GROUPS WITH A QUOTIENT THAT CONTAINS THE ORIGINAL GROUP AS A DIRECT FACTOR

Ron Hirshon and David Meier

Abstract

We prove that given a finitely generated group G with a homomorphism of G onto $G \times H, H$ non-trivial, or a finitely generated group G with a homomorphism of G onto $G \times G$, we can always find normal subgroups $N \neq G$ such that $G / N \cong$ $G / N \times H$ or $G / N \cong G / N \times G / N$ respectively. We also show that given a finitely presented non-Hopfian group U and a homomorphism φ of U onto U, which is not an isomorphism, we can always find a finitely presented group $H \supseteq U$ and a finitely generated free group F such that φ induces a homomorphism of $U * F$ onto $(U * F) \times H$. Together with the results above this allows the construction of many examples of finitely generated groups G with $G \cong G \times H$ where H is finitely presented. A finitely presented group G with a homomorphism of G onto $G \times G$ was first constructed by Baumslag and Miller. We use a slight generalisation of their method to obtain more examples of such groups.

1. Introduction

Finitely generated groups G with $G \cong G \times H, H \neq 1$, or $G \cong G \times G$ were first constructed by Tyrer Jones [4], but it is still an open question whether there exist non-trivial finitely presented groups G with these properties. More insight into the structure and a new construction of finitely generated groups with the above properties are therefore still useful. The starting point of our investigations was the construction of a finitely presented group G with a homomorphism of G onto $G \times G$ by Baumslag and Miller [1].

Our paper consists of four sections. The main results are the following theorems which are proved in Sections 3 and 5 respectively. Theorem 2: A group G with a homomorphism of G onto $G \times H$ always contains a normal subgroup N such that $G / N \cong G / N \times H$. Theorem 4: A non-trivial group G with a homomorphism from G onto $G \times G$ always contains a normal subgroup $N \neq G$ such that $G / N \cong G / N \times G / N$.

Since in Sections 3 and 5 we need finitely presented groups G with homomorphisms of G onto $G \times H$ or of G onto $G \times G$, we study the construction of such groups in

[^0]Sections 2 and 4. In Section 2 we use ideas contained in [3] to give a fairly general construction for groups G with a homomorphism of G onto $G \times H$. More precisely, we show that given a finitely presented non-Hopfian group U and a homomorphism φ of U onto U, which is not an isomorphism, we can always find a finitely presented group $H \supseteq U$ and a finitely generated free group F such that φ induces a homomorphism ϑ of $U * F$ onto $(U * F) \times \boldsymbol{H}$. We use this to give an example of a one-relator group G with a homomorphism of G onto $G \times H, H \neq 1$. Together with Theorem 2 this allows the construction of many examples of finitely generated groups G with $G \cong G \times H$ where H is finitely presented. The construction of groups G with a homomorphism of G onto $G \times G$ given in Section 4 is just a slight generalisation, again based on ideas in [3], of the Baumslag-Miller group [1]. We start with a finitely generated abelian group A and a one-one homomorphism μ of A to A satisfying some additional conditions and construct a finitely presented group $G \supseteq A$ and a homomorphism ϑ from G onto $G \times G$ induced by μ.

2. Finitely presented groups G with a homomorphism FROM G ONTO $G \times H$

The following lemma is needed in the proof of Theorem 1.
Lemma 1. Let U be finitely presented and $1 \neq x \in U$. Then there exists a finitely presented group $H \supseteq U$, such that x generates H as a normal subgroup.

A proof can, for example, be modelled after the proof of Theorem 3.5 of [2], p. 190.
Theorem 1. Let U be finitely presented and non-Hopfian and let φ be a homomorphism of U onto U with non-trivial kernel. Then there exists a finitely presented group $H \supseteq U$ and a finitely presented group V such that φ induces a homomorphism ϑ of $V * U$ onto $(V * U) \times \boldsymbol{H}$.

Proof: Let $1 \neq x$ be an element in the kernel of φ. Form the group H as in Lemma 1 and let $\mu: U \rightarrow H$ be the embedding. Let V be any finitely presented group for which there exists a homomorphism ρ of V onto H. The map ϑ of $V * U$ onto $(V * U) \times H$ is given by

$$
\begin{aligned}
& \vartheta: v \rightarrow(v, v \rho) \text { for } v \in V \text { of } V * U \\
& \vartheta: u \rightarrow(u \varphi, u \mu) \text { for } u \in U \text { of } V * U .
\end{aligned}
$$

In ($u \varphi, u \mu$) the left-hand side, $u \varphi$, is in U of $V * U$. Because $V * U$ is a free product and φ and ρ are homomorphisms, ϑ extends to a homomorphism. Note, $x \vartheta=(1, x \mu)$. The map ρ is onto. $(V * U) \vartheta$ contains therefore an element (g, h) for all $h \in H$. Since $x \mu$ generates H as a normal subgroup, $(V * U) \vartheta$ contains $(1, h)$ for all $h \in H$ and
therefore $(1, H)$. Therefore $(V * U) \vartheta$ contains $(v, 1)$ for all $v \in V$ and $(u \varphi, 1)$ for all $u \in U$. Because φ is onto this implies that also $(V * U, 1)$ of $(V * U) \times H$ is in $(V * U) \vartheta$. Together we get that ϑ is onto and the proof is complete.

Remark. There are two natural choices for V :
(i) $V=H$ and ρ the identity map.
(ii) V free. More exactly if h_{1}, \ldots, h_{n} is a generating set of H then we may take $V=\left\langle f_{1}, \ldots, f_{n}\right\rangle$, the free group freely generated by f_{1}, \ldots, f_{n} and ρ the homomorphism given by $f_{i} \rho=h_{i}$ for $i=1, \ldots, n$. This gives the following corollary:

Corollary 1. Let U be finitely presented and non-Hopfian. Then there exists a finitely generated free group F and a finitely presented group H containing U such that there is a homomorphism ϑ of $F * U$ onto $(F * U) \times H$.

Example 1: Let $U=\left\langle t, a ; t^{-1} a^{2} t=a^{3}\right\rangle$ be the well known non-Hopfian group of Baumslag and Solitar. See [2], p.197, where it is also shown that $1 \neq x=\left[t^{-1} a t, a\right]$ is in the kernel of φ given by $t \varphi=t$ and $a \varphi=a^{2}$. The group

$$
H=\left\langle t, a, s, b ; t^{-1} a^{2} t=a^{3}, s^{-1} b^{2} s=b^{3}, s=\left[t^{-1} a t, a\right], t=\left[s^{-1} b s, b\right]\right\rangle,
$$

which contains U and has the property that x generates H as a normal subgroup, was constructed in [3]. Let G_{1} be the free product of H and U :

$$
\begin{aligned}
& G_{1}=\left\langle t, a, s, b, r, c ; t^{-1} a^{2} t=a^{3}, s^{-1} b^{2} s=b^{3}, s=\left[t^{-1} a t, a\right]\right. \\
&\left.t=\left[s^{-1} b s, b\right], r^{-1} c^{2} r=c^{3}\right\rangle
\end{aligned}
$$

By Theorem 1, the homomorphism ϑ of G_{1} to $G_{1} \times H$ given by

$$
\begin{aligned}
& \vartheta: t \rightarrow(t, t), \vartheta: a \rightarrow(a, a), \vartheta: s \rightarrow(s, s), \vartheta: b \rightarrow(b, b), \\
& \vartheta: r \rightarrow(r, t), \vartheta: c \rightarrow\left(c^{2}, a\right)
\end{aligned}
$$

is onto.
Example 2: Let U and H be the groups of Example 1. The relation $s=$ [$\left.t^{-1} a t, a\right]$ of H can be used to eliminate the generator s, so that H has the following presentation on three generators and three relations:

$$
H=\left\langle t, a, b ; t^{-1} a^{2} t=a^{3},\left[a, t^{-1} a t\right] b^{2}\left[t^{-1} a t, a\right]=b^{3}, t=\left[\left[a, t^{-1} a t\right] b\left[t^{-1} a t, a\right], b\right]\right\rangle .
$$

Let G_{2} be the one-relator group

$$
G_{2}=\left\langle r, c, f_{t}, f_{a}, f_{b} ; r^{-1} c^{2} r=c^{3}\right\rangle .
$$

Then by Corollary 1 , the map ϑ of G_{2} to $G_{2} \times H$ given by

$$
\begin{aligned}
& \vartheta: f_{t} \rightarrow\left(f_{t}, t\right), \vartheta: f_{a} \rightarrow\left(f_{a}, a\right), \vartheta: f_{b} \rightarrow\left(f_{b}, b\right), \\
& \vartheta: r \rightarrow(r, t), \vartheta: c \rightarrow\left(c^{2}, a\right)
\end{aligned}
$$

is onto.

3. Finitely generated groups G with $G \cong G \times H$, \boldsymbol{H} finitely presented

Theorem 2. Let ϑ be a homomorphism of A onto $A \times B$. Then A contains a normal subgroup K such that $A / K \cong A / K \times B$.

Proof: Let K be a maximal normal subgroup such that $K \vartheta$ is contained in $(K, 1)$. Then ϑ induces a map η of A / K onto $A / K \times B$. Let $L=$ ker η and let N be its preimage under the quotient map $A \rightarrow A / K$. Then N contains K and has the property that $N \vartheta$ is contained in $(N, 1)$. By the maximality of K, we get that $K=N$ and therefore that η is an isomorphism and the proof is complete.

We now show that a maximal normal subgroup K of A with the property that $K \boldsymbol{\vartheta}$ is contained in ($K, 1$) is unique.

THE UPPER KERNEL OF A HOMOMORPHISM ϑ OF A ONTO $A \times B$. Let $A_{1}=(A, 1) \vartheta^{-1}$ and for $i>0$, let $A_{i+1}=\left(A_{i}, 1\right) \vartheta^{-1}$. The A_{i} form a descending chain of normal subgroups. The intersection of the A_{i} contains the kernel of ϑ. We call it the upper kernel of ϑ and write uker (ϑ) for it and claim that it has the property $A /$ uker $(\vartheta) \cong$ $A /$ uker $(\vartheta) \times B$. Since ϑ maps all elements of uker (ϑ) to (uker $(\vartheta), 1), \boldsymbol{\vartheta}$ induces a map ϑ^{\prime} from $A /$ uker (ϑ) to $A /$ uker $(\vartheta) \times B$, and since $a \vartheta \in(u \operatorname{ker}(\vartheta), 1)$ implies $a \in \operatorname{uker}(\vartheta), \vartheta^{\prime}$ is an isomorphism.

Remark. If $a \vartheta \in(A, 1)$, we can consider $a \vartheta$ as an element of A and apply ϑ again to get $a \vartheta^{2}$. If $a \vartheta^{2}$ is again in $(A, 1)$ we can continue in the same way to get $a \vartheta^{3}$ and so on. The upper kernel uker (ϑ) consists now precisely of those elements $a \in A$ with $a \vartheta^{n}$ in $(A, 1)$ for all n.

Proposition 1. Let ϑ be a homomorphism of A onto $A \times B$. If K is a maximal normal subgroup of A such that $K \vartheta$ is contained in $(K, 1)$, then $K=u \operatorname{ker}(\vartheta)$.

Proof: Since $K \vartheta$ is contained in $(K, 1), A_{1}=(A, 1) \vartheta^{-1} \supseteq K$. Assume now that $A_{i} \supseteq K$. Then $K \supseteq K \vartheta$ implies $A_{i} \supseteq K \vartheta$ and $A_{i+1}=\left(A_{i}, 1\right) \vartheta^{-1} \supseteq K$. By induction we get $A_{i} \supseteq K$ for all i and therefore uker $(\vartheta) \supseteq K$. By maximality of K this implies $K=$ uker (ϑ).

The lower kernel of a homomorphism ϑ of A onto $A \times B$. The upper kernel is a method of finding the largest normal subgroup K with $K \vartheta$ in $(K, 1)$ and $A / K \cong$ $A / K \times B$ as an intersection of a chain of subgroups. The smallest normal subgroup with $K \vartheta$ in $(K, 1)$ and $A / K \cong A / K \times B$ can be found as follows. Let $K_{1}=\operatorname{ker}(\vartheta)$. Then ϑ induces a map ϑ_{1} of A / K_{1} onto $A / K_{1} \times B$. Let K_{2} be the preimage of $\operatorname{ker}\left(\vartheta_{1}\right)$ under the quotient map A to A / K_{1}. Inductively if ϑ_{i} maps A / K_{i} onto $A / K_{i} \times B$ we define K_{i+1} to be the preimage of $\operatorname{ker}\left(\vartheta_{\boldsymbol{i}}\right)$ under the quotient map A to A / K_{i}. The K_{i} form an ascending chain of subgroups. Let $K=\cup K_{i}$. We call K the lower kernel
of ϑ and write $\operatorname{lker}(\vartheta)$ for it. ϑ induces a map ϑ^{\prime} from A / K onto $A / K \times B$ which is an isomorphism.

Proposition 2. Let ϑ be a homomorphism of A onto $A \times B$. If N is a normal subgroup of A such that $N \vartheta$ is contained in $(N, 1)$ and ϑ induces an isomorphism of A / N to $A / N \times B$, then $N \supseteq \operatorname{lker}(\vartheta)$.

Proof: Obviously, $N \supseteq K_{1}=\operatorname{ker}(\vartheta)$. Assume now that $N \supseteq K_{i}$. Then $K_{i+1} N / N$ is in the kernel of the homomorphism A / N to $A / N \times B$ induced by ϑ. Since this map is an isomorphism, $N \supseteq K_{i+1}$. By induction we get $N \supseteq K_{i}$ for all i, therefore $N \supseteq \operatorname{lker}(\vartheta)$.

Remark. In general $\operatorname{lker}(\vartheta) \neq \operatorname{uker}(\vartheta)$. If $G \cong G \times B$ and φ is an isomorphism of G to $G \times B$ and H is any group then the map ϑ of $H \times G$ to $(H \times G) \times B$ given by $(h, g) \vartheta=(h, g \varphi)$ is an isomorphism. In this case we get $\operatorname{lker}(\vartheta)=1$ and uker $(\vartheta) \supseteq H$.

Corollary 2. Let U be a finitely presented non-Hopfian group. Form the finitely presented group H as in Lemma 1. Then there exists a finitely generated group G such that $G \cong G \times H$.

Proof: By Theorem 1, there exists a homomorphism ϑ of $H * U$ onto $H * U \times H$. By Theorem 2, the group $G=H * U / \operatorname{uker}(\vartheta)$ has the property $G \cong G \times H$.

Example 3: Let G_{2} and H be as in Example 2. From the above, there exists a quotient G_{3} of G_{2} such that $G_{3} \cong G_{3} \times H$.

4. Finitely presented groups G with a homomorphism FROM G ONTO $G \times G$

Let $A=\left\langle a_{1}, \ldots, a_{n}\right\rangle$ be a finitely generated abelian group and let μ, ν be two oneone homorphisms from A to A which are not onto, such that $\mu \nu=\nu \mu$. It was shown in [3] that the HNN extension $U=\left\langle t, A ; t^{-1} a_{i} \mu t=a_{i} \nu, i=1, \ldots, n\right\rangle$ is non-Hopfian if $A=\langle A \mu, A \nu\rangle$. Theorem 3 generalises the construction of the group of Theorem C of Baumslag and Miller [1].

Theorem 3. Let A, μ, ν be as above. If the elements $a_{i} \mu\left(a_{i} \nu\right)^{-1}, i=1, \ldots, n$ generate A, then there exists a finitely presented group G containing A with a homomorphism ϑ of G onto $G \times G$ induced by μ.

Proof: Let $B=\left\langle b_{1}, \ldots, b_{n}\right\rangle$ and $C=\left\langle c_{1}, \ldots, c_{n}\right\rangle$ be isomorphic to A such that $a_{i} \rightarrow b_{i}$ and $a_{i} \rightarrow c_{i}, i=1, \ldots, n$ induce isomorphisms and form the HNN extensions

$$
\begin{aligned}
U & =\left\langle t, A ; t^{-1} a_{i} \mu t=a_{i} \nu, i=1, \ldots, n\right\rangle \\
V & =\left\langle s, B \times C ; s^{-1} b_{i} \mu s=b_{i} \nu, s^{-1} c_{i} \nu, i=1, \ldots, n\right\rangle
\end{aligned}
$$

Since μ and ν are not onto, we can find $a_{i} \in A-A \mu$ and $a_{j} \in A-A \nu$. Then by Britton's Lemma (see [2], p.181), the element $\left[t^{-1} a_{i} t, a_{j}\right]$ is not trivial and t and [$t^{-1} a_{i} t, a_{j}$] generate a free subgroup of U. Similarly $\left[s^{-1} b_{i} s, b_{j}\right]$ is not trivial and s and $\left[s^{-1} b_{i} s, b_{j}\right]$ generate a free subgroup of V.

We can therefore construct the amalgamation

$$
G=\left\langle U, V ; t=\left[s^{-1} b_{i} s, b_{j}\right], s=\left[t^{-1} a_{i} t, a_{j}\right]\right\rangle
$$

We claim that the map ϑ from G to $G \times G$ given on the generators by

$$
\begin{aligned}
& \vartheta: t \rightarrow(t, t), \vartheta: a_{i} \rightarrow\left(a_{i}, a_{i}\right), \quad i=1, \ldots, n \\
& \vartheta: s \rightarrow(s, s), \vartheta: b_{i} \rightarrow\left(b_{i}, b_{i}\right), \quad i=1, \ldots, n \\
& \vartheta: c_{i} \rightarrow\left(b_{i}\left(c_{i} \mu\right), c_{i} \mu\right), \quad i=1, \ldots, n
\end{aligned}
$$

is a homomorphism and onto.
To show that ϑ is a homomorphism, we have to prove that ϑ maps relations in G to relations of $G \times G$. Since all elements except $c_{i}, i=1, \ldots, n$, are mapped to the corresponding diagonal elements of $G \times G$, it suffices to show that $s^{-1} c_{i} \mu s=c_{i} \nu$, $i=1, \ldots, n$, and $\left[b_{i}, c_{j}\right]=1$, for $i, j=1, \ldots, n$, are mapped to relations.

Note,

$$
\begin{aligned}
\left(s^{-1} c_{i} \mu s\right) \vartheta & =\left(s^{-1} b_{i} \mu\left(c_{i} \mu^{2}\right) s, s^{-1} c_{i} \mu^{2} s\right) \\
& =\left(s^{-1} b_{i} \mu s s^{-1}\left(c_{i} \mu^{2}\right) s, s^{-1} c_{i} \mu^{2} s\right)
\end{aligned}
$$

This can be simplified by the relations of V :

$$
\left(s^{-1} b_{i} \mu s s^{-1}\left(c_{i} \mu^{2}\right) s, s^{-1} c_{i} \mu^{2} s\right)=\left(b_{i} \nu c_{i} \mu \nu, c_{i} \mu \nu\right)
$$

We now use the fact that $\mu \nu=\nu \mu$ to derive $\left(b_{i} \nu c_{i} \mu \nu, c_{i} \mu \nu\right)=\left(b_{i} \nu c_{i} \nu \mu, c_{i} \nu \mu\right)$. But $\left(b_{i} \nu c_{i} \nu \mu, c_{i} \nu \mu\right)=\left(c_{i} \nu\right) \vartheta .\left[b_{i}, c_{j}\right] \vartheta=(1,1)$ is true because $B \times C$ is abelian.

It remains now to show that ϑ is onto. We observe, $\left[s^{-1} c_{i} s, b_{j}\right] \vartheta=\left(\left[s^{-1} b_{i} c_{i} \mu s, b_{j}\right]\right.$, $\left.\left[s^{-1} c_{i} \mu s, b_{j}\right]\right)=\left(\left[s^{-1} b_{i} s c_{i} \nu, b_{j}\right],\left[c_{i} \nu, b_{j}\right]\right)=\left(\left[s^{-1} b_{i} s, b_{j}, 1\right]\right)$. From the relations of G we derive $(t, 1) \in G \vartheta$. Because $G \vartheta$ contains $\left(a_{i}, a_{i}\right), i=1, \ldots, n$, it contains $\left(a_{i} \mu, a_{i} \mu\right)$ for all i. Also $\left(a_{i} \mu, a_{i} \mu\right)(t, 1)^{-1}\left(a_{i} \mu, a_{i} \mu\right)^{-1}(t, 1)=\left(a_{i} \mu\left(a_{i} \nu\right)^{-1}, 1\right)$, $i=1, \ldots, n$. Since the elements $a_{i} \mu\left(a_{i} \nu\right)^{-1}, i=1, \ldots, n$ generate $A,(A, 1)$ is in $G \vartheta$. From $s=\left[t^{-1} a_{i} t, a_{j}\right]$, it follows that also $(s, 1) \in G \vartheta$. The consideration above with s, B and C shows now that $(B, 1)$ and $(C, 1)$ are in $G \vartheta$. Together we get that $(G, 1) \in G \vartheta$. If we look at the values of ϑ on the generators we see that therefore $(1, t),(1, s),\left(1, a_{i}\right),\left(1, b_{i}\right),\left(1, c_{i} \mu\right), i=1, \ldots, n$, are in $G \vartheta$. As before we conclude in a similar way that $(1, G) \in G \vartheta$. This completes the proof of Theorem 3.

The next example is the group constructed by Baumslag and Miller [1].
EXAMPLE 4: Let $A=\langle a\rangle$ be infinite cyclic, and μ, ν given by $a \mu=a^{2}$, $a \nu=a^{3}$. Then the conditions of the theorem are satisfied. Also $a \in A-A \mu$ and $a \in A-A \nu$. By Theorem 3 or rather the proof of Theorem 3, we construct the groups

$$
\begin{aligned}
& U=\left\langle t, a ; t^{-1} a^{2} t=a^{3}\right\rangle \\
& V=\left\langle s, b, c ;[b, c]=1, s^{-1} b^{2} s=b^{3}, s^{-1} c^{2} s=c^{3}\right\rangle
\end{aligned}
$$

and conclude that for the group

$$
\begin{aligned}
& G_{4}=\left\langle t, a, s, b, c ; t^{-1} a^{2} t=a^{3},[b, c]=1, s^{-1} b^{2} s=b^{3}, s^{-1} c^{2} s=c^{3}\right. \\
&\left.s=\left[t^{-1} a t, a\right], t=\left[s^{-1} b s, b\right]\right\rangle
\end{aligned}
$$

the map ϑ from G_{4} to $G_{4} \times G_{4}$ given by

$$
\begin{aligned}
& \vartheta: t \rightarrow(t, t), \vartheta: a \rightarrow(a, a), \vartheta: s \rightarrow(s, s), \vartheta: b \rightarrow(b, b), \\
& \vartheta: c \rightarrow\left(b c^{2}, c^{2}\right)
\end{aligned}
$$

is a homomorphism and onto.
Example 5: Let $A=\left\langle a_{1}, a_{2}\right\rangle$ be free abelian on two generators, and μ, ν given by $a_{1} \mu=a_{1}^{2}, a_{2} \mu=a_{2}, a_{1} \nu=a_{1}, a_{2} \nu=a_{2}^{2}$. Then the conditions of the theorem are satisfied. Also $a_{1} \in A-A \mu$ and $a_{2} \in A-A \nu$.

Again by the proof of Theorem 3, we construct the groups

$$
\begin{aligned}
& U=\left\langle t, a_{1}, a_{2} ;\left[a_{1}, a_{2}\right]=1, t^{-1} a_{1}^{2} t=a_{1}, t^{-1} a_{2} t=a_{2}^{2}\right\rangle \\
& V=\left\langle s, b_{1}, b_{2}, c_{1}, c_{2} ;\left[b_{1}, b_{2}\right]=1, s^{-1} b_{1}^{2} s=b_{1}, s^{-1} b_{2} s=b_{2}^{2}\right. \\
& {\left[c_{1}, c_{2}\right]=1, s^{-1} c_{1}^{2} s=c_{1}, s^{-1} c_{2} s=c_{2}^{2}} \\
& \left.\left[b_{i}, c_{j}\right]=1, i, j=1,2\right\rangle
\end{aligned}
$$

and conclude that for the group

$$
\begin{array}{r}
G_{5}=\left\langle t, a_{1}, a_{2}, s, b_{1}, b_{2}, c_{1}, c_{2} ;\left[a_{1}, a_{2}\right]=1, t^{-1} a_{1}^{2} t=a_{1}, t^{-1} a_{2} t=a^{2},\right. \\
{\left[b_{1}, b_{2}\right]=1, s^{-1} b_{1}^{2} s=b_{1}, s^{-1} b_{2} s=b_{2}^{2},} \\
{\left[c_{1}, c_{2}\right]=1, s^{-1} c_{1}^{2} s=c_{1}, s^{-1} c_{2} s=c_{2}^{2},} \\
{\left[b_{i}, c_{j}\right]=1, i, j=1,2,} \\
\left.s=\left[t^{-1} a_{1} t, a_{2}\right], t=\left[s^{-1} b_{1} s, b_{2}\right]\right\rangle
\end{array}
$$

there exists a homomorphism ϑ from G_{5} onto $G_{5} \times G_{5}$.

5. Finitely generated groups $G \cong G \times G$

THEOREM 4. If a non-trivial finitely generated group G has a homomorphism ϑ from G onto $G \times G$, then there exists a non-trivial quotient E of G isomorphic to its own direct square.

Proof: Let K be a maximal normal subgroup, $K \neq G$, such that, $K \vartheta$ is contained in $K \times K$. Such a normal subgroup exists for a finitely generated group G by Zorn's lemma. Set $E=G / K$. Then ϑ induces a map η of E onto $E \times E$. Let $L=\operatorname{ker} \eta$; then $L \neq E$ and its preimage N under the quotient map $G \rightarrow E$ contains K and has the property that $N \vartheta$ is contained in $N \times N$. By maximality of K, we get that $K=N$ and therefore that η is an isomorphism. This completes the proof of Theorem 4.

As in Section 3 we can find a normal subgroup K^{*} with $G / K^{*} \cong G / K^{*} \times G / K^{*}$ as follows. Let $K_{1}=\operatorname{ker}(\vartheta)$; then ϑ induces a map ϑ_{1} of G / K_{1} onto $G / K_{1} \times G / K_{1}$. Let K_{2} be the preimage of $\operatorname{ker}\left(\vartheta_{1}\right)$ under the quotient map G to G / K_{1}. Inductively if ϑ_{i} maps G / K_{i} onto $G / K_{i} \times G / K_{i}$ we define K_{i+1} to be the preimage of $\operatorname{ker}\left(\vartheta_{i}\right)$ under the quotient map G to G / K_{i}. The K_{i} form an ascending chain of subgroups. Let $K^{*}=\cup K_{i}$. Then ϑ induces a map ϑ^{*} from G / K^{*} onto $G / K^{*} \times G / K^{*}$ which is an isomorphism.

Proposition 3. Let ϑ be a homomorphism of G onto $G \times G$. If N is a normal subgroup of G such that $N \vartheta$ is contained in $N \times N$ and ϑ induces an isomorphism of G / N to $G / N \times G / N$, then $N \supseteq K^{*}$ for $K^{*}=\cup K_{i}$ as above.

Proof: Obviously, $N \supseteq K_{1}=\operatorname{ker}(\vartheta)$. Assume now that $N \supseteq K_{i}$. Then $K_{i+1} N / N$ is in the kernel of the homomorphism G / N to $G / N \times G / N$ induced by ϑ. Since this map is an isomorphism, $N \supseteq K_{i+1}$. Therefore by induction, $N \supseteq K_{i}$ for all i and hence $N \supseteq K^{*}$.

References

[1] G. Baumslag and C.F. Miller III, 'Some odd finitely presented groups', Bull. London Math. Soc. 20 (1988), 239-244.
[2] R.C. Lyndon and P.E. Schupp, Combinatorial Group Theory (Springer-Verlag, Berlin, Heidelberg, New York, 1977).
[3] D. Meier, 'Non-hopfian groups', J. Lond Math. Soc. 26 (1982), 265-270.
[4] J.M. Tyrer Jones, 'Direct products and the Hopf property', J. Austral. Math. Soc. 17 (1974), 174-196.

[^0]: Received 28 June 1991
 We would like to thank the referee for his constructive comments to an earlier version of our paper which have improved its presentation.

