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Abstract
This paper extends the results of Boij, Eisenbud, Erman, Schreyer and Söderberg on the structure of Betti cones of
finitely generated graded modules and finite free complexes over polynomial rings, to all finitely generated graded
rings admitting linear Noether normalizations. The key new input is the existence of lim Ulrich sequences of graded
modules over such rings.
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1. Introduction

Let k be a field and 𝐴 � 𝑘 [𝑥1, . . . , 𝑥𝑑] a polynomial ring in d-variables, each of degree one. The Betti
table of a finitely generated graded A-module M is the matrix of integers, denoted 𝛽(𝑀), that records
the homological positions and the twists of the graded free modules appearing in the minimal free
resolution of M. Boij and Söderberg [1] conjectured an explicit description of the collection of all Betti
tables of graded Cohen–Macaulay A-modules ‘up to rational scaling’. This conjecture was proved by
Eisenbud and Schreyer [6] and subsequently extended to all graded A-modules by Boij and Söderberg
[2]. In detail, for 0 ≤ 𝑐 ≤ 𝑑, let B𝑐 (𝐴) denote the cone inside the Q-vector space

⊕
0≤𝑖≤𝑑, 𝑗∈Z Q

spanned by the Betti tables of all graded A-modules of codimension at least c. The results of Eisenbud
and Schreyer, and Boij and Söderberg, give an equality

B𝑐 (𝐴) = B𝑐
𝑑 ,
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2 S. B. Iyengar et al.

where B𝑐
𝑑 is the Q≥0-span of certain explicit Betti tables 𝛽(𝑎), where 𝑎 = (𝑎0, . . . , 𝑎𝑙) ranges over all

‘degree sequences’, that is to say, (𝑙 + 1)-tuples of increasing integers, for 𝑙 ≥ 𝑐; see Equation (5.2)
below for definition of 𝛽(𝑎). A Cohen–Macaulay module M whose Betti table is a rational multiple of
𝛽(𝑎) for some choice of degree sequence 𝑎 is called a ‘pure module’.

In this language, the theorem asserts that there exists a pure module for each possible degree sequence
and B𝑐 (𝐴) is spanned by the Betti tables of pure modules. Roughly speaking, this means that the Betti
tables of all modules are governed by those of the pure modules. In particular, the multiplicity conjecture
of Huneke and Srinivasan is a direct consequence [1].

The main result of this paper extends these results to all N-graded k-algebras that admit linear
Noether normalizations, that is to say, a linear system of parameters; see Section 4.4. We assume k is
infinite throughout this paper, for the sake of simplicity, so this class of k-algebras includes the standard
graded ones. For any graded k-algebra R and integer 0 ≤ 𝑐 ≤ 𝑑 � dim(𝑅), let B𝑐 (𝑅) be the cone
spanned by Betti tables of modules of codimension at least c and of finite projective dimension. We
prove:

Theorem 1.1 (Theorem 6.2). For R and B𝑐
𝑑 as above, we have a containment B𝑐 (𝑅) ⊆ B𝑐

𝑑 , and equality
holds when R is Cohen–Macaulay.

As in [1], one can deduce the following bounds on the multiplicity of a perfect module; that is
to say, a finitely generated module whose projective dimension equals its codimension. When R is
Cohen–Macaulay, perfect modules are precisely those that are Cohen–Macaulay and of finite projective
dimension. Thus, the statement below generalizes the theorem on multiplicities over polynomial rings.

Corollary 1.2 (Corollary 6.3). With R as above, any perfect R-module M satisfies

𝑒(𝑅)
𝑡1 · · · 𝑡𝑐

𝑐!
≤ 𝑒(𝑀) ≤ 𝑒(𝑅)

𝑇1 · · ·𝑇𝑐
𝑐!

,

where c is the codimension of M, and the 𝑡𝑖’s and 𝑇𝑖’s are the minimal and maximal shifts occurring in
the minimal free resolution of M.

Eisenbud and Erman [4] generalized the results in [1, 6] to finite free complexes over A, and we
extend their results to rings R as above; see Theorem 6.2.

The proof of Eisenbud and Schreyer uses a pairing between Betti tables of graded A-modules and
cohomology tables of coherent sheaves on Proj(𝐴) = P𝑑−1

𝑘 , along with a description of the rational cone
spanned by the cohomology tables of such coherent sheaves. Although we do not use such a pairing
in this paper, we do establish a result concerning the cone of cohomology tables for coherent sheaves
over Proj(𝑅) with R as in Theorem 1.1. When k is an infinite perfect field of positive characteristic, we
prove C(P𝑑−1

𝑘 ) = C(Proj(𝑅)), where C is the component-wise limit closure of cohomology tables of
coherent sheaves; see Theorem 3.4.

The results stated above are known when R admits a graded Ulrich module or, equivalently, when
Proj(𝑅) admits an Ulrich sheaf; see [4]. But the existence of such modules is known only in a small
number of cases. Instead, we use ‘lim Ulrich sequences’ of graded modules, which are sequences of
graded modules that asymptotically approximate Ulrich modules. They exist over any graded k-algebra
admitting a linear Noether normalization and where k is a infinite perfect field of positive characteristic.
The relevant results are established in Sections 2 and 4.

2. Lim Ulrich sequences of sheaves

For any Noetherian scheme X, let Db (𝑋) be its derived category of coherent sheaves. The tensor product
of coherent sheaves on X is denoted − ⊗ −; its derived version is − ⊗L −. Throughout this manuscript,
k is a field and 𝑚 ≥ 1 an integer. Let P𝑚 be the projective space over k of dimension m; we write P𝑚𝑘
when the field k needs emphasis.
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2.1. For each coherent sheaf F (or a bounded complex of such) on P𝑚 set

𝛾𝑖,𝑡 (F) � rank𝑘 H𝑖 (P𝑚,F (𝑡)) for 𝑖, 𝑡 in Z.

With 𝜀 : P𝑚 → Spec(𝑘) the structure map, for any coherent sheaf on F the counit of the adjoint pair
(𝜀∗, 𝜀∗) is a natural map

𝜀∗𝜀∗F −→ F . (2.2)

The following result is well-known; see [7, Proposition 2.1].

Lemma 2.3. Let F be a coherent sheaf on P𝑚. The conditions below are equivalent:

1. The map (2.2) is an isomorphism.
2. F � O𝑟

P𝑚
for some integer 𝑟 ≥ 0.

3. 𝛾𝑖,𝑡 (F) = 0, except possibly when 𝑖 = 0 and 𝑡 ≥ 0, or 𝑖 = 𝑚 and 𝑡 ≤ −𝑚 − 1.

When these conditions hold, F � O𝑟
P𝑚

for 𝑟 = 𝛾0,0 (F).

Any nonzero sheaf F on P𝑚 satisfying the equivalent condition of the result above is said to be an
Ulrich sheaf. Condition (3) is used to define Ulrich sheaves over arbitrary projective varieties.

Lim Ulrich sequences

We introduce the notion of lim Ulrich sequences of sheaves on P𝑚, following [15, §6.6].

2.4. A lim Ulrich sequence of sheaves on P𝑚 is a sequence (F𝑛)𝑛�0 of coherent sheaves on P𝑚 for which
the following properties hold:

1. 𝛾0,0 (F𝑛) ≠ 0 for each 𝑛 ≥ 0;
2. There exists an integer 𝑡0 such that 𝛾0,𝑡 (F𝑛) = 0 for 𝑡 ≤ 𝑡0 and all n;
3. There exists an integer 𝑡1 such that 𝛾�1,𝑡 (F𝑛) = 0 for 𝑡 ≥ 𝑡1 and all n;
4. Except possibly when 𝑖 = 0 and 𝑡 ≥ 0, or 𝑖 = 𝑚 and 𝑡 ≤ −𝑚 − 1, one has

lim
𝑛→∞

𝛾𝑖,𝑡 (F𝑛)

𝛾0,0 (F𝑛)
= 0 .

The range of values of i and t arising in (4) is precisely the one from Lemma 2.3. For geometric
applications, the key properties are (1) and (4); see, in particular, Theorem 2.8 below. The other
conditions become important when considering the corresponding sequence of graded modules; see the
proof of Theorem 4.17.

Clearly, if each F𝑛 is an Ulrich sheaf, then the sequence (F𝑛)𝑛�0 is lim Ulrich. However, there are
other lim Ulrich sequences on P𝑚𝑘 , at least when k has positive characteristic, and these will be used to
construct lim Ulrich sequences on a much larger family of schemes; see Theorem 2.19.

Next, we present a characterization of lim Ulrich sequences on P𝑚 in the spirit of the original
definition of Ulrich sheaves.

2.5. Let F be a coherent sheaf on P𝑚. Consider cone(F), the mapping cone of the counit map (2.2) and
the induced exact triangle

𝜀∗𝜀∗F −→ F −→ cone(F) −→ (2.6)

in Db (coh P𝑚). Observe that this is natural in F , but it is not compatible with twists. Keeping in mind
that 𝜀∗𝜀∗F � O𝑟

P𝑚
, tensoring the exact triangle defining cone(F) with OP (𝑡) yields an exact triangle

OP𝑚 (𝑡)𝑟 −→ F (𝑡) −→ cone(F) (𝑡) −→ .
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The resulting exact sequence in cohomology reads

H∗(P𝑚,OP𝑚 (𝑡))𝑟 → H∗(P𝑚,F (𝑡)) → H∗(P𝑚, cone(F) (𝑡)) → H∗+1(P𝑚,OP𝑚 (𝑡))𝑟 . (2.7)

The gist of the next result is that for a lim Ulrich sequence (F𝑛)𝑛�0, the counit maps 𝜀∗𝜀∗F𝑛 → F𝑛

are asymptotically isomorphisms. If F is an Ulrich sheaf, applying it to the sequence F𝑛 � F and
G = OP𝑚 , recovers Lemma 2.3, but of course the latter result, and its proof, are models for the one below.

Theorem 2.8. Let (F𝑛)𝑛�0 be a lim Ulrich sequence of sheaves on P𝑚. For any G in Db (coh P𝑚) and
integers 𝑖, 𝑗 , one has

lim
𝑛→∞

𝛾𝑖, 𝑗 (cone(F𝑛) ⊗
L G)

𝛾0,0 (F𝑛)
= 0 .

The proof only uses conditions (1) and (4) in Section 2.4.

Proof. In what follows, we write P instead of P𝑚 and O for the structure sheaf on it. Set 𝑟𝑛 � 𝛾0,0 (F𝑛).
It helps to consider the collection S of sequences (C𝑛)𝑛�0 with C𝑛 in Db (coh P), with the property that

lim
𝑛→∞

rank𝑘 H∗(P, C𝑛)
𝑟𝑛

= 0 . (2.9)

The desired result is that the sequence with C𝑛 � cone(F𝑛) ⊗
L G is in S. In the proof, we repeatedly

use the following elementary observation: Given sequences (C ′
𝑛)𝑛�0, (C𝑛)𝑛�0 and (C ′′

𝑛 )𝑛�0, of bounded
complexes of coherent sheaves such that for each n there is an exact triangle

C ′
𝑛 −→ C𝑛 −→ C ′′

𝑛 −→

if two of the three sequences are in S, then so is the third.
It follows from this observation that given an exact triangle G ′ → G → G ′′ → in Db (coh P), if the

desired result holds for any two of G ′, G and G ′′, then it holds for the third. Since each object in the
derived category is equivalent to a bounded complex consisting of twists of O, a standard induction
using these observations reduces checking the desired result to the case when G = O(𝑡), for 𝑡 ∈ Z; that
is to say that the sequence (cone(F𝑛) (𝑡))𝑛�0 is in S.

When −𝑚 ≤ 𝑡 ≤ −1, one has H∗(P,O(𝑡)) = 0 so the exact sequence (2.7) with F � F𝑛 gives the
first equality below:

lim
𝑛→∞

rank𝑘 H∗(P, cone(F𝑛) (𝑡))

𝑟𝑛
= lim

𝑛→∞

rank𝑘 H∗(P,F𝑛 (𝑡))

𝑟𝑛
= 0 .

The second one is by condition 2.4(4). This is the desired result.
Suppose 𝑡 ≥ 0. We argue by induction on t that the sequence (cone(F𝑛) (𝑡))𝑛�0 is in S. The base case

is 𝑡 = 0. Then since H𝑖 (P,O(𝑡)) = 0 for all 𝑖 ≥ 1 the exact sequence (2.7), with F � F𝑛, reduces to the
exact sequence

0 −→ H0(P,O(𝑡))𝑟𝑛 −→ H∗(P,F𝑛 (𝑡)) −→ H∗(P, cone(F𝑛) (𝑡)) −→ 0.

When 𝑡 = 0 the map on the left is an isomorphism in degree 0, by the definition of 𝑟𝑛. Thus, we get

rank𝑘 H∗(P, cone(F𝑛)) =
∑
𝑖≥1

rank𝑘 H𝑖 (P,F𝑛)

and the desired limit is again immediate from Section 2.4(4).
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Suppose 𝑡 ≥ 1 and consider the Koszul resolution of cone(F𝑛) (𝑡):

0 → cone(F𝑛) (𝑡 − 𝑚 − 1) → · · · → cone(F𝑛)
𝑚+1(𝑡 − 1) → cone(F𝑛) (𝑡) → 0.

Since 𝑡 − 𝑚 − 1 ≥ −𝑚, from the already established part of the result and the induction hypotheses we
get that the sequences (cone(F𝑛) ( 𝑗))𝑛�0 are in S for 𝑡 − 𝑚 − 1 ≤ 𝑗 ≤ 𝑡 − 1. The exact sequence above
implies that the same holds for 𝑗 = 𝑡.

This completes the discussion of the case 𝑡 ≥ 0.
Given this one can use the Koszul resolution above and a descending induction on t to cover also the

case 𝑡 ≤ −𝑚 − 1. �

We record a construction of lim Ulrich sequences of sheaves on P𝑚 from [15, §7].

2.10. Let k be an infinite perfect field of positive characteristic p. Set 𝑍 � (P1
𝑘 )

𝑚. Let 𝜌 : 𝑍 → P𝑚𝑘 be
the quotient by the action of the symmetric group 𝑆𝑚 on Z or any finite flat map. For each 𝑛 ≥ 0 set

L𝑛 � O𝑍 (𝑝
𝑛, 2𝑝𝑛, . . . , 𝑚𝑝𝑛) and E𝑛 � 𝜌∗(L𝑛) .

The L𝑛 are line bundles on Z, and the E𝑛 are vector bundles on P𝑚𝑘 . The following result is a special case
of [15, Theorem 7.15]. Here, 𝜑 : P𝑚𝑘 → P𝑚𝑘 is the Frobenius map; it is a finite map since k is perfect.

Theorem 2.11. Let k be an infinite perfect field of positive characteristic. Let N be a coherent sheaf on
P𝑚𝑘 of positive rank and 𝛾0,𝑡 (N ) = 0 for 𝑡 � 0. With E𝑛, the sheaf defined above, set

G𝑛 � 𝜑𝑛
∗ (N ⊗ E𝑛) for 𝑛 ≥ 0.

The sequence (G𝑛)�0 of sheaves is lim Ulrich.

2.12. Fix a proper k-scheme X and L a line bundle on X. For any coherent sheaf F on X and integer t, set

F (𝑡) � F ⊗ L⊗𝑡 .

Recall that F is globally generated if there is a surjection O𝑟
𝑋 → F for some 𝑟 ≥ 0. The line bundle

L is ample if for each coherent sheaf F , the sheaf F (𝑡) is globally generated for 𝑡 � 0. The statement
below is well-known.

Proposition 2.13. Let k be a field, X a proper k-scheme and L a line bundle on X. The following
statements are equivalent.

1. L is ample and globally generated;
2. There exists a finite map 𝜌 : 𝑋 → P𝑛𝑘 for some integer n with L � 𝜌∗OP𝑛 (1).

If in addition k is infinite, with 𝑚 � dim 𝑋 , these statements are equivalent to

(3) There exists a finite map 𝜋 : 𝑋 → P𝑚𝑘 and L � 𝜋∗OP𝑚 (1).

Proof. The equivalence of (1) and (2) is proved in [9, Proposition I.4.4 and (the proof of) Proposition
1.4.6].

Suppose now that k is infinite. The implication (3)⇒(2) is obvious.
(2)⇒(3): With 𝜌 as in (2), we can find a linear projection 𝜋′ : P𝑛 → P𝑚 defined on all of 𝑓 (𝑋) since

k is infinite. The map 𝜋′ ◦ 𝜌 has the desired properties. �

2.14. In what follows, we say (𝑋,L) is a Noether pair to mean that X is a proper scheme over an
infinite field k, and L is an ample and globally generated line bundle on X. The basic example is the pair
(P𝑚,O(1)) which we identify with P𝑚. More generally, if R is a graded k-algebra admitting a linear
system of parameters, then the pair (Proj(𝑅),�𝑅(1)) is a Noether pair; see Lemma 4.13.
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A morphism 𝑓 : (𝑋,L) → (𝑋 ′,L′) of Noether pairs is a map of k-schemes 𝑓 : 𝑋 → 𝑋 ′ such that
𝑓 ∗(L′) � L. By Proposition 2.13, given a Noether pair (𝑋,L) there is a finite dominant linear map of
Noether pairs

𝜋 : (𝑋,L) → P𝑚𝑘 where 𝑚 � dim 𝑋.

Thus, by the projection formula, for any sheaf F on X one has

H𝑖 (𝑋,F (𝑡)) � H𝑖 (P𝑚𝑘 , 𝜋∗F (𝑡)) for all 𝑖, 𝑡. (2.15)

This allows one to introduce a notion of lim Ulrich sequence of sheaves on X; see Section 2.17. First,
we record the result below, which is immediate from the equivalence (1)⇔(2) in Proposition 2.13.

Lemma 2.16. Let (𝑋,L) be a Noether pair and 𝑓 : 𝑋 ′ → 𝑋 a finite morphism of k-schemes. Then
(𝑋 ′, 𝑓 ∗L) is also a Noether pair.

2.17. Let (𝑋,L) be a Noether pair. An Ulrich sheaf on X is a coherent sheaf F such that the coherent
sheaf 𝜋∗(F) on P𝑚𝑘 is Ulrich for some finite dominant map 𝜋 : (𝑋,L) → P𝑚𝑘 of Noether pairs; see
Section 2.1. Given Lemma 2.3 and Equation (2.15), one can characterize this property purely in terms
of the cohomology modules of twists of F ; in particular, it is independent of the choice of 𝜋. In the
same vein, a lim Ulrich sequence of sheaves on X is a sequence (F𝑛)𝑛�0 of coherent sheaves on X for
which the sequence (𝜋∗F𝑛)�0 is lim Ulrich in the sense of Section 2.4. Once again, this can be expressed
purely in terms of the cohomology of the twists of F𝑛, which reconciles the definition given here with
that in [15, 6.6].

The result below serves to clarify that the lim Ulrich property is, to a certain extent, independent of
the domain of definition of the sheaves involved.

Lemma 2.18. Let 𝑓 : (𝑋,L) → (𝑋 ′,L′) be a morphism of Noether pairs where f is finite and dominant.
A sequence (F𝑛)𝑛�0 of coherent sheaves on X is lim Ulrich if and only if the sequence ( 𝑓∗F𝑛)𝑛�0 of
coherent sheaves on 𝑋 ′ is lim Ulrich.

Proof. The stated claim is immediate from the observation that if 𝜋′ : 𝑋 ′ → P𝑚 is a finite dominant
linear map, then so is the composition 𝜋′ ◦ 𝑓 . �

The result below is a minor extension of [15, Theorem 7.15].

Theorem 2.19. Let (𝑋,L) be a Noether pair with dim 𝑋 ≥ 1. Assume furthermore that the field k is
infinite and perfect of positive characteristic. There exists a lim Ulrich sequence of sheaves (F𝑛)𝑛�0 on
X such that for each 𝑛 ≥ 0 one has

depth(F𝑛)𝑥 ≥

{
1 when 𝑥 ∈ 𝑋 is a closed point
depthO𝑋,𝑥 for all 𝑥.

Proof. Set 𝑚 � dim 𝑋 , and let 𝜋 : 𝑋 → P𝑚𝑘 be a finite dominant linear map. We begin by choosing a
coherent sheaf M on X satisfying the following conditions

1. H0 (P𝑚𝑘 , 𝜋∗M(𝑡)) = H0 (𝑋,M(𝑡)) = 0 for 𝑡 � 0;
2. The sheaf 𝜋∗M on P𝑚𝑘 has positive rank;
3. depthM𝑥 ≥ depthO𝑋,𝑥 for each 𝑥 ∈ 𝑋 .

To construct such an M, consider the closed subset W of X consisting of closed points 𝑥 ∈ 𝑋 such
that depthO𝑋,𝑥 = 0. Let J be the sheaf of local sections of O𝑋 supported on W, and set M � O𝑋/J .
This construction ensures M𝑥 is isomorphic to O𝑋,𝑥 for 𝑥 ∉ 𝑊 , and depthM𝑥 ≥ 1 for 𝑥 ∈ 𝑊 . This
justifies both (1) and (3); see Lemma 2.20 below. Moreover, dimM = dim 𝑋 = dim P𝑚𝑘 , so 𝜋∗M has
positive rank and (2) holds.
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With E𝑛 the sheaves on P𝑚𝑘 defined in Section 2.10, set

F𝑛 � 𝜑𝑛
∗ (M ⊗ 𝜋∗E𝑛),

where 𝜑 is the Frobenius morphism on X. Since the Frobenius map preserves depth and 𝜋∗E𝑛 is locally
free, depth(F𝑛)𝑥 = depthM𝑥 for each n and 𝑥 ∈ 𝑋 . In particular, depth(F𝑛)𝑥 has the stated properties.

Using the fact that Frobenius commutes with pushfoward of sheaves, and the projection formula, one
gets

𝜋∗F𝑛 = 𝜋∗𝜑
𝑛
∗ (M ⊗ 𝜋∗E𝑛) � 𝜑𝑛

∗ (𝜋∗M ⊗ E𝑛) .

Theorem 2.11 yields that the sequence (𝜋∗F𝑛)𝑛�0 of sheaves on P𝑚𝑘 is lim Ulrich. Thus, by definition,
the sequence (F𝑛)𝑛�0 is lim Ulrich; see also Lemma 2.18. �

Lemma 2.20. Let X be as in Equation (2.14) and F a coherent sheaf on X. If F𝑥 has positive depth at
every closed point 𝑥 ∈ 𝑋 , then H0 (𝑋,F (𝑡)) = 0 for 𝑡 � 0.

Proof. By pushing forward to P𝑚, we may reduce to the case where 𝑋 = P𝑚. In this case, Grothendieck–
Serre duality gives

H0(𝑋,F (𝑡))∗ � Ext𝑚(F ,O𝑋 (−𝑡 − 𝑚 − 1)),

where (−)∗ denotes k-linear duals and Ext is computed in the abelian category of coherent sheaves. We
have a spectral sequence

E𝑝,𝑞 � H𝑝 (𝑋,Ext𝑞 (F ,O𝑋 (−𝑡 − 𝑚 − 1))) =⇒ Ext𝑝+𝑞 (F ,O𝑋 (−𝑡 − 𝑚 − 1)),

where Ext denotes sheafified Ext. Since F𝑥 has positive depth at all closed points and the local rings
O𝑋,𝑥 are regular, we have Ext𝑚(F ,O𝑋 ) = 0; thus, E0,𝑚 = 0. By Serre vanishing, E𝑝,𝑚−𝑝 = 0 for all
𝑝 ≥ 1 for 𝑡 � 0. This proves

Ext𝑚(F ,O𝑋 (−𝑡 − 𝑚 − 1)) for 𝑡 � 0. �

3. Cones of cohomology tables

Throughout this section, k is an infinite field and (𝑋,L) a Noether pair over k, as in Section 2.14 and
𝜋 : 𝑋 → P𝑚𝑘 a finite dominant map with L � 𝜋∗OP𝑚

𝑘
(1); thus, 𝑚 = dim 𝑋 . We prove that the closure of

the cohomology tables of coherent sheaves on X and P𝑚𝑘 coincide; see Theorem 3.4.

3.1. Extending the notation from Section 2.1, for any G in Db (coh 𝑋) set

𝛾𝑖, 𝑗 (G) � rank𝑘 H𝑖 (𝑋, G ( 𝑗)) and 𝛾(G) � (𝛾𝑖, 𝑗 )𝑖, 𝑗 .

By the projection formula (2.15), which applies also to objects in Db(coh 𝑋), any 𝛾(G) occurs as the
cohomology table of a complex in Db (coh P𝑚). The result below means that the converse also holds, up
to limits.

Lemma 3.2. Let (F𝑛)𝑛�0 be a lim Ulrich sequence of sheaves on X. For each G in Db (coh P𝑚𝑘 ), there
exists a sequence (G𝑛)𝑛�0 in Db (coh 𝑋) such that

lim
𝑛→∞

𝛾𝑖, 𝑗 (G𝑛)

𝛾0,0 (F𝑛)
= 𝛾𝑖, 𝑗 (G) for all 𝑖, 𝑗 .

When G is a vector bundle on P𝑚, the G𝑛 can be chosen in coh 𝑋 .
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Proof. For each 𝑛 ≥ 0, set

G𝑛 � F𝑛 ⊗L L𝜋∗G .

In particular, when G is a vector bundle, each G𝑛 is a coherent sheaf on X. The projection formula yields

𝜋∗(G𝑛) � 𝜋∗(F𝑛) ⊗
L G ,

so Theorem 2.8 applied to the lim Ulrich sequence (𝜋∗(F𝑛))𝑛�0 yields

lim
𝑛→∞

𝛾𝑖, 𝑗 (G𝑛)

𝛾0,0 (F𝑛)
= lim

𝑛→∞

𝛾𝑖, 𝑗 (𝜀
∗𝜀∗𝜋∗(F𝑛) ⊗

L G)
𝛾0,0 (F𝑛)

.

Since one has equalities

𝛾𝑖, 𝑗 (𝜀
∗𝜀∗𝜋∗(F𝑛) ⊗

L G) = 𝛾0,0 (F𝑛)𝛾𝑖, 𝑗 (G),

the desired result follows. �

3.3. Fix an integer m, and consider the Q-vector space

𝑊 �
𝑚⊕
𝑖=0

∏
𝑗∈Z

Q ,

endowed with the topology defined by pointwise convergence.
For any coherent sheaf G on X, we view 𝛾(G), defined in Section 3.1, as an element in W. This is the

cohomology table of G. The cone of cohomology tables is the subspace

C(𝑋) �
∑

G∈coh 𝑋

Q�0𝛾(G)

of W. Observe that the definition involves only the coherent sheaves on X, and not all of Db(coh 𝑋). We
write C(𝑋) for the closure of C(𝑋) in W.

Theorem 3.4. Let k be an infinite perfect field of positive characteristic and (𝑋,L) a Noether pair over
k. There is an equality C(𝑋) = C(P𝑚) for 𝑚 � dim 𝑋 .

Proof. Let 𝜋 : (𝑋,L) → P𝑚𝑘 be a finite dominant linear map of Noether pairs. It is clear from Equation
(2.15) that C(𝑋) ⊆ C(P𝑚). We have only to prove that the cohomology table of a coherent sheaf F on
P𝑚 is in C(𝑋). By [5, Theorem 0.1], one has a convergent sum

𝛾(F) =
∑
𝑖�1

𝑎𝑖𝛾(E𝑖),

where each E𝑖 is a coherent sheaf obtained as a push-forward of a vector bundle on a linear subset of
P𝑚 and each 𝑎𝑖 is a positive real number. We claim that it suffices to verify that each 𝛾(E𝑖) is in C(𝑋).

Indeed, assume this is so and for each 𝑛 ≥ 1 consider the sum

𝛾(𝑛) � 𝑎1𝛾(E𝑖) + · · · + 𝑎𝑛𝛾(E𝑛) .

Since each 𝛾(E𝑖) is in C(𝑋) approximating the 𝑎𝑖 by positive rational numbers, we can write

𝛾(𝑛) = lim
𝑠→∞

𝛾(𝑛) (𝑠),
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where each 𝛾(𝑛) (𝑠) is a positive rational combination of 𝛾(E1), . . . , 𝛾(E𝑛) and hence in C(𝑋). For each
n pick an integer 𝑠𝑛 ≥ 1 such that

|𝛾(𝑛)𝑎,𝑏 − 𝛾(𝑛) (𝑠𝑛)𝑎,𝑏 | < 1/2𝑛

for all 𝑎, 𝑏 with |𝑎 |, |𝑏 | < 𝑛. Evidently,

lim
𝑛→∞

𝛾(𝑛) (𝑠𝑛) = 𝛾(F)

and each 𝛾(𝑛) (𝑠𝑛) is in C(𝑋), so 𝛾(F) is in C(𝑋), as claimed.
It thus remains to consider a coherent sheaf of the form 𝜄∗(E), where 𝜄 : P𝑐 ⊆ P𝑚 is a linear subspace

and E is a vector bundle on P𝑐 and verify that 𝛾(E) is in the closure of C(𝑋).
Consider the scheme 𝑋 ′ obtained by the pull-back of 𝜋 along 𝜄.

𝑋 ′ 𝑋

P𝑐 P𝑚.

𝜋′ 𝜋

𝜄

With L′ � (𝜋′)∗OP𝑐 (1), the pair (𝑋 ′,L′) is a Noether pair; see Lemma 2.16. Using the projection
formula we identify the cohomology tables of coherent sheaves on 𝑋 ′ and on P𝑐 as elements of W, from
Section 3.3. Thus, C(𝑋 ′) ⊆ C(𝑋).

The scheme 𝑋 ′ admits a lim Ulrich sequence. This is clear when 𝑐 = 0; for 𝑐 ≥ 1 it is contained in
Theorem 2.19. Thus, keeping in mind that E is a vector bundle, Lemma 3.2 yields that 𝛾(E) is in C(𝑋 ′),
and hence in C(𝑋), as desired. �

4. Lim Ulrich sequences of graded modules

As before k is a field. Let 𝑅 � {𝑅𝑖}𝑖�0 be a finitely generated, graded k-algebra with 𝑅0 = 𝑘 . Set
𝔪 � 𝑅�1; this is the unique homogeneous maximal ideal of R. We write grmod 𝑅 for the category
of finitely generated graded R-modules, with morphisms the degree preserving R-linear maps. The
component in degree j of a graded R-module M is denoted 𝑀 𝑗 .

The full subcategory of the derived category of grmod 𝑅 consisting of complexes C with H𝑖 (𝐶) = 0
for 𝑖 � 0 is denoted D+(grmod 𝑅). It contains Db (grmod 𝑅) the bounded derived category of finitely
generated graded R-modules.

4.1. Let 𝒖 � (𝑢𝑛)𝑛�1 be a sequence of positive integers. We say that a sequence of objects (𝐶𝑛)𝑛�1 of
D+(grmod 𝑅) is 𝒖-trivial if for all integers 𝑖, 𝑗 one has

lim
𝑛→∞

rank𝑘 H𝑖 (𝐶
𝑛) 𝑗

𝑢𝑛
= 0 .

A sequence of morphisms ( 𝑓 𝑛 : 𝐶𝑛 → 𝐷𝑛) in D+(grmod 𝑅) is a 𝒖-equivalence if the sequence of their
mapping cones, cone( 𝑓 𝑛), is 𝒖-trivial. It is easy to verify that a composition of 𝒖-equivalences is also
a 𝒖-equivalence. This observation will be used often in the sequel.

The proof of the result below is straightforward; see also [15, Lemma 5.3].

Proposition 4.2. If a sequence of morphisms ( 𝑓 𝑛 : 𝐶𝑛 → 𝐷𝑛) in D+(grmod 𝑅) is a 𝒖-equivalence, then
for any 𝑖, 𝑗 there is an equality

lim sup
𝑛→∞

rank𝑘 H𝑖 (𝐶
𝑛) 𝑗

𝑢𝑛
= lim sup

𝑛→∞

rank𝑘 H𝑖 (𝐷
𝑛) 𝑗

𝑢𝑛
.
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The corresponding statements involving lim inf also holds. In particular, if one of the limits exists, so
does the other and the two limits coincide.

We say that a complex of graded R-modules is perfect if it is quasi-isomorphic to a bounded complex
of finitely generated free R-modules.

Proposition 4.3. Let ( 𝑓 𝑛 : 𝐶𝑛 → 𝐷𝑛) be a 𝒖-equivalence. For P in Db (grmod 𝑅), the induced sequence

(id ⊗ 𝑓𝑛 : 𝑃 ⊗L
𝑅 𝐶𝑛 → 𝑃 ⊗L

𝑅 𝐷𝑛)

is also an 𝒖-equivalence under either of the following conditions:

1. The complex P is perfect;
2. There exists an integer s such that H𝑖 (cone( 𝑓𝑛)) = 0 for all 𝑖 < 𝑠 and all n.

Proof. Replacing P by its minimal free resolution, we get that 𝑃𝑖 , the component in homological degree
i, is finite free with 𝑃𝑖 = 0 for 𝑖 � 0. The desired conclusion is that the sequence (𝑃 ⊗𝑅 cone( 𝑓𝑛)) is
𝒖-trivial under either of the two conditions.

When P is perfect, 𝑃𝑖 = 0 also for 𝑖 � 0, and the 𝒖-triviality can be checked by a straightforward
induction on the number of nonzero components of P.

Suppose condition (2) holds, and let s be as given; we may assume 𝑠 = 0. Fix an integer i. It is easy
to see that for each integer n, the inclusion 𝑃�𝑖+1 ⊆ 𝑃 of subcomplexes induces an isomorphism

H𝑖 (𝑃�𝑖+1 ⊗𝑅 cone( 𝑓𝑛))
�
−−→ H𝑖 (𝑃 ⊗𝑅 cone( 𝑓𝑛)) .

Since 𝑃�𝑖+1 is perfect, one can invoke the already established part (1). �

In the sequel, we need the theory of multiplicities for graded modules. Since the rings we work with
are not necessarily standard-graded, we begin by recalling the basic definitions and results in the form
we need.

4.4. Let R be a graded k-algebra as above. For any finitely generated graded R-module M and integer
𝑞 ≥ dim𝑅 𝑀 , set

𝑒𝑞 (𝑀) � 𝑞! lim
𝑛→∞

ℓ𝑅 (𝑀/𝔪𝑛+1𝑀)

𝑛𝑞
.

This is an integer, and it is equal to 0 when 𝑞 ≥ dim𝑅 𝑀 + 1. The multiplicity of M is the integer

𝑒(𝑀) � 𝑒𝑞 (𝑀) for 𝑞 = dim𝑅 𝑀.

This coincides with the multiplicity of 𝑀𝔪 as a module over the local ring 𝑅𝔪.
In what follows, the focus is on graded k-algebras R admitting a linear system of parameters; that is

to say, a system of parameters in 𝑅1. It is convenient to call the k-subalgebra generated by a linear system
of parameters a linear Noether normalization of R. Linear Noether normalizations exist, for instance,
when R is standard-graded (homogeneous, in the language of [3, §4.1]) and k is infinite. The next results
allow one to reduce computing multiplicities over rings admitting linear Noether normalizations to the
case of standard-graded rings.

Lemma 4.5. Let R be a finitely generated graded k-algebra, and set 𝔪 � 𝑅�1. For any set of elements
𝒙 ⊆ 𝑅1 satisfying

√
(𝒙) = 𝔪, the ideal (𝒙) is a reduction of 𝔪; it is a minimal reduction when 𝒙 is a

system of parameters for R.

Proof. The claim about minimality follows from [13, Corollary 8.3.6] once we prove that (𝒙) is a
reduction of 𝔪, for the analytic spread of 𝔪 equals dim 𝑅.

The desired result is clear when R is standard graded because 𝔪𝑛 = (𝒙)𝔪𝑛−1 for any n such that
𝔪𝑛 ⊆ (𝒙), and such an n exists since 𝔪 is the radical of (𝒙).
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In what follows, given a homogenous ideal I in R such that ℓ𝑅 (𝑀/𝐼𝑀) is finite, we write 𝑒(𝐼, 𝑀) for
the multiplicity of M with respect to I. Namely, the limit of the sequence in Section 4.4 with 𝔪 replaced
by I; see also [3, Definition 4.6.1].

The goal is to prove that 𝔪 is the integral closure of (𝒙); see [13, Corollary 1.2.5]. It suffices to
verify that this property holds modulo each minimal prime of R; see [13, Proposition 1.1.5]. Thus, we
may assume R is a domain, and then the desired result is equivalent to: 𝑒(𝒙, 𝑅) = 𝑒(𝑅); this is by Rees’
Theorem [13, Theorem 11.3.1].

There exists an integer s such that the Veronese subring 𝑅 (𝑠) of R is standard-graded, after rescaling.
Thus, 𝒙𝑠 � 𝑥𝑠1, . . . , 𝑥

𝑠
𝑑 is a reduction of the maximal ideal (𝑅𝑠)𝑅

(𝑠) of 𝑅 (𝑠) , and hence one gets that
𝑒(𝒙𝑠 , 𝑅 (𝑠) ) = 𝑒(𝑅 (𝑠) ). This justifies the second equality below:

𝑒(𝒙𝑠 , 𝑅) = 𝑠 · 𝑒(𝒙𝑠 , 𝑅 (𝑠) ) = 𝑠 · 𝑒((𝑅𝑠), 𝑅
(𝑠) ) = 𝑒((𝑅𝑠), 𝑅)

The first and the third equalities hold as the rank of R over 𝑅 (𝑠) is s; see [3, Corollary 4.7.9]. If 𝑓1, . . . , 𝑓𝑛
are homogeneous generators of the ideal 𝔪, then 𝔪𝑠 is integral over ( 𝑓 𝑠1 , . . . , 𝑓

𝑠
𝑛 ), which is contained

in the ideal (𝑅𝑠), so we get that

𝑒((𝑅𝑠), 𝑅) ≤ 𝑒(( 𝑓 𝑠1 , . . . , 𝑓
𝑠
𝑛 ), 𝑅) = 𝑒(𝔪𝑠 , 𝑅) .

We conclude that 𝑒(𝒙𝑠 , 𝑅) ≤ 𝑒(𝔪𝑠 , 𝑅) and hence that 𝑒(𝒙, 𝑅) ≤ 𝑒(𝔪, 𝑅). The reverse inequality is
clear. �

Lemma 4.6. Let R be a graded k-algebra admitting a linear system of parameters 𝒙. For each M in
grmod 𝑅, there is an equality

𝑒(𝑀) = (dim𝑅 𝑀)! lim
𝑛→∞

∑
𝑖�𝑛 rank𝑘 (𝑀𝑖)

𝑛dim𝑅 𝑀
.

When dim𝑅 𝑀 = dim 𝑅, one has also an equality

𝑒(𝑀) =
∑
𝑖�0

(−1)𝑖 rank𝑘 H𝑖 (𝒙; 𝑀) .

Proof. By Lemma 4.5, the ideal (𝒙) is a minimal reduction of the maximal ideal of R, so the multiplicity
of M as an R-module coincides with its multiplicity when viewed as a module over the k-subalgebra
of R generated by 𝒙. Therefore, in the remainder of the proof, we assume that R is a standard-graded
polynomial ring, over indeterminates 𝒙. Then the fact the multiplicity is the Euler characteristic of the
Koszul homology of M with respect to 𝒙 is [3, Theorem 4.7.6].

The first equality is also well-known, but we could not find a suitable reference, so we outline a
proof: Set 𝑞 � dim𝑅 𝑀 , and let 𝑒′𝑞 (−) be the function defined on the subcategory of finitely generated
R-modules of dimension at most q by

𝑒′𝑞 (𝑁) � 𝑞! lim
𝑛→∞

∑
𝑖�𝑛 rank𝑘 (𝑁𝑖)

𝑛𝑞
.

The desired result is that 𝑒′𝑞 (−) = 𝑒𝑞 (−) on this subcategory of R-modules. It is clear that equality holds
when the module is generated in a single degree. Since any finitely generated module admits a finite
filtration by R-submodules such that the subquotients in the filtrations are generated in a single degree,
it remains to note that both invariants are additive on short, exact sequences of modules of dimension
at most q; this is clear for 𝑒′𝑞 (−), and for 𝑒𝑞 (−) it is [3, Corollary 4.7.7]. �
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4.7. Let R be a graded k-algebra admitting a linear Noether normalization and U a finitely generated
graded R-module. We write 𝜈𝑅 (𝑈) for its minimal number of generators. The R-module U is Ulrich if
it has the following properties:

1. U is maximal Cohen–Macaulay and nonzero;
2. 𝑒(𝑈) = 𝜈𝑅 (𝑈);
3. U is generated in degree 0.

When R is a standard graded polynomial ring, the only Ulrich modules are 𝑅𝑛, for some integer n; no
twists are allowed.

Following [15, 16], we introduce a notion lim Ulrich sequences of graded R-modules. To that end,
we recall some basic properties of finite free complexes.

4.8. Consider a complex

𝐹 � 0 −→ 𝐹𝑛 −→ 𝐹𝑛−1 −→ · · · −→ 𝐹1 −→ 𝐹0 −→ 0

of finite free R-modules with rank𝑘 H(𝐹) finite and nonzero. The New Intersection Theorem [19] yields
𝑛 ≥ dim 𝑅; if equality holds we say F is a short complex. For such an F, any maximal Cohen–Macaulay
R-module M satisfies

H𝑖 (𝐹 ⊗𝑅 𝑀) = 0 for 𝑖 ≥ 1.

This is by the Acyclicity Lemma [3, Exercise 1.4.24]. This property characterizes maximal Cohen–
Macaulay modules, by the depth sensitivity of Koszul complexes.

Lim Ulrich sequences

Let R be a graded k-algebra admitting a linear system of parameters. Compare the definition below with
that of an Ulrich module, Section 4.7, and also with that of lim Ulrich sheaves, Section 2.4.

4.9. A sequence (𝑈𝑛)𝑛�1 in grmod 𝑅 is lim Ulrich if each 𝑈𝑛 is nonzero and the following properties
hold:

1. For each finite free short complex F with rank𝑘 H (𝐹) finite one has

lim
𝑛→∞

rank𝑘 H𝑖 (𝐹 ⊗𝑅 𝑈𝑛)

𝜈𝑅 (𝑈𝑛)
= 0 for 𝑖 ≥ 1.

2. lim𝑛→∞ 𝑒𝑑 (𝑈
𝑛)/𝜈𝑅 (𝑈

𝑛) = 1 for 𝑑 � dim 𝑅.
3. With 𝔪 � 𝑅�1 the unique homogeneous maximal ideal of R, one has

lim
𝑛→∞

rank𝑘 (𝑈
𝑛/𝔪𝑈𝑛)0

𝜈𝑅 (𝑈𝑛)
= 1 .

It suffices that condition (1) hold for F the Koszul complex on a single system of parameters for R; this
can be proved along the lines of [15, Lemma 5.7]. Moreover, with 𝐹 � 𝐾 (𝒙) the Koszul complex on a
linear system of parameters 𝒙, parts (1) and (2) above can be expressed more succinctly as follows:

lim
𝑛→∞

rank𝑘 H𝑖 (𝒙;𝑈𝑛)

𝜈𝑅 (𝑈𝑛)
=

{
1 when 𝑖 = 0
0 when 𝑖 ≠ 0.

(1′)

Here is an expression of these conditions in the language introduced in Section 4.1.

https://doi.org/10.1017/fms.2023.108 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.108


Forum of Mathematics, Sigma 13

Lemma 4.10. Let R be a graded k-algebra with a linear system of parameters 𝒙, and (𝑈𝑛)𝑛�1 a lim
Ulrich sequence in grmod 𝑅. For 𝒖 � (𝜈𝑅 (𝑈

𝑛)), the following sequences of canonical surjections are
𝒖-equivalences:

𝐾 (𝒙;𝑈𝑛) � 𝑈𝑛/𝔪𝑈𝑛 and 𝑈𝑛/𝔪𝑈𝑛 � (𝑈𝑛/𝔪𝑈𝑛)0 .

Proof. Consider the canonical morphisms

𝑓 𝑛 : 𝐾 (𝒙;𝑈𝑛) � 𝑈𝑛/𝒙𝑈𝑛 and 𝑔𝑛 : 𝑈𝑛/𝒙𝑈𝑛 � 𝑈𝑛/𝔪𝑈𝑛 .

We prove that the sequences ( 𝑓 𝑛) and (𝑔𝑛) are 𝒖-equivalences, which implies that the composition
(𝑔𝑛 𝑓 𝑛) is also a 𝒖-equivalence, as claimed.

It is easy to see that the homology of the cone of 𝑓 𝑛 satisfies

H𝑖+1(cone( 𝑓 𝑛)) �

{
H𝑖 (𝒙;𝑈𝑛) for 𝑖 ≥ 1
0 otherwise.

Thus, ( 𝑓 𝑛) is a 𝒖-equivalence if and only if

lim
𝑛→∞

rank𝑘 H𝑖 (𝒙;𝑈𝑛) 𝑗

𝑢𝑛
= 0 for 𝑖 ≥ 1 and 𝑗 ∈ Z.

It remains to observe that the lim Ulrich property expressed in condition (1′), in Section 4.9, implies
the limit above is 0, that is to say, ( 𝑓 𝑛) is a 𝒖-equivalence, as desired.

For each n, one has that

rank𝑘 (𝔪𝑈𝑛/𝒙𝑈𝑛) = rank𝑘 (𝑈
𝑛/𝒙𝑈𝑛) − 𝑢𝑛

so condition (2) defining the lim Ulrich property of (𝑈𝑛)𝑛�1 yields

lim
𝑛→∞

rank𝑘 (𝔪𝑈𝑛/𝒙𝑈𝑛)

𝑢𝑛
= 0 .

The cone of the morphism 𝑔𝑛 : 𝑈𝑛/𝒙𝑈𝑛 → 𝑈𝑛/𝔪𝑈𝑛 satisfies

H𝑖 (cone(𝑔𝑛)) �

{
(𝔪𝑈𝑛)/(𝒙𝑈𝑛) for 𝑖 = 1
0 otherwise.

It follows that the sequence of maps (𝑔𝑛) is a 𝒖-equivalence.
This completes the proof that the sequence (𝑔𝑛 𝑓 𝑛) is a 𝒖-equivalence.
Condition (3) in Section 4.9 is equivalent to the condition that

lim
𝑛→∞

rank𝑘 (𝑈
𝑛/𝔪𝑈𝑛)𝑖≠0
𝑢𝑛

= 0 .

Since the homology of the mapping cone of the surjection

(𝑈𝑛/𝔪𝑈𝑛) → (𝑈𝑛/𝔪𝑈𝑛)0

is (𝑈𝑛/𝔪𝑈𝑛)𝑖≠0 in degree 1 and zero otherwise, it follows that the sequence above is a 𝒖-equivalence,
as desired. �
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4.11. It is clear from the proof of Lemma 4.10 that when (𝑈𝑛)𝑛�1 is a lim Ulrich sequence, the sequences
( 𝑓 𝑛) and (𝑔𝑛) are 𝒖-equivalent in the stronger sense that

lim
𝑛→∞

rank𝑘 H𝑖 (cone( 𝑓 𝑛))
𝜈𝑅 (𝑈𝑛)

= 0 = lim
𝑛→∞

rank𝑘 H𝑖 (cone(𝑔𝑛))
𝜈𝑅 (𝑈𝑛)

.

That is to say, the ranks of the homology modules, and not just their graded pieces, of the cones are
asymptotically zero with respect to (𝜈𝑅 (𝑈

𝑛)). These conditions are equivalent to the lim Ulrich property
of the sequence (𝑈𝑛)𝑛�1.

Moreover, it is not hard to verify that if the sequence (𝑔𝑛 𝑓 𝑛) is a 𝒖-equivalence (in either sense),
then so are the sequences ( 𝑓 𝑛) and (𝑔𝑛); the converse is clear.

Lemma 4.12. Let R be a graded k-algebra with a linear system of parameters 𝒙, and (𝑈𝑛)𝑛�1 a lim
Ulrich sequence in grmod 𝑅. For any P in D+(grmod 𝑅) and integers 𝑖, 𝑗 , there is an equality

lim
𝑛→∞

rank𝑘 H𝑖 (𝑃 ⊗L
𝑅 𝐾 (𝒙;𝑈𝑛)) 𝑗

𝜈𝑅 (𝑈𝑛)
= rank𝑘 H𝑖 (𝑃 ⊗L

𝑅 𝑘) 𝑗 .

Proof. Set 𝑢𝑛 � 𝜈𝑅 (𝑈
𝑛) and 𝒖 � (𝑢𝑛). Set

𝐹𝑛 � 𝐾 (𝒙;𝑈𝑛) and 𝐺𝑛 � (𝑈𝑛/𝔪𝑈𝑛)0 ,

and let ℎ𝑛 : 𝐹𝑛 → 𝐺𝑛 be the composition of maps

𝐾 (𝒙;𝑈𝑛) → 𝑈𝑛/𝔪𝑈𝑛 → (𝑈𝑛/𝔪𝑈𝑛)0 .

A composition of 𝒖-equivalences is a 𝒖-equivalence, so it follows from Lemma 4.10 that the sequence
(ℎ𝑛) is a 𝒖-equivalence. Evidently, for 𝑖 < 0 and all n one has

H𝑖 (𝐾 (𝒙;𝑈𝑛)) = 0 and H𝑖 (𝐺
𝑛) = 0 .

Thus, Proposition 4.3(2) applies to yield that the sequence (𝑃 ⊗L
𝑅 ℎ𝑛) is also a 𝒖-equivalence. Since R

acts on 𝐺𝑛 via the surjection 𝑅 → 𝑘 , one gets isomorphisms

H𝑖 (𝑃 ⊗L
𝑅 𝐺𝑛) � H𝑖 ((𝑃 ⊗L

𝑅 𝑘) ⊗𝑘 𝐺
𝑛) � H𝑖 (𝑃 ⊗L

𝑅 𝑘) ⊗𝑘 𝐺
𝑛 .

Since 𝐺𝑛 lives in internal degree 0, this justifies the second equality below.

lim
𝑛→∞

rank𝑘 H𝑖 (𝑃 ⊗L
𝑅 𝐺𝑛) 𝑗

𝑢𝑛
= lim

𝑛→∞

rank𝑘 H𝑖 (𝑃 ⊗L
𝑅 𝐺𝑛) 𝑗

rank𝑘 (𝐺𝑛)

= rank𝑘 H𝑖 (𝑃 ⊗L
𝑅 𝑘) 𝑗 .

The first one holds because the surjection 𝑈𝑛/𝔪𝑈𝑛 → 𝐺𝑛 is a 𝒖-equivalence, by Lemma 4.10, so
Proposition 4.2 applies. �

Lemma 4.13. Let k be a field and R a graded k-algebra admitting a linear system of parameters. Set
𝑋 � Proj(𝑅) and L ��𝑅(1). The coherent sheaf L is invertible, ample, globally generated and satisfies
L⊗𝑡 = 𝑅(𝑡) for each t.

Proof. Let 𝒙 � 𝑥1, . . . , 𝑥𝑑 be a linear system of parameters for R. To see that L is invertible and
L⊗𝑡 = 𝑅(𝑡), one can use the same argument as in the proof of [10, Proposition 5.12 (a) (b)]. The point
is that the affine open sets {𝐷+(𝑥𝑖)}

𝑑
𝑖=1 cover X since 𝒙 is a linear system of parameters for R. The sheaf

L is globally generated since the 𝒙 are global sections of L that have no common zero locus, again since
𝒙 is a system of parameters. For 𝑡 � 0, the t’th Veronese of R is standard graded, so L⊗𝑡 is very ample,
and hence L is ample; see [10, Theorem II.7.6]. �

https://doi.org/10.1017/fms.2023.108 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.108


Forum of Mathematics, Sigma 15

4.14. Let R be a graded k-algebra admitting a linear Noether normalization, with irrelevant maximal
ideal 𝔪, and M a finitely generated R-module. We write H𝑖

𝔪 (𝑀) for the ith local cohomology module
of M supported on 𝔪; see [3, p. 143]. These are graded R-modules, with H𝑖

𝔪 (𝑀)𝑡 = 0 for 𝑡 � 0. The
Castelnuovo–Mumford regularity of M is the integer

reg𝑅 𝑀 � max{𝑖 + 𝑡 | H𝑖
𝔪 (𝑀)𝑡 ≠ 0} .

If 𝑃 → 𝑅 is a finite map of graded k-algebras, one has an isomorphism

H𝑖
𝑃�1

(𝑀) � H𝑖
𝔪 (𝑀)

so reg𝑅 𝑀 = reg𝑃 𝑀 . Thus, the regularity of M can be computed with respect any linear Noether
normalization for R.

Set 𝑋 � Proj(𝑅), and let F be a coherent sheaf on X such that depthF𝑥 ≥ 1 at each closed point
𝑥 ∈ 𝑋 . Set

𝑀 � 𝛤∗(F) �
⊕
𝑡 ∈Z

F (𝑡) .

The condition on depth of F ensures that this is a finitely generated R-module; see Lemma 2.20. One
then has an equality

reg𝑅 𝑀 = max{𝑖 + 𝑡 | H𝑖−1(𝑋,F (𝑡)) ≠ 0 and 𝑖 ≥ 2} . (4.15)

This holds because

H0
𝔪 (𝑀) = 0 = H1

𝔪 (𝑀), and
H𝑖
𝔪 (𝑀)𝑡 � H𝑖−1(𝑋,F (𝑡)) for 𝑖 ≥ 2.

(4.16)

Next, we apply the Theorem 2.19 to construct a lim Ulrich sequences in grmod 𝑅.
Theorem 4.17. Let k be an infinite perfect field of positive characteristic. Let R be a graded k-algebra
with dim 𝑅 ≥ 2 and admitting a linear Noether normalization. There exists a lim Ulrich sequence
(𝑈𝑛)𝑛�1 in grmod 𝑅 satisfying the following conditions:
1. For each n, depth𝑅 (𝑈

𝑛) ≥ 2 and depth𝑅𝔭
(𝑈𝑛

𝔭 ) ≥ depth 𝑅𝔭 for 𝔭 in Proj(𝑅).
2. There exist integers 𝑡0 and 𝑡1 such that for each n one has

𝑈𝑛
𝑗 = 0 for 𝑗 < 𝑡0 and reg𝑈𝑛 ≤ 𝑡1 .

Proof. Set 𝑋 � Proj(𝑅) and L the coherent sheaf on X defined by 𝑅(1). Since R admits a linear system
of parameters, Lemma 4.13 yields that (𝑋,L) is a Noether pair. Let (F𝑛)𝑛�1 be the lim Ulrich sequence
of sheaves on X given by Theorem 2.19, and set

𝑈𝑛 � 𝛤∗(F𝑛) for 𝑛 ≥ 1.

This is an R-module, and it is finitely generated because depth(F𝑛)𝑥 ≥ 1 at all closed points 𝑥 ∈ 𝑋 , by
construction; see Lemma 2.20.

(1) From Equation (4.16), one gets depth𝑅𝑈
𝑛 ≥ 2. For any 𝑥 ∈ 𝑋 , one has an isomorphism

((F𝑛)𝑥) ⊗𝑘 𝑘 (𝑡) � (𝑈𝑛)𝔭, where 𝔭 ∈ Proj(𝑅) corresponds to x. Thus, the claim about depths follows
from the corresponding property for the sheaves F𝑛.

(2) Since𝑈𝑛
𝑡 = H0(𝑋,F𝑛 (𝑡)), property (2) in Section 2.4 implies𝑈𝑛

𝑗 = 0 for 𝑗 < 𝑡0. The claim about
regularity is immediate from Equation (4.16), given property (3) in Section 2.4. �

Given the preceding theorem, one can argue as in the proof of [16, Theorem A] (see also [16,
Theorem B]) to obtain the following result.
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Corollary 4.18. With R as above, if (𝑅𝔪,𝔪𝑅𝔪) → 𝑆 is a flat local map of Noetherian local rings, then
𝑒(𝑅) ≤ 𝑒(𝑆).

5. Boij–Söderberg theory

In this section, we recall basics of Boij–Söderberg theory, due mainly to Boij, Eisenbud, Erman, Schreyer
and Söderberg [2, 1, 4, 5, 6].

Codimension sequences and degree sequences

Throughout, we fix a nonnegative integer d, soon to be the dimension of a graded ring. By a codimension
sequence (for d), we mean a nondecreasing sequence 𝒄 � (𝑐𝑖)𝑖∈Z, where each 𝑐𝑖 is an element of the
set {∅, 0, . . . , 𝑑,∞}, with ordering

∅ < 0 < 1 < · · · < 𝑑 < ∞ .

For any nonnegative integer c, the constant sequence (𝑐)𝑖∈Z is also denoted c. We consider the collection
of codimension sequences with the natural partial order

(𝑐𝑖)𝑖∈Z ≤ (𝑐′𝑖)𝑖∈Z if 𝑐𝑖 ≤ 𝑐′𝑖 for each 𝑖.

A degree sequence is an increasing sequence of integers 𝑡𝑎 < 𝑡𝑎+1 < · · · < 𝑡𝑎+𝑙 , with 0 ≤ 𝑙 ≤ 𝑑. It is
convenient to view it as an infinite sequence

𝒕 � (. . . ,−∞,−∞, 𝑡𝑎, . . . , 𝑡𝑎+𝑙 ,∞,∞, . . . )

with 𝑡𝑖 in position i. The integer l is the codimension of 𝒕, denoted codim( 𝒕); we define inf( 𝒕) � 𝑎. The
sequence 𝒕 is compatible with a codimension sequence 𝒄 if

0 ≤ 𝑐𝑎 ≤ codim( 𝒕) ≤ 𝑐𝑎+1 for 𝑎 = inf( 𝒕).

In what follows, we consider the Q-vector space

𝑉 � Q(Z×Z) =
⊕
𝑖, 𝑗∈Z

Q . (5.1)

Each degree sequence 𝒕 determines an element 𝛽( 𝒕) of V given by

𝛽( 𝒕)𝑖, 𝑗 �

{∏
𝑛≠𝑎 |𝑡𝑛−𝑡𝑎 |∏
𝑛≠𝑖 |𝑡𝑛−𝑡𝑖 |

for 𝑎 ≤ 𝑖 ≤ 𝑎 + 𝑙 and 𝑗 = 𝑡𝑖 ,

0 for all other values of 𝑖, 𝑗 .
(5.2)

Here, 𝑎 � inf( 𝒕) and 𝑙 = codim( 𝒕). Given a codimension sequence 𝒄, we set

B𝒄
𝑑 �

{
cone in 𝑉 spanned by 𝛽( 𝒕) as 𝒕 ranges
over degree sequences compatible with 𝒄

}
. (5.3)

This is the smallest subset of V containing the 𝛽( 𝒕), for the permitted 𝒕, and closed under addition and
multiplication by nonnegative rational numbers.

The finite topology on V

Given a finite subset 𝑌 ⊂ Z × Z, we write 𝑉𝑌 for the subspace of V spanned by the corresponding
coordinate vectors. Thus, a vector 𝑣 ∈ 𝑉 is in 𝑉𝑌 if and only if 𝑣𝑖, 𝑗 = 0 for (𝑖, 𝑗) ∉ 𝑌 . We topologize V
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by giving it the finite topology: A subset U of V is open if and only if its intersection with any finite-
dimensional subspace of V is open in the Euclidean topology. This is equivalent to the condition that
𝑈 ∩𝑉𝑌 is open in 𝑉𝑌 , equipped with its Euclidean topology, for all finite subsets Y of Z × Z.

Observe that the cone spanned by vectors 𝑣1, . . . , 𝑣𝑛 in the positive orthant of V is contained in 𝑉𝑌
if and only if each 𝑣𝑖 is in 𝑉𝑌 . This has the following consequence.

Lemma 5.4. With Y as above, for any codimension sequence 𝒄, the cone B𝒄
𝑑 ∩𝑉𝑌 is spanned by vectors

𝛽( 𝒕), where 𝒕 is any degree sequence compatible with 𝒄 and satisfying the condition

(𝑛, 𝑡𝑛) ∈ 𝑌 for inf( 𝒕) ≤ 𝑛 ≤ inf ( 𝒕) + codim( 𝒕).

Thus, B𝒄
𝑑 ∩ 𝑉𝑌 is the cone spanned by a finite collection of vectors, and hence the subset B𝒄

𝑑 ⊂ 𝑉 is
closed in the finite topology.

The result above means that if a sequence of elements (𝛽𝑛)𝑛�0 in B𝒄
𝑑 converges in the finite topology

to an element 𝛽 of V, then 𝛽 must also belong to B𝒄
𝑑 .

Graded modules over graded rings

As in Section 4, let k be a field and 𝑅 = {𝑅𝑖}𝑖�0 a finitely generated graded k-algebra with 𝑅0 = 𝑘 . Set
𝔪 � 𝑅𝑖�1.

5.5. Let M be an R-complex in D+(grmod 𝑅). For any pair of integers (𝑖, 𝑗), the Betti number of M in
degree (𝑖, 𝑗) is

𝛽𝑅𝑖, 𝑗 (𝑀) � rank𝑘 Tor𝑅𝑖 (𝑘, 𝑀) 𝑗 .

The Betti table of M is the array 𝛽𝑅 (𝑀) � (𝛽𝑅𝑖, 𝑗 (𝑀))𝑖, 𝑗 .

Finite free complexes

With R as above, we write F (𝑅) for the class of finite free complexes of graded R-modules, that is to
say, complexes of the form

0 −→ 𝐹𝑏 −→ · · · −→ 𝐹𝑎 −→ 0,

where each 𝐹𝑖 is a finitely generated graded free R-module, and the differential is homogeneous of
degree zero. Each finite free complex is quasi-isomorphic to a minimal one: a finite free complex F
whose differential d satisfies 𝑑 (𝐹) ⊆ 𝔪𝐹. When F is minimal, one has

𝐹𝑖 �
⊕

𝑗

𝑅(− 𝑗)𝛽
𝑅
𝑖, 𝑗 (𝐹 ) .

Since F is finite free, 𝛽𝑅𝑖, 𝑗 (𝐹) is nonzero only for finitely many pairs (𝑖, 𝑗), so 𝛽𝑅 (𝐹), the Betti table of
F, is an element in the Q-vector space V from Equation (5.1).

Codimension

Let codim𝑅 𝑀 be the codimension of a finitely generated graded R-module M, namely, the height of
its annihilator ideal. Thus, codim𝑅 𝑀 = ∞ if and only if 𝑀 = 0. Let 𝒄 be a codimension sequence, as
defined above. Set

F𝒄 (𝑅) �

{
𝐹 ∈ F (𝑅)






 𝛽𝑅𝑖, 𝑗 (𝐹) = 0 when 𝑐𝑖 = ∅, and
codim H𝑖 (𝐹) ≥ 𝑐𝑖 when 𝑐𝑖 > ∅

}
. (5.6)
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For instance, for the constant sequence dim 𝑅 the objects in Fdim 𝑅 (𝑅) are precisely the finite free com-
plexes with homology of finite length. Moreover, F0(𝑅) = F (𝑅). Clearly, if 𝒄′ is another codimension
sequence with 𝒄 ≤ 𝒄′, then F𝒄 (𝑅) ⊇ F𝒄′ (𝑅).

Consider the cone in the Q-vector space V from Equation (5.1), spanned by the Betti tables of the
finite free complexes F in F𝒄 (𝑅):

B𝒄 (𝑅) �
∑

𝐹 ∈F𝒄 (𝑅)

Q�0𝛽
𝑅 (𝐹) . (5.7)

Pure complexes

A finite free complex F is pure if there exists a degree sequence 𝒕 as above such that for 𝑎 � inf( 𝒕) and
𝑙 � codim 𝒕, the following conditions hold:

1. 𝛽𝑖, 𝑗 (𝐹) ≠ 0 if and only if 𝑗 = 𝒕𝑖 , that is to say, the complex F is quasi-isomorphic to minimal
complex of the form

0 −→ 𝑅(−𝑡𝑎+𝑙)
𝑏𝑎+𝑙 −→ · · · −→ 𝑅(−𝑡𝑎)

𝑏𝑎 −→ 0 ;

2. The R-module H𝑎 (𝐹) is Cohen–Macaulay with codim H𝑎 (𝐹) ≥ 𝑙;
3. H𝑛 (𝐹) = 0 for 𝑛 ≠ 𝑎.

In particular, Σ−𝑎𝐹 is the free resolution of a finitely generated R-module, namely, H𝑎 (𝐹). It follows
from the result of Herzog and Kühl [11] that the Betti table of such an F has the form

𝛽𝑅 (𝐹) = 𝑏 · 𝛽( 𝒕) ,

where 𝑏 � 𝛽𝑅𝑎 (𝐹) and 𝛽( 𝒕) is as in Equation (5.2).

Boij–Soderberg theory

Let 𝑆 � 𝑘 [𝑥1, . . . , 𝑥𝑑] be a standard graded polynomial ring; thus the degree of each 𝑥𝑖 is 1. The
following result is due to Eisenbud and Erman and builds on work of Eisenbud and Schreyer and Boij
and Söderberg. The cone B𝒄

𝑑 is defined in Equation (5.3).

Theorem 5.8. [4, Theorem 3.1] Each degree sequence has an associated pure object in F (𝑆). For any
codimension sequence 𝒄 for S, one has B𝒄 (𝑆) = B𝒄

𝑑 .

By a codimension sequence 𝒄 for a graded ring R, we mean a codimension sequence for the integer
dim 𝑅. Combining the preceding theorem with Lemma 5.4 gives the following result.

Corollary 5.9. For a standard graded polynomial ring S and any codimension sequence 𝒄 for S, the
subset B𝒄 (𝑆) ⊂ 𝑉 is closed in the finite topology.

6. Cones of Betti tables

6.1. Throughout this section, k is an infinite perfect field (possibly of characteristic zero) and R a finitely
generated graded k-algebra admitting a linear Noether normalization, say A.

Theorem 6.2. Let R be as in Section 6.1. If 𝒄 is a codimension sequence for R, then B𝒄 (𝑅) ⊆ B𝒄
𝑑 .

Equality holds if 𝑐𝑖 ≠ ∞ for all i or R is Cohen–Macaulay.

The proof of the theorem when k has positive characteristic is given in Section 6.13. The characteristic
zero case is handled by reduction to positive characteristic; see Section 6.15. We record a couple of
expected consequences.
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When R is a standard graded polynomial ring, the bounds given below on the multiplicities (whose
definition is recalled in Section 4.4) were conjectured by Huneke and Srinivasan and proved by Eisenbud
and Schreyer [6] as a consequence of their proof of the conjectures of Boij and Söderberg [1].

Corollary 6.3. Let R be as in Section 6.1, and let M be a nonzero finitely generated, graded, R-module
generated in degree zero and of finite projective dimension. Then

𝑒(𝑀) ≤
𝑒(𝑅)𝛽0(𝑀)

𝑐!

𝑐∏
𝑖=1

max{ 𝑗 | 𝛽𝑅𝑖, 𝑗 (𝑀) ≠ 0} ,

for 𝑐 � codim 𝑀 . When M is perfect, one has also the lower bound

𝑒(𝑀) ≥
𝑒(𝑅)𝛽0(𝑀)

𝑐!

𝑐∏
𝑖=1

min{ 𝑗 | 𝛽𝑅𝑖, 𝑗 (𝑀) ≠ 0} .

Each of the inequalities above is strict unless M has a pure resolution.

Proof. We deduce these bounds from Theorem 6.2 following the argument in [1].
There is nothing to check if dim 𝑅 = 0, so we can assume 𝑑 � dim 𝑅 ≥ 1. Let A be a Noether

normalization of R as in Section 6.1. It follows from Lemma 4.6 that the multiplicity of a graded R-
module coincides with its multiplicity as an A-module.

Fix an integer c with 0 ≤ 𝑐 ≤ 𝑑. We look at Betti tables of R-modules of finite projective dimension
and codimension at least c. So let 𝒄 � (. . . ,∅, 𝑐,∞, . . . ) with c in position 0 and B𝒄

𝑑 the corresponding
rational cone; see Equation (5.3). It is thus the positive rational cone spanned by 𝛽( 𝒕), where 𝒕 is any
degree sequence of the form

(· · · − ∞, 𝑡0, . . . , 𝑡𝑙 ,∞, . . . )

with 𝑐 ≤ 𝑙 ≤ dim 𝑅. We know that B𝒄 (𝑅) ⊆ B𝒄
𝑑 , by Theorem 6.2.

Let Hilb𝑅 (𝑡) be the Hilbert series of R, and for 𝛽 ∈ B𝒄
𝑑 , set

Hilb𝛽 (𝑡) � Hilb𝑅 (𝑡)𝑔𝛽 (𝑡), where 𝑔𝛽 (𝑡) �
∑
𝑖, 𝑗

(−1)𝑖𝛽𝑖, 𝑗 𝑡 𝑗 ∈ Z[𝑡, 𝑡−1] .

Since R admits a linear system of parameters, Hilb𝑅 (𝑡) = 𝑓𝑅 (𝑡)/(1 − 𝑡)𝑑 for some polynomial 𝑓𝑅 (𝑡)
and 𝑒(𝑅) = 𝑓𝑅 (1). If 𝑀 ∈ grmod 𝑅 has finite projective dimension, then Hilb𝛽 (𝑡) = Hilb𝑀 (𝑡), where
𝛽 = 𝛽𝑅 (𝑀); see [3, Lemma 4.1.13].

For 𝛽 � 𝛽( 𝒕) with 𝒕 a degree sequence as above, we have that 𝑔𝛽 (𝑡) is divisible by (1 − 𝑡)𝑙 , with
𝑙 = codim( 𝒕) and no higher power. In particular, we have that 𝑔𝛽 (𝑡) is divisible by (1− 𝑡)𝑐 for all 𝛽 ∈ B𝒄

𝑑 .
It thus makes sense to define

𝑒(𝛽) � 𝑒(𝑅)

(
𝑔𝛽 (𝑡)

(1 − 𝑡)𝑐

)
𝑡=1

for 𝛽 ∈ B𝒄
𝑑 .

The function 𝑒(−) depends on the chosen c and 𝑒(𝛽( 𝒕)) = 0 if codim( 𝒕) ≥ 𝑐 + 1.
Recall that one has

codim𝑅 𝑀 = dim 𝑅 − dim𝑅 𝑀 = 𝑑 − dim𝑅 𝑀

for any 𝑀 ∈ grmod 𝑅 of finite projective dimension; see [18, Théorème 2].

Claim. If 𝑀 ∈ grmod 𝑅 has finite projective dimension and codimension at least c, then 𝑒(𝛽𝑅 (𝑀)) =
𝑒𝑑−𝑐 (𝑀); see Section 4.4.
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Indeed, since M has dimension at most 𝑑 − 𝑐, one has that

Hilb𝑀 (𝑡) =
𝑓𝑀 (𝑡)

(1 − 𝑡)𝑑−𝑐

for some polynomial 𝑓𝑀 (𝑡) and then 𝑒𝑑−𝑐 (𝑀) = 𝑓𝑀 (1). On the other hand, for 𝛽 = 𝛽𝑅 (𝑀), the
discussion above yields

Hilb𝑀 (𝑡) = Hilb𝛽 (𝑡)

= Hilb𝑅 (𝑡)𝑔𝛽 (𝑡)

=
𝑓𝑅 (𝑡)

(1 − 𝑡)𝑑
𝑔𝛽 (𝑡)

=
( 𝑓𝑅 (𝑡)𝑔𝛽 (𝑡)/(1 − 𝑡)𝑐

(1 − 𝑡)𝑑−𝑐
.

Thus, 𝑓𝑀 (𝑡) = 𝑓𝑅 (𝑡)𝑔𝛽 (𝑡)/(1 − 𝑡)𝑐; evaluating this equality at 𝑡 = 1 yields the claim.
Once we know that the multiplicity of a module can be extracted from its Hilbert series, the rest of

the argument is as in [1, Theorem 4.6]. �

We write Bshort (𝑅) for the positive cone in V, defined in Equation (5.1), spanned by 𝛽𝑅 (𝐹) as F
ranges over the short complexes over R; see Section 4.8.

Corollary 6.4. With R and A as in Section 6.1, there is an equality Bshort (𝑅) = Bshort (𝐴).

Proof. Let 𝒄 be the codimension sequence (. . . ,∅, dim 𝑅, dim 𝑅, . . . ) with the first occurrence of dim 𝑅
is in degree 0. Then B𝒄 (𝑅) = B𝒄 (𝐴), by Theorem 6.2. Intersecting these cones with the cone 𝑉 [0,𝑑 ]

yields the stated equality. �

In proving Theorem 6.2 it will be expedient to use the notion of depth for complexes, and some
results from [14]. In what follows we state the necessary definitions and results for local rings, with the
implicit understanding that the corresponding statements in the graded context also hold.

6.5. Let R be a local ring with residue field k. By the depth of an R-complex M of R-modules, we mean
the least integer i, possibly ±∞ such that Ext𝑖𝑅 (𝑘, 𝑀) ≠ 0; see [8] for alternative descriptions. Given a
bounded complex M, let sup H∗(𝑀) denote the supremum of integers i such that H𝑖 (𝑀) ≠ 0. For such
an R-complex M, there is an inequality

depth𝑅 𝑀 ≥ − sup H∗(𝑀) . (6.6)

Equality holds if and only if depth𝑅 H𝑠 (𝑀) = 0 for 𝑠 � sup H∗(𝑀). These claims are contained in [14,
Proposition 2.7(2) and Theorem 2.3].

One version of the Auslander–Buchsbaum formula for complexes reads: If F is finite free R-complex
with H (𝐹) ≠ 0, then for any R-complex M one has

depth𝑅 (𝐹 ⊗𝑅 𝑀) = depth𝑅 𝑀 − proj dim𝑅 𝐹

= depth𝑅 𝑀 − depth 𝑅 + depth𝑅 𝐹 .
(6.7)

The first equality is [14, Corollary 2.2], and the second follows from the first applied with 𝑀 = 𝑅.

Lemma 6.8. Fix a codimension sequence 𝒄 for R, an R-complex F in F𝒄 (𝑅) and a finitely generated
R-module U satisfying depth𝑅𝔭

𝑈𝔭 ≥ depth 𝑅𝔭 for all 𝔭 in Spec 𝑅 \ {𝔪}. For any integer i, if 𝑐𝑖 < ∞, or
depth𝑅𝑈 ≥ depth 𝑅, then

codim𝑅 H𝑖 (𝐹 ⊗𝑅 𝑈) ≥ 𝑐𝑖 .
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When R is a finitely generated graded k-algebra and F and U are also graded, then it suffices that the
condition on depth holds for 𝔭 in Proj(𝑅).

Proof. The key observation is the following:

Claim. Assume depth𝑅𝑈 ≥ depth 𝑅 as well. Then sup H∗(𝐹 ⊗𝑅 𝑈) ≤ sup H∗(𝐹).

Indeed, since sup H∗(𝐹) does not increase on localization, we can further localize at prime minimal
in the support of H𝑠 (𝐹 ⊗𝑅 𝑈), for 𝑠 � sup H∗(𝐹 ⊗𝑅 𝑈), and assume it has nonzero finite length. Then
the claim about equality in Equation (6.6) yields the first equality below:

− sup H∗(𝐹 ⊗𝑅 𝑈) = depth𝑅 (𝐹 ⊗𝑅 𝑈)

= depth𝑅𝑈 − depth 𝑅 + depth𝑅 𝐹

≥ depth𝑅 𝐹

≥ − sup H∗(𝐹) .

The second equality is Equation (6.7). The first inequality holds by our hypotheses on U, and another
application of Equation (6.6) yields the last one. This settles the claim.

Fix an i. The case 𝑐𝑖 = ∞ and depth𝑅𝑈 ≥ depth 𝑅 follows from the claim.
Suppose 𝑐𝑖 < ∞, and choose 𝔮 ∈ Proj(𝑅) such that height𝔮 < 𝑐𝑖 . Since 𝑐𝑖 ≤ dim 𝑅, it follows that

𝔮 ≠ 𝔪. The choice of 𝔮 means that sup H∗(𝐹𝔮) < 𝑖, because F is in F𝒄 (𝑅), and we have to verify that

sup H∗((𝐹 ⊗𝑅 𝑈)𝔮) < 𝑖 .

This is covered by the claim, applied to the local ring 𝑅𝔮, the 𝑅𝔮-complex 𝐹𝔮 and 𝑈𝔮. This applies since
𝔮 is a nonmaximal prime.

In the graded context, it suffices to observe that the conditions on depth for 𝔭 in Proj(𝑅) imply the
condition for all primes in Spec 𝑅 \ {𝔪} by [3, Theorem 1.5.9]. �

6.9. Let 𝒄 be a codimension sequence of the form

𝒄 � (. . . ,∅,∅, 𝑐𝑎, . . . , 𝑐𝑏 ,∞,∞, . . . )

with 0 ≤ 𝑐𝑎 ≤ 𝑐𝑏 ≤ dim 𝑅. Consider the sequence

𝒄′ � (. . . ,∅,∅, 𝑐𝑎, . . . , 𝑐𝑏 , 𝑑, 𝑑, . . . ),

where 𝑑 = dim 𝑅. Evidently, 𝒄′ ≤ 𝒄.

Lemma 6.10. With 𝒄 and 𝒄′ as above, if B𝒄′ (𝑅) ⊆ B𝒄′

𝑑 , then B𝒄 (𝑅) ⊆ B𝒄
𝑑 .

Proof. Pick 𝐹 ∈ F𝒄 (𝑅). Then one has

proj dim𝑅 𝐹 = depth 𝑅 − depth𝑅 𝐹 ≤ 𝑑 + 𝑏 .

Consequently, one has

𝛽𝑅𝑖, 𝑗 (𝐹) = 0 for 𝑖 ≥ 𝑑 + 𝑏 + 1 and all 𝑗 .

This fact will be used further below.
Since 𝒄′ ≤ 𝒄, we have B𝒄 (𝑅) ⊆ B𝒄′ (𝑅), and also for A. Thus, by hypothesis, 𝛽𝑅 (𝐹) is in B𝒄′ (𝐴).

Theorem 5.8 gives a decomposition

𝛽𝑅 (𝐹) =
∑
𝑛

𝑟𝑛𝛽
𝐴(𝐺𝑛)
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as a finite sum, with 𝑟𝑛 > 0 and 𝐺𝑛 ∈ F𝒄′ (𝐴), with 𝐺𝑛 the shifted resolution of an A-module. That is,
H𝑖 (𝐺

𝑛) = 0 for all but one value, say 𝑖𝑛, of i. Moreover, by the definition of 𝒄′, we have

codim𝐴 H𝑖𝑛 (𝐺
𝑛) =

{
𝑐𝑖𝑛 or more if 𝑎 ≤ 𝑖𝑛 ≤ 𝑏

dim 𝐴 if 𝑖𝑛 > 𝑏.

In particular, when 𝑖𝑛 > 𝑏 the Auslander–Buchsbaum formula yields

𝛽𝑑+𝑏+1, 𝑗 (𝐺
𝑛) ≠ 0 for some 𝑗 .

But then 𝛽𝑅𝑑+𝑏+1, 𝑗 (𝐹) ≠ 0 as well, a contradiction. Thus, 𝑎 ≤ 𝑖𝑛 ≤ 𝑏 for each n, that is to say, 𝐺𝑛 is in
F𝒄 (𝐴). �

The last part of Theorem 6.2 holds over any field k, so we record it separately.

Proposition 6.11. Let R be as in Section 6.1 and 𝒄 a codimension sequence for R. If 𝑐𝑖 ≠ ∞ for all i or
R is Cohen–Macaulay, then B𝒄 (𝑅) ⊇ B𝒄

𝑑 .

Proof. With A as in Section 6.1, one has B𝒄 (𝐴) = B𝒄
𝑑 , by Theorem 5.8, so the desired inclusion is that

B𝒄 (𝑅) ⊇ B𝒄 (𝐴). When 𝑐𝑖 < ∞, this is verified in the course of the proof of [4, Theorem 9.1]; see in
particular, [4, Lemma 9.5, 9.6] and [17]. We give the argument, for one key equality in the proof was
not justified in op. cit.

One can assume 𝑐𝑖 = ∅ for 𝑖 < 0 and 𝑐0 is finite. Since B𝒄 (𝐴) is spanned by (shifts) of the Betti
tables of finitely generated graded A-modules, it suffices to prove that if M is a finitely generated with
codim𝐴 𝑀 ≥ 𝑐0, then 𝛽𝐴(𝑀) is in B𝒄 (𝑅). By [17], pulling back M along a k-algebra automorphism
of A, one can suppose that the R-modules Tor𝐴𝑖 (𝑅, 𝑀) have finite length for each 𝑖 ≥ 1. Let F be the
minimal free resolution of M over A, so the finite free complex of R-modules 𝑅 ⊗𝐴 𝐹 satisfies

𝛽𝑅 (𝑅 ⊗𝐴 𝐹) = 𝛽𝐴(𝐹) = 𝛽𝐴(𝑀) .

Since H𝑖 (𝑅 ⊗𝐴 𝐹) � Tor𝐴𝑖 (𝑅, 𝑀) has finite length for 𝑖 ≥ 1, and 𝑐𝑖 < ∞, one gets

codim𝑅 H𝑖 (𝑅 ⊗𝐴 𝐹) ≥ dim 𝑅 ≥ 𝑐𝑖 for 𝑖 ≥ 1.

It remains to observe that

codim𝑅 H0 (𝑅 ⊗𝐴 𝐹) = codim𝑅 (𝑅 ⊗𝐴 𝑀) = codim𝐴(𝑀) .

The equality on the right is by Lemma A.1; this is glossed over in the proof of [4, Theorem 9.1]. This
completes the proof in the case when each 𝑐𝑖 is finite.

Suppose that R is Cohen-Macaulay. Fix an A-complex G in B𝒄 (𝐴) and consider the R-complex
𝐹 � 𝑅 ⊗𝐴 𝐺. Evidently 𝛽𝑅 (𝐹) = 𝛽𝐴(𝐺), so for the desired inclusion one has only to verify that F is
in B𝒄 (𝑅). Since R is Cohen–Macaulay and finite as an A-module for any finitely generated R-module M
one has

codim𝑅 𝑀 = dim 𝑅 − dim𝑅 𝑀 = dim 𝐴 − dim𝐴 𝑀 = codim𝐴 𝑀 .

Thus, to verify that F is in B𝒄 (𝑅) it suffices to verify that

codim𝐴 H𝑖 (𝑅 ⊗𝐴 𝐺) ≥ 𝑐𝑖 for each 𝑖.

This follows from Lemma 6.8, applied to the A-complex G and for 𝑈 = 𝑅. �
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6.12. With A as in Section 6.1, the regularity of a finitely generated graded R-module M (see Section
4.14) can be read from the Betti table of M over A, as follows:

reg𝑅 𝑀 = max{ 𝑗 | 𝛽𝐴
𝑖,𝑖+ 𝑗 (𝑀) ≠ 0} .

See [3, Theorem 4.3.1].

6.13. (Proof of Theorem 6.2 when the characteristic of k is nonzero). Let A be as in Section 6.1. Given
Theorem 5.8, the desired inclusion is B𝒄 (𝑅) ⊆ B𝒄 (𝐴). By Lemma 6.10, we can assume the codimension
sequence 𝒄 satisfies 𝑐𝑖 ≤ dim 𝑅 for each i.

Let (𝑈𝑛)𝑛�1 be a lim Ulrich sequence of graded R-modules provided by Theorem 4.17. This is
where we need the hypothesis that the characteristic of k is positive. Fix an R-complex F in F𝒄 (𝑅), and
consider the R-complexes 𝐹 ⊗𝑅 𝑈𝑛.

For any 𝑀 in grmod 𝑅, one has codim𝐴 𝑀 ≥ codim𝑅 𝑀 , so Lemma 6.8 yields that, viewed as an
A-complex by restriction of scalars (the finite free resolution of) the complex 𝐹 ⊗𝑅 𝑈𝑛 is in B𝒄 (𝐴). Set
𝑢𝑛 � 𝜈𝑅 (𝑈

𝑛). Since A is regular, the canonical surjection 𝐾 (𝒙; 𝐴) ∼
−→ 𝑘 is a free resolution over A, so

for all integers 𝑖, 𝑗 one has equalities

𝛽𝐴
𝑖, 𝑗 (𝐹 ⊗𝑅 𝑈𝑛) = rank𝑘 H𝑖 (𝐹 ⊗𝑅 𝑈𝑛 ⊗𝐴 𝐾 (𝒙; 𝐴)) 𝑗

= rank𝑘 H𝑖 (𝐹 ⊗𝑅 𝑈𝑛 ⊗𝑅 𝐾 (𝒙; 𝑅)) 𝑗
= rank𝑘 H𝑖 (𝐹 ⊗𝑅 𝐾 (𝒙;𝑈𝑛)) 𝑗 .

These equalities and Lemma 4.12 yield

lim
𝑛→∞

𝛽𝐴
𝑖, 𝑗 (𝐹 ⊗𝑅 𝑈𝑛)

𝑢𝑛
= 𝛽𝑅𝑖, 𝑗 (𝐹) .

This proves that 𝛽𝑅 (𝐹) is in the closure, in the point-wise topology on V, of the subcone of B𝒄 (𝐴)
spanned by all the 𝛽𝐴(𝐹 ⊗𝑅 𝑈𝑛), for 𝑛 ≥ 0. We claim that that the same is true in the finite topology on
V, and to that end it suffices to verify:

Claim. For all but finitely many pairs (𝑖, 𝑗), one has 𝛽𝐴
𝑖, 𝑗 (𝐹 ⊗𝑅 𝑈𝑛) = 0 for all n.

Let 𝑡0 and 𝑡1 be as in Theorem 4.17. Given that reg𝑅 (𝑈
𝑛) can be computed in terms of 𝛽𝐴

𝑖, 𝑗 (𝑈
𝑛) –

see Section 6.12 – we get that

𝛽𝐴
𝑖, 𝑗 (𝑈

𝑛) = 0 unless 𝑖 ∈ [0, dim 𝐴] and 𝑗 ∈ [𝑡0, 𝑡1 + dim 𝐴] .

The stated claim follows from the usual change of rings spectral sequence

E2
𝑝,𝑞 � Tor𝑅𝑝 (𝐹, 𝑘) ⊗𝑘 Tor𝐴𝑞 (𝑈𝑛, 𝑘) =⇒ Tor𝐴𝑝+𝑞 (𝐹 ⊗𝑅 𝑈𝑛, 𝑘) .

Since B𝒄 (𝐴) is closed in the finite topology on V, by Corollary 5.9, we deduce that B𝒄 (𝑅) ⊆ B𝒄 (𝐴),
as desired.

The last part of the statement follows from Proposition 6.11. �

Characteristic zero

Next, we explain how to deduce the characteristic zero case of Theorem 6.2 from that of positive
characteristic. The key is the following result, whose proof is a standard argument.

Lemma 6.14. Let k be a field of characteristic zero, R a finitely generated graded k-algebra, and fix F
in F (𝑅). There exists a field 𝑘 𝑝 of positive characteristic p, a finitely generated graded 𝑘 𝑝-algebra 𝑅𝑝
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and an 𝑅𝑝-complex 𝐹𝑝 in F (𝑅𝑝) such that

𝛽𝑅𝑝 (𝐹𝑝) = 𝛽𝑅 (𝐹) and
codim𝑅𝑝 H𝑖 (𝐹𝑝) = codim𝑅 H𝑖 (𝐹) for each 𝑖.

Moreover, if the k-algebra R admits a linear normalization, then the 𝑘 𝑝-algebra 𝑅𝑝 can be chosen to
admit one as well.

Proof. Write 𝑅 � 𝑘 [𝑥1, . . . , 𝑥𝑛]/𝐽, where 𝐽 = ( 𝑓1, . . . , 𝑓𝑡 ) is a homogeneous ideal. Pick a finitely
generated Z-subalgebra W of k such that the coefficients of the 𝑓𝑖 and the coefficients in the entries in
the differentials of F are in W. Thus, we have a graded ring 𝑅𝑊 � 𝑊 [𝑥1, . . . , 𝑥𝑛]/( 𝑓1, . . . , 𝑓𝑡 ) over W
viewed as a ring concentrated in degree 0 and such that 𝑅 = 𝑘 ⊗𝑊 𝑅𝑊 .

When R admits a linear Noether normalization, then by [12, (2,1,8)(h)], one can invert elements in
W to ensure that the inclusion 𝑊 [𝑥1, . . . , 𝑥𝑑] ⊆ 𝑅𝑊 is module-finite, with cokernel W-free. It follows
that for all maximal ideal 𝔪 of W base-change along 𝑊 → 𝑊/𝔪 induces a map

(𝑊/𝔪) [𝑥1, ..., 𝑥𝑑] → 𝑅𝑊 /𝔪

that is a linear Noether normalization of 𝑅𝑊 /𝔪.
Write 𝛽𝑅 (𝐹) = (𝛽𝑖, 𝑗 ). Evidently, there exists a diagram (not necessarily a complex) of finite free

𝑅𝑊 -modules

𝐹𝑊 � · · · −→
⊕

𝑅𝑊 (− 𝑗)𝛽𝑖+1, 𝑗 −→
⊕

𝑅𝑊 (− 𝑗)𝛽𝑖, 𝑗 −→
⊕

𝑅𝑊 (− 𝑗)𝛽𝑖−1, 𝑗 −→ · · ·

such that 𝐹 = 𝑘 ⊗𝑊 𝐹𝑊 . With Q the field of fractions of W, one has an isomorphism

𝑘 ⊗𝑊 𝐹𝑊 � 𝑘 ⊗𝑄 (𝑄 ⊗𝑊 𝐹𝑊 ).

In particular, 𝑄 ⊗𝑊 𝐹𝑊 is a complex of 𝑅𝑄-modules and the codimension of the 𝑅𝑄-module H𝑖 (𝑄 ⊗𝑊

𝐹𝑊 ) equals that of the R-module H𝑖 (𝐹) for each i.
Inverting further elements in W, one can ensure that 𝐹𝑊 is complex and for each maximal ideal 𝔪

of W and integer i one has

codim𝑅𝑊 /𝔪 H𝑖 (𝐹𝑊 /𝔪) = codim𝑅𝑊 H𝑖 (𝐹𝑊 ) = codim𝑅 H𝑖 (𝐹) .

Indeed, this follows from [12, (2.1.14)(g) last sentence, and (2.3.9)(c)]; the first reference tells us
we can localize at elements in W to preserve the annihilators of the homology modules (note that
𝑘 ⊗𝑊 H𝑖 (𝐹𝑊 ) = H𝑖 (𝐹)), and the second one says that by inverting more elements in W the height of
an ideal is preserved; see (2.3.3) and (2.3.4) in op. cit. for notation.

Finally, pick a maximal ideal 𝔪 of W such that H(𝐹𝑊 ) ⊗𝑅𝑊 𝑊/𝔪𝑊 is nonzero and set 𝐹𝑝 �
𝑊/𝔪 ⊗𝑊 𝐹𝑊 . It is clear the 𝑅𝑝-complex 𝐹𝑝 has the same Betti numbers as F; the codimensions of
their homology modules is also the same, by construction. It remains to note that 𝑊/𝔪 has positive
characteristic p. �

6.15. (Proof of Theorem 6.2 when the characteristic of k is zero). This follows from Lemma 6.14 and
the case of positive characteristic, settled in Section 6.13. �

We do not know whether Theorem 3.4 also holds over fields of characteristic zero. The method
of reduction to positive characteristics exploited above does not appear to work in the context of
cohomology tables.
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A. Codimension

In this section, 𝐴 ↩→ 𝑅 is an integral extension of Noetherian rings. For any finitely generated A-module
M, it is easy to see that there is an inequality

codim𝑅 (𝑅 ⊗𝐴 𝑀) ≤ codim𝐴 𝑀 .

Equality holds when, for instance, the going-down theorem holds for the extension 𝐴 → 𝑅, but not
always; see Example A.2. Here is one other situation in which equality holds; this comes up in the proof
of Proposition 6.11.

Lemma A.1. Let 𝐴 → 𝑅 as above and M a finitely generated A-module with proj dim𝐴 𝑀 finite and
such that

ℓ𝑅 Tor𝐴𝑖 (𝑅, 𝑀) < ∞ for all 𝑖 ≥ 1.

There is an equality codim𝑅 (𝑅 ⊗𝐴 𝑀) = codim𝐴 𝑀 .

Proof. One has to only to verify that codim𝑅 (𝑅 ⊗𝐴 𝑀) ≥ codim𝐴 𝑀 , that is to say

height𝔮 ≥ codim𝐴 𝑀 for all 𝔮 in Supp𝑅 (𝑅 ⊗𝐴 𝑀).

Let 𝑓 : Spec 𝑅 → Spec 𝐴 be the map induced by 𝐴 → 𝑅. Then

Supp𝑅 (𝑅 ⊗𝐴 𝑀) = 𝑓 −1(Supp𝐴 𝑀) .

Fix 𝔮 minimal in 𝑓 −1(Supp𝐴 𝑀). If 𝔮 is the maximal ideal of R, then

height𝔮 = dim 𝑅 = dim 𝐴 ≥ codim𝐴 𝑀 ,

as desired. We can thus assume that 𝔮 is not maximal in R.
Set 𝔭 � 𝔮∩ 𝐴; this is in Supp𝐴 𝑀 and so contains a minimal element, say 𝔭′, in Supp𝐴 𝑀 . It suffices

to verify

height𝔮 ≥ height𝔭′ .

Since 𝔮 is not maximal in Spec 𝑅, the hypotheses yield

Tor𝐴𝑖 (𝑅, 𝑀)𝔮 � Tor𝐴𝔭

𝑖 (𝑅𝔮, 𝑀𝔭) = 0 for 𝑖 ≥ 1.

Thus, the 𝑅𝔮-module (𝑅 ⊗𝐴 𝑀)𝔮 has finite projective dimension; it is also of nonzero finite length
because 𝔮 is minimal in Supp𝑅 (𝑅 ⊗𝐴 𝑀). This gives the first and the second equalities below:

dim 𝑅𝔮 = depth 𝑅𝔮

= proj dim𝑅𝔮
(𝑅 ⊗𝐴 𝑀)𝔮

= proj dim𝑅𝔮
(𝑅𝔮 ⊗𝐴𝔭 𝑀𝔭)

= proj dim𝐴𝔭
𝑀𝔭

≥ proj dim𝐴𝔭′
𝑀𝔭′

= dim 𝐴𝔭′ .

The fourth one holds as 𝐴𝔭 → 𝑅𝔮 is local and, as 𝐴𝔭-modules, 𝑅𝔮 and 𝑀𝔭 are Tor-independent. The
inequality is clear. The last equality holds hold because 𝑀𝔭′ has finite length since 𝔭′ is minimal in
Supp𝐴 𝑀 . Thus, height𝔮 ≥ height𝔭′. �
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Example A.2. Let 𝑅 � 𝑘 [𝑥, 𝑦, 𝑧]/(𝑥, 𝑦) ∩ (𝑧) and A the subring 𝑘 [𝑥 + 𝑧, 𝑦]. Then for 𝑀 � 𝐴/𝑦𝐴 one
has

codim𝐴 𝑀 = 1 whereas codim𝐴(𝑅 ⊗𝐴 𝑀) = codim𝑅 (𝑅/𝑦𝑅) = 0 .

In geometric language, Spec(𝑅) is the union of a line and a plane, both passing through the origin;
Spec(𝐴) is a plane and Spec(𝑅) → Spec(𝐴) any linear map that is finite (any generic such map would
do). Then for one ‘bad’ line in Spec(𝐴), its inverse image in Spec(𝑅) is a union of the exceptional line
in Spec(𝑅) and another line passing through the origin. This gives an example where the codimension
in A is 1 but the codimension in R drops to 0.

Acknowledgements. We thank Daniel Erman for suggesting applications of lim Ulrich sequences to Boij–Söderberg theory and
for discussions on this topic and a referee for comments on an earlier version of this manuscript.

Competing interest. The authors have no competing interest to declare.

Financial support. The authors were partly supported by National Science Foundation grants DMS-2001368 (SB); DMS-
1901672, DMS-1952366, DMS-2302430 (LM); and DMS-1901848, DMS-2200732 (MW). Ma was also partly supported by a
fellowship from the Sloan Foundation.

References

[1] M. Boij and J. Söderberg, ‘Graded Betti numbers of Cohen–Macaulay modules and the multiplicity conjecture’, J. Lond.
Math. Soc. 78 (2008), 85–106. doi=10.1112/jlms/jdn013.

[2] M. Boij and J. Söderberg, ‘Betti numbers of graded modules and the multiplicity conjecture in the non-Cohen–Macaulay
case’, Algebra Number Theory 6 (2012), 437–454. doi=10.2140/ant.2012.6.437

[3] W. Bruns and J. Herzog, Cohen–Macaulay Rings, second edn., Cambridge Studies in Advanced Mathematics, 39 (Cambridge
University Press, Cambridge, 1998).

[4] D. Eisenbud and D. Erman, ‘Categorified duality in Boij–Söderberg theory and invariants of free complexes’, J. Eur. Math.
Soc. 19 (2017), 2657–2695. doi=10.4171/JEMS/725.

[5] D. Eisenbud and F.-O. Schreyer, ‘Cohomology of coherent sheaves and series of supernatural bundles’, J. Eur. Math. Soc.
12 (2010), 703–722. doi=10.4171/JEMS/212.

[6] D. Eisenbud and F.-O. Schreyer, ‘Betti numbers of graded modules and cohomology of vector bundles’, J. Amer. Math. Soc.
22 (2009), 859–888. doi=10.1090/S0894-0347-08-00620-6.

[7] D. Eisenbud and F.-O. Schreyer, ‘Resultants and Chow forms via exterior syzygies, with an appendix by Jerzy Weyman’,
J. Amer. Math. Soc. 16 (2003), 537–579. doi=10.1090/S0894-0347-03-00423-5.

[8] H.-B. Foxby and S. Iyengar, ‘Depth and amplitude for unbounded complexes’, in Commutative Algebra, Grenoble/Lyon
2001, Contemp. Math. 331 (Amer. Math. Soc., Providence, RI, 2003), 119–137. doi=10.1090/conm/331/05906.

[9] R. Hartshorne, Ample Subvarieties of Algebraic Varieties, Lecture Notes in Mathematics, 156 (Springer-Verlag, Berlin-New
York, 1970).

[10] R. Hartshorne, Algebraic Geometry, Graduate Texts in Mathematics, 52 (Springer-Verlag, New York-Heidelberg, 1977).
[11] J. Herzog and M. Kühl, ‘On the Betti numbers of finite pure and linear resolutions’, Comm. Algebra 12 (1984), 1627–1646.

doi=10.1080/0092787840882307
[12] M. Hochster and C. Huneke, Tight closure in equal characteristic zero, In preparation.
[13] C. Huneke and I. Swanson, Integral Closure of Ideals, Rings, and Modules, London Mathematical Society Lecture Note

Series, 336 (Cambridge University Press, Cambridge, 2006).
[14] S. Iyengar, ‘Depth for complexes, and intersection theorems’, Math. Z. 230 (1999), 545–567. doi=10.1007/PL00004705.
[15] S. B. Iyengar, L. Ma and M. E. Walker, ‘Multiplicities and Betti numbers in local algebra via lim Ulrich points’, Algebra

Number Theory 16 (2022), 1213–1257. doi=10.2140/ant.2022.16.1213.
[16] L. Ma, ‘Lim Ulrich sequences and Lech’s conjecture’, Invent. Math. 231 (2023), 407–429. doi=10.1007/s00222-022-01149-2.
[17] E. Miller and D. E. Speyer, ‘A Kleiman–Bertini theorem for sheaf tensor products’, J. Algebraic Geom. 17 (2008), 335–340.

doi=10.1090/S1056-3911-07-00479-1
[18] C. Peskine and L. Szpiro, ‘Syzygies et multiplicités’, C. R. Acad. Sci. Paris Sér. A 278 (1974), 1421–1424.
[19] P. Roberts, ‘Le théorème d’intersection’, C. R. Acad. Sci. Paris Sér. I Math. 304 (1987), 177–180.

https://doi.org/10.1017/fms.2023.108 Published online by Cambridge University Press

http://dx.doi.org/10.1112/jlms/jdn013
http://dx.doi.org/10.2140/ant.2012.6.437
http://dx.doi.org/10.4171/JEMS/725
http://dx.doi.org/10.4171/JEMS/212
http://dx.doi.org/10.1090/S0894-0347-08-00620-6
http://dx.doi.org/10.1090/S0894-0347-03-00423-5
http://dx.doi.org/10.1090/conm/331/05906
http://dx.doi.org/10.1080/0092787840882307
http://dx.doi.org/10.1007/PL00004705
http://dx.doi.org/10.2140/ant.2022.16.1213
http://dx.doi.org/10.1007/s00222-022-01149-2
http://dx.doi.org/10.1090/S1056-3911-07-00479-1
https://doi.org/10.1017/fms.2023.108

	1 Introduction
	2 Lim Ulrich sequences of sheaves
	3 Cones of cohomology tables
	4 Lim Ulrich sequences of graded modules
	5 Boij–Söderberg theory
	6 Cones of Betti tables
	A Codimension

