n. Therefore, by Lemmal, we get

1/q

(‘/IR” [MQ’“f(X)w(X)]q dx) 7 <C (./IR” {Nas’.s’f(X)w(X)}q dx)
i/p
< ([ 1109u00F ax) "

This completes the proof of Proposition 1.

3. Theproofsof Theorem 1 and Theorem 2. In this section we will prove Theo-
rems 1 and 2. At first we give some lemmas related to A( p, q) weights.

LEMMA 2. LetO<a<n 1<p<n/a,1/g=1/p—a/nandw € A(p.q), then
there existsan e > 0 such that

() e<a<ate<n

(i) 1/p>(x+e)/n1/g<(n—e)/n,
w e A(p.g.) andw € A(p.G.), wherel/q. = 1/p—(a+¢)/nand 1/q = 1/p —
(¢ —¢)/n.

PrROOF. Sincea > 0,1/q < 1, we cantakee; > Osuchthat &1 < o and 1/q+
e1/n < 1. Denote 1/q., = 1/p— (¢ —e1)/n =1/q+e1/n, thenqg > q., > 1 and
1+p'/q< 1+p/q.,. Thus, from (2.7) and (2.2), we have w™® € Avp /g C Asg /g, »
whichis equivalent to

(3.2) w € A(p. 0, )

by (2.7).
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On the other hand, there existsan i, 0 < 1 < 1/q, such that w™ € Avp(1/g-1)
by (2.4). Of course, we also choose e, > 0 small enough such that £, < min{a, n— o},
1/p > (a+ez)/nande;/n < i holdat sametime. Denotel/q., = 1/p—(a+e2)/n, then
by1l/p> (a+ez)/nandez/n < nwehave0<1/g.,, <landl/q.,=1/q—e2/n>
1/q— n. Hence,we get wP e Avvp(1/q-n) C A1+quz , Whichis equivalent to

(3.2 w € A(p, qsz)

Now let e = min{e1. e2}, then e satisfiesall conditions satisfied by 1 and ;. Therefore,
if wedenotel/q. =1/p—(a+e)/nand1l/q. =1/p—(a—e)/n, thenby (3.1) and (3.2)
wehavew € A(p.g.) and w € A(p, G.). Thisisthe desired conclusion.

LEMMA 3. Let0 < a <n 1< <p<n/a,1l/qg=1/p—a/nandw® €
A(p/s.q/s), thenthereexistsan ¢ > 0 such that

() e<a<ate<n,

(i) 1/p>(xte)/n1/g<(n—¢)/n,
w® € A(p/s.q./s) and w® € A(p/s.q./s), where1/q. = 1/p — (& +¢)/n and
1/§.=1/p—(x—¢)/n.

ProoF. Since 1/(q/s) = 1/(p/s) — as'/n, by Lemma 2, there existsan n > 0
suchthat n < a8’ < as' +1 < n,1/(p/s) > (as +n)/n,1/(q/s) < (n—n)/n,
w® € A(p/s.q,) ad w¥ € A(p/s.q,), where 1/q, = 1/(p/s) — (as +n)/n,
1/q, = 1/(p/s) — (a8 —n)/n. Now let e = /s, q. = §q, and §. = G, then ¢
satisfies0 < e <a <a+e<n1l/p>(a+e)/nand1l/q < (n—e)/n. Obviously, we
havew® € A(p/s,q./s) andw® € A(p/s.q./s), wherel/q. =1/p— (e +¢)/nand
1/ =1/p— (@ —)/n.

In order to finish the proof of Theorem 1, we also need the following lemma which
shows Tq  is controlled pointwise by Mq .

LEMMA 4. Foranye >0with0 < o — e < o +& < n, we have

1/2 1/2

Taa ()] < CMa.ov F(¥)] "7 Moo T[] xR,

where C dependsonlyon ¢, «, n.

Proor. The proof will follow after [We]. Givenx € R"ande > 0with0 < a — e <
a +¢& < n,wechoosead > 0 such that

525 = MQ.O{“’E f(X)/MQ.oz—E f(X)

Now we put

Tooof) = [ XY f(y)dy

Ix—yl<s |X — y|"—o
=1+ 1.

Q(x—vy)
f(y)dy + /‘X_M oy
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Thus
= [Q(x—y)|
Il = j:zo/zfifléﬁleyszm |x—y|“*“|f(y)loIy
S (9-i—1g)-(1-0) _
< @) Sy 196 =T dy
= n—o —J - _
2 2(2 N o W 7 o ypeas [ Q=N dy
<C- . Mg,a_gf(x).
Similarly,

S [TCE I
l2| SjZ;/Z . = () dy

I-L5<|x—yl<2is |X — y|"—

Y == L CERVILOEY
>

< C-6° - Mg g+ F(X).
Therefore, we get
|TQ.0( f(X)| S C [55MQAD(—5 f(X) +0° MQ.O{“’E f(X)}

and so with the above election of ¢ the lemmais proved.

THE PROOF OF THEOREM 1. Under the conditions of Theorem 1, by Lemma 3, there
existsane > Osuchthat0 < e < a < a+e <N, 1/p > (a+e)/n,w® € A(p/s.q. /)
and w® € A(p/s.q./s),wherel/q. =1/p—(a+¢)/nand1/q =1/p— (e —¢)/n.
Now letl; = 2q./q, |2 = 2G./q, then 1/I, + 1/I, = 1. For above given ¢ > 0, using
Lemma4 and Holder’s inequality, we have

||TQ.af ”q,wq <C (/IR” [MQ’O(+5 f(X)w(x)]q/z ) [MQ,afg f(X)w(X)]q/z dx) 1/q
< (Mo 100601 *06) ™ ( [ [Ma-10900]* )
= © (M 10900]" ™ ([, Mo 100000 0]

Therefore, from Lemma 3 and Proposition 1, it follows that

1/d2

( Mo F (] dx) 7B et [
and ) |
([ [Maa--tx]* ax) "™ < ClIf 35

Hence, we obtain
[Ta.afllges < Cl[fllpwr-
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Let us now turn to the proof of Theorem 2. In fact, Theorem 2 is a consequence of
Theorem 1 by duality. To see this, let T := Tq., be the adjoint operator of Tq., that
means To, = Tg,, with Q(x) = Q(x). Obviously, Q is also homogeneousof degree zero
and satisfies the same essential inequalities as Q. Thus, we have

I Toe llgus = sup | [ T F09g0 0X .
i

where the supremum is taken over all g(x) with ||g]| . < 1. Since T is the adjoint

operator of Tq 4, then

0w

Lo Taa (9909 = [, 169 - Tg( o

Hence,

[ Ta.o g Sl;pmn f(x) - Tg(x) dx‘

IN

[fllpr 'S;pllfgllp/.w—p/-

By the condition of Theorem 2, weseethat 1/qg=1/p—a/nand1 < p < q < s. Thus,
1/p=1/q —a/nands < q < n/a.From (W) € A(q' /s, p'/s) and Theorem 1,
it follows that
179l v < Cliglly.. o
Therefore,
I Ta.o fllgws < [|fllpwr - S‘SDHTQHp/.mn’ < C| f[|pwr-

This finishes the proof of Theorem 2.

Finally, let us point out that Proposition 2 is a direct consequence of Theorem 2
and the following lemma, which shows that Mq ,(f)(X) can be controlled pointwise by
Tiap.a(| f(3) for any f(X).

LEMMA 5. Let0 < a < n, Q € LY(S™1). Thenwe have

Ma.o()(9) < Tigp.o(| FN).

Infact, fix r > 0, we have
QX —y)|
T > [ e
1
> o5 [y Q=) .

Taking the supremum for r > 0 on two sides of theinequality above, we get

1
Tl D0 2 sup == [ JR(= Il dy.

|f(y)| dy

Thisisjust our desired conclusion.
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4, Theproof of Theorem 3. Let usfirst statealemmawhichiseasily deduced from
the Stein-Weiss interpolation theorem with change of measures (see[BL], p. 120).

LEMMA 6. Let0 < o < n, 1 < po < p1 <N/, 1/qpo = 1/po — a/n, and
1/q. = 1/p1 — a/n. If linear operator T is a bounded operator from LP(wf") to
L%(wg) and from LP*(w}*) to L% (w{) with norms Co and C; respectively, then T isalso
bounded operator from LP(wP) to L9(w®) with norm C, where0 < 6 < 1, C < C3~7CY,
1/p=(1—6)/po+0/p1,1/q=1/p—a/n,andw = wiuf.

Let us now turn to prove Theorem 3. If we can prove that there exist (0 < 6 < 1),
Po, P1, do, ad q; satisfying

(4.1) 1<d<pp<p<pi<n/a,

(4.2) n/(n—a) <gp<q<aq<s

(4.3) 1/q0=1/po—a/n1/n=1/pr—a/n.1/p=(1—-6)/po— a/n.
(4.4) W=k,

and

(4.5) ws € A(Po/S.0o/S).wi® € Ady/S. pi/9),

then the conclusion of Theorem 3 will be deduced from Theorem 1, Theorem 2 and
Lemma 6. Therefore, it suffices to seek above 6, po, p1, do, d1, wo and wy such that
(4.1)—4.5) hold.

Sincethereisanr, 1 <r <s/(Z)’, suchthat w" € A(p. q), it follows from (2.7) that
w"% € Ayn_ay/n- However, it follows from (2.6) that there exist u(x), v(X) € Ay such that

w(x)r/q - U(X) . V(X)l—q(n—a)/n_
or
(46) w()() = u(X)l/r,q . V(x)l/r/q_(n_a)/r/n‘

By (4.6), we can write w(x) as

4.7) w = (WvH WY,
where
(4.8 T1—0)+79=1/r'q, BAL—0)+60=1/r"q—(n—a)/r'n.
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Now we denote wo(x) = u(x)"v(x)? and w1(x) = u(x)’v(x)’. We shall seethatif 1 <8 <
Po<p<n/aandl/go=1/po—a/n thenwhent =1/qoand 3 = —1/5 (&), we
havew§ € A(pPo/s,0o/s). Infact, since u(x), v(x) € Ay, we have

s/ , 1/(po/sY
(7 flnt )" ex] q (17 o/ po

(IQI Jpux q‘”v(x)qf“’o‘x) /qo(|Q| oy USRIy (P/Y i

<c(igk V(X)dx)%q oo™ o) /qo(|o|/ 09 -

(|QI /V(X) B (po/S) g ) 1/(po/S)

) 1/(po/s)

<C.

where C is independent of Q. By the same method, we can prove that if n/(n — @) <
g< g <sandl/g =1/p1— a/n thenwheny = —1/p, 6 = 1/5’(%,1)', we have
wi® € A(Gy/S. Py /).

Let us now figure 6 out by (4.8). Note that

o= {2(%)}) = vpo-1s

5:{41’1)’}1.

and

Thus, it follows from (4.8) that

_T7—B—(M—a)/r'n
(49) 0= b—=Y—p+T
_1/d—a/n—(n—a)/r'n
- 2(1/s — a/n) ‘
Sincel < r < s/(2), wemay write 2 = -2(L +¢), where= > 0. Thus,

_51

1/s’—a/n—(n—a)/r’n:§—%—n;a{l—n n (%+5)

and then 6 = ¢/2(3 — £). Sinces’ < n/a, we have § > 0. On the other hand, we
easily seethat 6 < 1 by (4.9). Therefore, 0 < § < 1 and (4.4), (4.5) hold by the above
estimates. It remains to prove that we can choose proper po, p1, go and g; such that
(4.1)«4.3) hold. Since1/p > a/n+1/sand § > 0, we have

1 ab 0 1.

(4.10) p(1—6) - n(1—6) B S(1—-6) ”
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By (4.10) and 1/p < 1/, we can choose pg such that

1 1 1 1 af 0
411 - <= mm[ — }
@1 P p ™ pa-0) na-0 sa-0
Thus, we have s’ < po < pand 1/p > (1 — 6)/po + af/n. Therefore, there exists a
o > 0 such that
1 1-9 o
(4.12) SE (HM) 9.

Let us denote 1 = @+ ¢. Then it follows from 1/p; > a/nand 1/p < 1/po that
S<pp<p < p1 < n/a. This proves (4.1). Also (4.3) holds by (4.12). Now let us
denotel/0o=1/po— «/nand 1/qy = 1/p1 — «/n. Obviously, by (4.11), we have

However, the above is equivalentto 1/p; — o/n > 1/s. Thus, qu < s, and therefore
(4.2) holds. Hence, we finish the proof of Theorem 3.
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