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The statistical properties of prograde spanwise vortex cores and internal shear layers
(ISLs) are evaluated for a series of high-Reynolds-number turbulent boundary layers. The
considered flows span a wide range of both Reynolds number and surface roughness. In
each case, the largest spanwise vortex cores in the outer layer of the boundary layer have
size comparable to the Taylor microscale λT , and the azimuthal velocity of these large
vortex cores is governed by the friction velocity uτ . The same scaling parameters describe
the average thickness and velocity difference across the ISLs. The results demonstrate the
importance of the local large-eddy turnover time in determining the strain rate confining
the size of the vortex cores and shear layers. The relevance of the turnover time, and more
generally the Taylor microscale, can be explained by a stretching mechanism involving the
mutual interaction of coherent velocity structures such as uniform momentum zones with
the evolving shear layers separating the structures.
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1. Introduction

Similitude is one of the few properties of turbulence that makes understanding
the phenomenon more tractable. This principle is indeed the basis for much of
turbulence theory (Reynolds 1883; von Kármán 1930; Kolmogorov 1941; Townsend 1976).
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The challenge, of course, is to identify the appropriate similitude (scaling) parameter for
a given feature. In boundary layer research, scaling analyses have led to considerable
success in characterizing the size and intensity of coherent turbulent structures (McKeon
& Sreenivasan 2007; Klewicki 2010; Marusic et al. 2010; Smits, McKeon & Marusic
2011; Jiménez 2018). Scaling becomes particularly important for flows with high Reynolds
numbers which exhibit a wider range of turbulent motions due to the increased separation
between the smallest and largest scales. The friction Reynolds number Reτ ≡ uτ δ/ν

quantifies the difference between the boundary layer thickness δ limiting the largest
motions and the viscous length ν/uτ describing the near-wall features. Here, ν is the
kinematic viscosity and uτ is the friction velocity corresponding to the average wall shear
stress.

In recent decades, the predominant focus for studies of boundary layer structures in the
logarithmic (log) region has been on larger-scale, energy-containing motions (see, e.g.
Marusic et al. 2010; Smits et al. 2011). In the present context, these features include both
O(δ) very-large-scale motions (Kim & Adrian 1999; Guala, Hommema & Adrian 2006;
Hutchins & Marusic 2007) and O(z) ‘attached’ or wall-coherent structures in accordance
with Townsend’s attached eddy hypothesis (Townsend 1976, p. 152), where z is the
wall-normal distance (see, e.g. Agostini & Leschziner 2017; Lozano-Durán & Bae 2019;
Eich et al. 2020). While there have been numerous studies on smaller-scale vortices in
the context of larger-scale features such as hairpin-type packets and vortex clusters (e.g.
Adrian, Meinhart & Tomkins 2000b; Ganapathisubramani, Longmire & Marusic 2003; del
Álamo et al. 2006; Wu & Christensen 2006), detailed analyses of the vortex core size in
boundary layer turbulence are fewer. The existing results have consistently shown the most
probable vortex core diameter to be near 10η (Tanahashi et al. 2004; Herpin, Stanislas &
Soria 2010; Herpin et al. 2013; Wei et al. 2014), where η is the Kolmogorov length scale.
The moderate discrepancy in detected size across the cited studies may be due to variations
in methodology, which will be discussed further in the analysis. The characteristic velocity
for the vortex, i.e. the maximum azimuthal velocity around the vortex centre, has yielded
more mixed results. Tanahashi et al. (2004) argued for scaling by the Kolmogorov velocity
uη despite observing moderate increase with increasing Reynolds number, and Wei et al.
(2014) suggested a mixed scaling of uη and u′ which is the streamwise root-mean-square
(r.m.s.) velocity. The more consistent finding across studies relates to the vortex position
which is less susceptible to methodology bias: the small-scale vortices are intermittently
distributed and clustered in space (del Álamo et al. 2006; Wu & Christensen 2006; Kang,
Tanahashi & Miyauchi 2007; Jiménez 2013).

The observed clustering of vortices is consistent with the apparent self-organization of
the instantaneous flow in high-Reynolds-number boundary layers into large-scale velocity
structures separated by relatively thin layers of concentrated shear and vorticity (Meinhart
& Adrian 1995; Priyadarshana et al. 2007; Eisma et al. 2015; de Silva et al. 2017). These
thin layers are referred to here as internal shear layers (ISLs). A majority of the prograde
spanwise vortex cores reside along these shear layers (Heisel et al. 2018), where prograde
here indicates rotation direction consistent with the mean shear. Recent studies on ISLs
have indicated robust scaling behaviour. The layer thickness is proportional to the Taylor
microscale λT (Wei et al. 2014; Eisma et al. 2015; de Silva et al. 2017) or δRe−1/2

τ

(Morris et al. 2007; Klewicki 2013), and the streamwise velocity difference across the
layer is proportional to uτ (de Silva et al. 2017; Heisel et al. 2018, 2020b; Gul, Elsinga &
Westerweel 2020).

The velocity structures separated by the ISLs are often identified using a general
classification known as the uniform momentum zone (UMZ), a region with relatively
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uniform streamwise velocity (Meinhart & Adrian 1995). A UMZ is uniform relative to the
surrounding flow such that low-amplitude turbulent fluctuations within the zone can be
neglected. UMZs are detected using histograms of the streamwise velocity (Adrian et al.
2000b) or fuzzy clustering (Fan et al. 2019), often with two-dimensional flow fields in
the streamwise–wall-normal (x–z) plane from imaging experiments (de Silva, Hutchins &
Marusic 2016; Saxton-Fox & McKeon 2017; Laskari et al. 2018), including in atmospheric
turbulence (Morris et al. 2007; Heisel et al. 2018). Because of their generic definition,
detected UMZs are likely to be associated with other coherent velocity structures such
as elongated ‘streaky’ structures (Hwang 2015), large-scale sweep events (Laskari et al.
2018) and travelling waves (Saxton-Fox & McKeon 2017; Laskari & McKeon 2021).
A favourable aspect of the UMZ classification, compared with methods that detect and
extract specific velocity structures localized in space, is that it allows for a systematic
quantification of how the coherent velocity structures are organized throughout the
boundary layer for a given measured realization of the flow. Heisel et al. (2020b) compared
the UMZ properties across a wide range of Reynolds number and surface roughness to
demonstrate that the organization of zones universally exhibits the theoretical scaling
behaviour of the log region, i.e. size and velocity proportional to wall-normal distance
and friction velocity, respectively. The findings are consistent with previous studies that
showed wall-normal distance scaling of more specific isolated velocity structures such as
the attached streaky structures (e.g. Hwang 2015; Hwang & Sung 2018) and streamwise
rolls (e.g. del Álamo et al. 2006; Lozano-Durán, Flores & Jiménez 2012; Jiménez 2018).

The general self-organization of structures described above is qualitatively similar to
findings in isotropic turbulence research. Specifically, shear and vortex structures are
known to cluster spatially (She, Jackson & Orszag 1990; Moisy & Jiménez 2004). The
characteristic length of the vortex tubes and the cluster is proportional to the integral length
scale L (Jiménez et al. 1993; Ishihara, Gotoh & Kaneda 2009), as is the distance between
clusters (Ishihara, Kaneda & Hunt 2013). The intense vortex tubes primarily reside within
thin shear layers whose thickness is again proportional to λT (Ishihara et al. 2013; Elsinga
et al. 2017). The observations are consistent with an earlier prediction by Saffman (1968)
that large-scale vortex sheets have thickness of order λT . Based on the recent findings, the
organization of clustered vortex tubes into intermittent shear layers has been proposed as
an important component of small-scale dynamics (Elsinga & Marusic 2010; Hunt et al.
2010; Ishihara et al. 2013; Hunt et al. 2014; Elsinga et al. 2017). The organization is
consistent with intermittency principles, where the clustering of strong velocity gradients
leads to heavy-tailed probability distributions which influence high-order statistics (She &
Leveque 1994; Sreenivasan & Antonia 1997). Despite the matched scaling and common
features, there are key differences between the isotropic and boundary layer organizations.
Most notably in the boundary layer case, the presence of the mean shear leads to a
preferential direction and persistence of the coherent structures and significant large-scale
anisotropy. Nevertheless, there is reason to be cautiously optimistic. If the behaviour of the
shear layers has universal properties, it could provide a structural representation for scale
interaction and the energy cascade.

In addition to the limited number of detailed studies on vortex cores and ISLs in
high-Reynolds-number boundary layer turbulence, even fewer works have quantitatively
explored possible relations between the coherent velocity structures, vortices and shear
layers. Accordingly, the properties of both prograde spanwise vortices and internal
shear layers are explored here in a single comparative analysis. The goal is to identify
similarities in the behaviour of these features, and to better understand their dynamical
relationship with the local larger-scale coherent velocity structures. Particular attention is
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paid to why the Taylor microscale is a relevant similarity parameter for these features in
high-Reynolds-number turbulence.

The behaviour of ISLs is inferred here based on the properties of detected UMZ
interfaces. For the vortex cores, the analysis is focused on prograde vortices due to
their closer connection with the predominately positive shear layers (i.e. ∂u/∂z > 0) that
populate the boundary layer. Both analyses are conducted in the streamwise–wall-normal
plane using the same suite of particle image velocimetry (PIV) experiments as in Heisel
et al. (2020b), which spans a wide range of Reynolds number and surface roughness and
includes a field experiment in the atmospheric surface layer (ASL, Heisel et al. 2018).
The remainder of the article is organized into the following sections: the experiments
and methodology are described in § 2; results on the vortex and shear layer size (§ 3)
and velocity (§ 4) are then presented; our interpretation of the results are reserved for
the discussion in § 5; the article concludes with a summary in § 6. Two appendices
are included to examine the influence of spatial resolution on the results and to justify
assumptions made in the analysis.

1.1. Terminology
In this work, the outer layer of the boundary layer begins above the buffer layer (for
smooth surfaces) or roughness sublayer (rough surfaces), and consists of the log and wake
regions. The term ‘small-scale’ refers to the smallest turbulent eddies proportional to the
Kolmogorov length η and velocity uη. The term ‘large-scale’ refers to the streamwise
integral length L and r.m.s. velocity u′. In this context, the Taylor microscale is then an
intermediate length scale λT ∼ η2/3L1/3 (Pope 2000), where ‘∼’ means ‘scales with’. The
term ‘vortex core’ is used here to differentiate the detected strongly rotating vortices from
larger-scale, diffuse vortical motions such as rolls and bulges. The estimated probability
density function (p.d.f.) of any variable ‘s’ is given the notation ps. Unless otherwise noted,
lowercase lettering is used for instantaneous values of a variable, and uppercase lettering
is used for the average of the same variable. Angled brackets ‘〈·〉’ are also used to indicate
ensemble averages. Bold typeface is used for variables that are vectors. The superscript
‘+’ indicates normalization in wall units, i.e. z+ = zuτ /ν and u+ = u/uτ . The subscript
‘ω’ is used for variables corresponding to vortex properties. The subscript ‘i’ is used for
variables corresponding to ISL properties. Finally, as stated above, the coordinate system
employed here uses z (w) for the wall-normal direction (velocity).

2. Methodology

2.1. Experiments
Nine flow cases covering several orders of magnitude in Reynolds number Reτ ∼ O(103 −
106) and surface roughness k+

s � O(104) are included in the present analysis. Here, ks is
the equivalent sand-grain roughness and conditions are fully rough for k+

s � 70 when the
surface drag becomes independent of viscosity. The flow cases, previously used together
in Heisel et al. (2020b), are summarized in table 1. An overview of important details is
given here, and a full account of each experiment is available from the cited references in
the table.

The direct numerical simulation (DNS) of a boundary layer with Reτ = 2000 by Sillero
et al. (2013) is included for comparison with the experimental cases. The DNS case was
analysed using two-dimensional flow fields in the x–z plane to be consistent with the PIV
experiments. The variable �x, representing the spatial resolution, refers to the streamwise
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Dataset Symbol Facility Reτ k+
s �x+ �x/η �x/λT Source

DNS ∗ computation 2000 — 6.3 2.0 0.077 Sillero, Jiménez &
Moser (2013)

Smooth wall × SAFL 3800 — 13 3.3 0.10 Heisel et al. (2020b)
Smooth wall + SAFL 4700 — 18 4.2 0.12 Heisel et al. (2020b)
Smooth wall © HRNBLWT 6600 — 3.7 0.86 0.023 Squire et al. (2016)
Smooth wall � HRNBLWT 12 300 — 7.2 1.4 0.030 Squire et al. (2016)
Smooth wall ♦ HRNBLWT 17 000 — 10 1.8 0.037 Squire et al. (2016)
Mesh roughness 	 SAFL 10 100 430 19 3.9 0.10 Heisel et al. (2020b)
Mesh roughness � SAFL 13 900 620 28 5.2 0.12 Heisel et al. (2020b)
ASL Eolos O(106) 30 000 6400 410 3.2 Heisel et al. (2018)

Table 1. Experimental datasets used in the analysis of prograde spanwise vortices and ISLs.

grid spacing for the DNS and the vector field spacing for the PIV experiments, which all
employed 50 % window overlap leading to interrogation window size 2�x. The parameters
η and λT are both dependent on wall-normal distance z. The normalized resolution in
table 1 considers the average parameter values at z = 0.1δ. This reference position was
chosen in terms of δ because later results are presented at matched z/δ in the outer layer.
Determination of η and λT is detailed in § 2.2.

The HRNBLWT facility in table 1 refers to the High Reynolds Number Boundary
Layer Wind Tunnel at the University of Melbourne. The flow cases corresponding to the
HRNBLWT were measured using the high-resolution tower PIV configuration detailed
in Squire et al. (2016). The sandpaper roughness flow cases from the same study are not
included in the present analysis. In this case a higher degree of small-scale noise in the
rough-wall measurements (as documented in Squire et al. 2016) precludes the possibility
of accurately fitting the Oseen vortex model to extract vortex statistics, and hence these
data are omitted from the present study.

The SAFL facility in table 1 is the boundary layer wind tunnel at St. Anthony Falls
Laboratory, University of Minnesota. These measurements captured the bottom portion of
the boundary layer thickness, including the log region and part of the wake region. For the
mesh roughness cases, the tunnel floor was covered by woven wire mesh with 3 mm wire
diameter and 25 mm opening size (Heisel et al. 2020b).

The ASL measurements were acquired using super-large-scale PIV (SLPIV) in the
lowest 20 m of the atmosphere with natural snowfall as the flow tracers. The measurements
captured the roughness sublayer and bottom of the log region in near-neutral conditions
at the Eolos field facility. A detailed discussion of the snowflake traceability is given in
Heisel et al. (2018). The SLPIV method cannot capture the smallest vortical motions in
the ASL due to both the non-negligible snowflake inertia and the coarse spatial resolution
relative to η. Yet numerous vortices were present in each SLPIV vector field with size
O(1 m) likely augmented by coarse resolution. The vortex and ISL size statistics are
included in this study, but caution must be taken in interpreting these results. Vortex and
shear layer velocity statistics in the ASL, however, are shown to be in agreement with all
laboratory-scale trends.

Profiles of the first- and second-order velocity statistics are shown for each flow case
in figure 1. For two of the smooth-wall cases (×, +), the relatively lower wall-normal
velocity statistics in figure 1(c,d) are attributed to measurement resolution as discussed in
Heisel et al. (2020a). The decreasing trends in figure 1(c,d) for the ASL case (•) may be
due to one or more of several challenges present in atmospheric field settings. For instance,
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Figure 1. First- and second-order velocity statistics for each experimental dataset. (a) Mean streamwise
velocity U shown as a deficit from the free-stream condition U∞, where κ−1 is the logarithmic slope based
on the von Kármán constant. (b) Streamwise variance 〈u2〉. (c) Wall-normal variance 〈w2〉. (d) Reynolds shear
stress −〈uw〉. Profiles are normalized by the friction velocity uτ and boundary layer thickness δ. Data symbols
correspond to the experiments in table 1 and are shown with logarithmic spacing for clarity. The roughness
sublayer is excluded from the ASL profiles.

uncertainty in the definition of δ, statistical convergence of higher-order statistics, and the
possible role of large-scale stratified motions at higher altitudes are all discussed in the
original study (Heisel et al. 2018).

2.2. Scaling parameters
Owing to their importance in the scaling analysis, the determination of relevant flow
parameters is discussed here. Not included here is uτ , which is discussed in the original
publications cited in table 1. For the wind tunnel studies (HRNBLWT and SAFL), the
parameters were estimated using hot-wire anemometer measurements under the same flow
conditions rather than the PIV measurements (Squire et al. 2016; Heisel et al. 2020b).
Parameter estimation for the ASL case relied on scaling assumptions which are discussed
separately at the end of this section.

Many of the parameters depend on the average rate of turbulent energy dissipation ε.
The Kolmogorov scales are defined as the length η ≡ (ν3/ε)1/4, velocity uη ≡ (νε)1/4 and
time τη ≡ (ν/ε)1/2. Further, the definition used here for the streamwise integral length is
L = u′3/ε and for the large-eddy turnover time is T = u′2/ε. This integral length definition
yields results similar to the autocorrelation method, based on a test using the hot-wire
measurements. The turnover time T is equivalent to the integral time scale definition in
isotropic turbulence where T = L/u′, and differs from the streamwise integral time in
wall-bounded flows where Tint = L/U.

Because ε could not be measured directly, various estimation methods were used
depending on the experiment. Dissipation was estimated as ε ≈ 15ν〈(∂u/∂x)2〉 assuming
local isotropy with the HRNBLWT measurements (Squire et al. 2016). For the DNS and
SAFL cases, the dissipation was inferred from the value of the longitudinal second-order
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structure function in the inertial subrange, i.e. D11 = Cε2/3r2/3 (Saddoughi & Veeravalli
1994).

The Taylor microscale is defined here as λ2
T = u′2/〈(∂u/∂x)2〉 and the value was

estimated using this expression for all cases excluding the ASL. This definition is specific
to the streamwise component, where the Taylor microscale is anisotropic in wall-bounded
turbulence (Morishita, Ishihara & Kaneda 2019). The Taylor microscale and integral length
are related as λT/L ∼ Re−1/2

L with the integral Reynolds number being ReL = u′L/ν (Pope
2000). This relationship is based on ε ∼ ν〈(∂u/∂x)2〉, where the proportional constant is
15 for isotropic turbulence and otherwise depends on the relative contribution of each
gradient term to the dissipation.

For the ASL case, the measurement resolution of both the SLPIV and a collocated
sonic anemometer were too coarse for the estimation methods discussed above. The
dissipation was therefore estimated as ε ≈ uτ

3/κz, where κ is the von Kármán constant.
This estimate assumes the local shear production of turbulence in the log region is in
equilibrium with the dissipation rate, which is typical for high-Reynolds-number boundary
layers (Townsend 1961). The Kolmogorov length scale resulting from this approximation
is η ≈ 0.7 ± 0.2 mm. The value for λT was estimated from the expression ε = 15νu′2/λ2

T ,
which assumes local isotropy and combines the λT and ε expressions through the shared
gradient term. The resulting Taylor microscale estimate for the ASL case is λT ≈ 13 cm.
The integral length L ∼ O(1 m) results directly from the estimated dissipation.

2.3. Spanwise vortex detection
Numerous methods exist to characterize vortices (see, e.g. Chakraborty, Balachandar &
Adrian 2005; Haller 2005). The preferred method in the present analysis is to fit the local
flow field to a model vortex. The primary advantage of using a model vortex is that the
fitted vortex properties are not dependent on an arbitrary parameter threshold. However,
a parameter threshold is still required to detect the possible vortex core regions upon
which the model is fitted, and the characterization of complex vortex structures is limited
to the imposed model shape. Despite these limitations, recent studies have successfully
characterized large populations of vortex cores in boundary layer flows using the Oseen
model (Oseen 1912) in cylindrical coordinates (Carlier & Stanislas 2005; Herpin et al.
2010, 2013)

u = uω + Γ

2πr

[
1 − exp

(
−
(

r
rω

)2
)]

eθ , (2.1)

where uω is the advection velocity of the vortex, Γ is the circulation, r is the radial distance
from the vortex centre, rω is the vortex radius and eθ is the unit vector in the azimuthal
direction. The model incorporates Biot–Savart law for the velocity induced by a vortex
line, i.e. uθ ∝ Γ/2πr, and the exponential term acts as a damping function to decrease the
azimuthal velocity uθ inside the vortex radius such that the maximum velocity occurs at
r = rω.

The Oseen model is consistent with the Navier–Stokes equations in its three-dimensional
definition. In the formal definition, the radius is given as rω = √

4νt, where the radius is
zero at time t = 0 and the vortex grows in time via viscous diffusion. This is conceptually
different from the Burgers vortex radius rω = √

4ν/α, where α is the strain rate. Rather
than growing in time, the Burgers vortex size is steady due to a balance between outward
diffusion and an inward radial velocity ur(r) = −αr induced by axial vortex stretching
(Burgers 1948). The Oseen model does not include a radial velocity or axial stretching.
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This distinction between the two models becomes important for interpreting the later
results.

The vortex detection using (2.1) followed the procedure of Herpin et al. (2013), which is
briefly summarized here. Possible vortex cores were identified based on flow regions with
λci > 1.5λrms, where λci is the two-dimensional swirling strength (Adrian, Christensen
& Liu 2000a) and λrms(z) is the r.m.s. swirling strength at each wall-normal distance.
The threshold introduces selection bias on the vortices, but the threshold is not applied
in the later model fit. Based on a test using one flow case, changing the threshold factor
from 1.5× to 2× or 2.5× resulted in the detection of fewer vortices, but resulted in no
statistically significant changes to the vortex properties.

A notable deviation to the original procedure was to apply a Gaussian filter to the wind
tunnel (HRNBLWT and SAFL) PIV fields prior to vortex detection. The filter removed
small-scale noise in the gradients which significantly improved the performance of the
fitting algorithm. The size of the Gaussian filter, i.e. its standard deviation, was selected
to be approximately 2η for the reference position z = 0.1δ in each case. The filter was not
applied to the DNS or SLPIV vector fields. The filter would be negligibly small relative
to the resolution for the ASL case, and a comparison of DNS results with and without the
filter revealed no changes to the statistics of interest.

The properties of the identified core region were used as initial guesses for the six
vortex model parameters: the centre position given by xω and zω, the advection velocity
components uω and wω, the circulation Γ and the radius rω. The initial value for Γ was
based on the core area and average out-of-plane vorticity ωy within the core region. The
initial guesses for rω, xω and zω were used to extract the local vector field within 2rω

of the vortex centre. The extracted vector field was then fitted to (2.1) using the initial
guesses and a nonlinear least-squares fitting algorithm. The algorithm was designed to
update the six model parameters until the difference between the local vector field and
the model vortex (i.e. the right-hand side of (2.1)) was minimized. The parameters output
by the algorithm therefore describe the model vortex most closely matching the vector
field within and around the vortex core. The parameters are thus inferred to represent the
vortex core properties. The initial guesses informed by the detected core regions reduce
the likelihood the algorithm diverged to a spurious local minimum in the model parameter
space. To exclude these fits and other ill-fitted results, the properties are only considered for
vortices where the coefficient of determination exceeded R2 > 0.6. Increasing the imposed
minimum R2 value reduces somewhat the convergence of the vortex statistics, but does not
change the overall trends and conclusions of the study. An example vector field and closest
model fit with R2 = 0.9 are shown in figure 2(a).

Besides the advection velocity, the characteristic velocity of each vortex is the maximum
azimuthal velocity difference �uω across the vortex. This velocity, shown in figure 2(b),
is twice the azimuthal velocity at the edge of the vortex r = rω due to axisymmetry and
the definition of the radius. From (2.1), the velocity is

�uω = Γ

πrω

(1 − e−1). (2.2)

The properties are defined across both sides of the vortex core, i.e. as dω and �uω, for
comparison with the ISL properties which are not in cylindrical coordinates.

The detection algorithm was conducted for all experimental datasets in table 1.
Approximately 22 000 Oseen vortices were fitted for the ASL dataset, and more than
100 000 were fitted for every other case. The possible issue of selection bias due to the
chosen vortex model is discussed later in § 5.3. The primary sources of uncertainty for
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Figure 2. Example of a model Oseen vortex fitted to a velocity vector field, shown with the vortex advection
velocity subtracted for visualization. (a) Comparison of measured velocities (black vectors) relative to the
closest Oseen model (red vectors) whose size is given by the red circle. (b) Notation for the diameter dω and
azimuthal velocity difference �uω across the diameter of the fitted vortex.

vortex properties in the PIV experiments are spatial resolution limitations and small-scale
noise. The results are focused on probability distributions of the properties rather than
their mean. Artefacts due to the limitations described above occur primarily within the
smallest values of each property, and conclusions are not drawn from these regions of the
distributions. See Appendix A for an assessment of how measurement resolution affects
the mode and tail of the probability distributions. A further benefit of a probabilistic
approach is to identify the possible relevance of multiple scaling parameters. If different
regions of the probability distribution are governed by separate parameters, the mean value
may not reflect a simple scaling relationship. A similar probability analysis of the ISL
features is unfortunately not possible for the methodology given in the following section.
The analysis requires conditionally averaging which does not provide instantaneous
statistics.

2.4. ISL detection
Rather than directly detecting the ISLs using a threshold on instantaneous values of ∂u/∂z,
we instead infer the properties of ISLs from detected interfaces of UMZs. These interfaces
represent the shear regions separating the local larger-scale coherent velocity structures (de
Silva et al. 2017). In the present context, the distinction between ISLs and UMZ interfaces
is largely a matter of detection methodology. While the shear layers align closely with
UMZ interfaces, the interfaces can also include segments where the instantaneous shear
is relatively smaller (Gul et al. 2020). These additional segments due to the detection
methodology may lead to differences between ISL and UMZ interface statistics for some
properties. However, the statistics presented here are limited to those where the same
behaviour has been previously reported for both ISLs and UMZ interfaces, and from here
on the ISL terminology is applied.

The present analysis uses the same detected UMZs from Heisel et al. (2020b). The
methodology to identify UMZs and their interfaces using histograms of the streamwise
velocity is detailed in the previous work. An important consideration regarding the
previous study is that the detected UMZs unambiguously exhibited a dependence on
wall-normal distance z (Heisel et al. 2020b), such that the present analysis studies the
shear layers separating z-scaled velocity structures.
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Figure 3. Example shear layers for the Reτ = 17 000 smooth-wall case. (a) Streamwise velocity field from
figure 2 of Heisel et al. (2020b), with detected ISLs (black lines) and turbulent/non-turbulent interface (red
line). (b) Velocity field in the vicinity of an ISL (black line) relative to the ISL position zi and velocity ui. (c)
Conditionally averaged velocity profile relative to the ISLs, indicating the average velocity difference �Ui and
thickness δω. The black box in the upper left of (a) indicates the size of the field in (b).

Figure 3 shows an example of ISLs and their statistics based on measurements from
the Reτ = 17 000 smooth-wall case in table 1. The PIV field in figure 3(a) illustrates
the general, approximate organization of the streamwise velocity in the outer layer into
relatively uniform regions (i.e. UMZs) separated by thin shear layers (black lines). The
field in figure 3(b) is focused on the local vicinity of a single ISL to demonstrate the
compiled statistics. The velocity difference between UMZs is a factor of uτ , and the
velocity gradient occurs across a short distance centred around the wall-normal position
zi of the ISL. The black dots in figure 3(b) represent the PIV vector positions near the
ISL at the horizontal centre of the field. The PIV velocities were compiled at these vector
positions to create a profile relative to the ISL position (z − zi) and velocity (u − ui and
w − wi). These conditional profiles were compiled for every x position of every ISL.

Averaging all the conditional streamwise profiles in the log region yields the profile in
figure 3(c). As seen in the figure, the average velocity difference �Ui results from linear
fits to the profile above and below the ISL (de Silva et al. 2017). One method for estimating
the (vorticity) thickness δω is to assume the ISL is a mixing layer (Brown & Roshko 1974).
Note the subscript ‘ω’ is used for the shear layer thickness δω to be consistent with notation
in the literature. The mixing layer method uses the maximum velocity gradient within
the layer ∂〈u − ui〉/∂z|max. The gradient is highest at the centre of the layer and quickly
decreases away from the centre, such that the maximum gradient is not representative of
the entire layer. In practice, the measured maximum gradient also depends strongly on the
spacing of the grid points �x in the vicinity of the layer centre, and δω values from this
method are a function of the measurement resolution.

The thickness δω can more simply be estimated as the distance across which the
velocity difference �Ui occurs (Eisma et al. 2015). In addition to being less sensitive
to measurement resolution, this estimate is more representative of the overall shear layer.
This second method is used to calculate the thicknesses presented in later results. Note this
method is still susceptible to resolution issues if the measurements are coarse relative to
δω, as is discussed later.
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Figure 4. Estimated average thickness δω of ISLs normalized by λT . (a) Conditional average profile of
streamwise velocity relative to ISLs in the log region. (b) Thickness δω as a function of measurement grid
spacing �x, noting the interrogation window size for the PIV cases is 2�x. (c) Wall-normal profile of δω. Data
symbols correspond to the experimental datasets in table 1.

In many respects, it is important to distinguish the ISLs from the turbulent/non-turbulent
interface (TNTI) separating the boundary layer flow from the free-stream condition
(Elsinga & da Silva 2019), i.e. the red line in figure 3(a). Indeed, the TNTI was detected
using a separate methodology based on the kinetic energy defect (Chauhan et al. 2014b)
prior to detection of the UMZs and the internal layers (Heisel et al. 2020b). However, for
the specific statistics analysed in the present study, the same scaling behaviour is expected
for both ISLs and the TNTI. Previous studies have shown the TNTI to have thickness
δω ∼ O(λT) and velocity �U ∼ O(uτ ) (Bisset, Hunt & Rogers 2002; da Silva & Taveira
2010; Chauhan, Philip & Marusic 2014a; de Silva et al. 2017), matching the ISL literature
results discussed in the introduction. Later figures showing wall-normal profiles of shear
layer properties include ISLs and TNTIs, such that both features contribute to values in
the wake region.

3. Size statistics

3.1. Shear layer thickness
The streamwise velocity profile relative to the ISLs, shown previously in the figure 3(c)
example, is compared for all flow cases in figure 4(a). The ASL measurement resolution
exceeds the vertical axis limits and the profile is not visible. There is otherwise close
agreement across cases with normalization by λT and uτ . A comparison of the profiles
with alternative length scale normalizations, e.g. ν/uτ and η, is presented elsewhere (e.g.
de Silva et al. 2017).

The average ISL thickness was calculated from the conditional profiles following the
methodology discussed in § 2.4. The effect of measurement resolution on the estimated
thickness is demonstrated in figure 4(b). The thickness estimate is relatively invariant to
resolution for grid spacing �x � 0.1λT . The four SAFL PIV cases with �x ≈ 0.1λT have
mean thickness approximately 25 % larger than the cases with smaller �x, suggesting the
effects of resolution may begin near this value. Assuming the λT scaling extends to field
conditions, the resolution of the ASL measurements is too coarse for an accurate estimate
of the ISL thickness, and no conclusions are drawn from the δω value in the ASL case.
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A wall-normal profile of δω was constructed using conditional ISL statistics in binned
intervals of z/δ. The resulting profile in figure 4(c) suggests a fixed relationship between δω

and λT throughout the outer layer. The proportionality δω ≈ (0.3–0.5)λT and its invariance
with wall-normal position are both in close agreement with previous studies (Eisma et al.
2015; de Silva et al. 2017). Note that normalization of δω by δRe−1/2

τ collapses the profiles
across experiments, but the thickness varies with z, i.e. the profiles are not flat. The local
parameter λT(z) is required to achieve the observed invariance of δω(z) with wall-normal
position. The scatter between cases in figure 4(c) is entirely consistent with the resolution
findings in figure 4(b): the cases with coarser resolution relative to λT have profile values
closer to 0.5λT , and cases with higher resolution have profile values closer to 0.3λT . A
new finding from the present results is that significant laboratory-scale roughness (i.e.
k+

s ≈ 500) does not modify the relationship between δω and λT beyond the uncertainty
due to resolution, thus confirming the scaling is not limited to smooth-wall conditions.
Ebner, Mehdi & Klewicki (2016) proposed that large roughness may affect the thickness
of the shear layers and the overall organization of UMZs. However, the required roughness
in terms of ks/δ for this effect to occur may be too great to maintain outer layer similarity.

3.2. Vortex diameter
As discussed in § 2.3, the prograde spanwise vortex core statistics are presented here as
probability distributions rather than averages. Specifically, statistics are given as p.d.f.s,
which were estimated discretely as binned histograms with amplitude scaled to achieve
area unity, i.e. probability of one within the parameter space. To improve the statistical
convergence of the probability tails, logarithmic spacing was used for the histogram
binning intervals. The proper normalization of the histogram as a p.d.f. is then achieved
by dividing the value of each bin by its respective bin width and the total number of
occurrences in the histogram. Logarithmic bin intervals were only used where the scale of
the abscissa is logarithmic. Combined with the large number of detected vortices in each
flow case, the logarithmic binning allows for observation of six orders of magnitude in
probability.

The estimated p.d.f.s of prograde vortex core diameter pd for each experimental dataset
are shown in figure 5. The p.d.f.s are shown with dω normalized by both the Kolmogorov
length η (a) and the Taylor microscale λT (c). Figure 5 includes vortex cores from the
entire outer layer, including the logarithmic and wake regions. Prior to constructing the
histograms, the fitted vortex diameters were individually normalized using the average
parameters η(zω) and λT(zω) local to the vortex wall-normal position zω. Later figures
presenting vortex core statistics also feature contributions from throughout the outer layer
and utilize the individual normalization described here. Note that limiting the statistics
to vortex cores at a specific wall-normal position does not affect the figure trends or the
conclusions of the study.

Previous studies have described the most probable vortex size, i.e. the distribution mode,
in terms of η. The mode for the DNS case in figure 5(a) is approximately 10η, which is
between the values (8–10)η observed by Tanahashi et al. (2004) and (12–13)η by Herpin
et al. (2013). While the observed range (10–20)η in the mode across the remaining cases
in figure 5(a) may be physically meaningful, it may also be attributed to variability in
measurement resolution. Appendix A demonstrates that coarsening the DNS grid to �x+
values similar to the experimental cases results in the same observed range in mode
position. The cross-hatched lines in figure 5 illustrate the diameter range where a strict
comparison across cases is precluded by the influence of measurement resolution on the
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Figure 5. Probability distributions pd of diameter for all prograde vortex cores in the outer layer of the
boundary layer: (a) p.d.f. normalized by the Kolmogorov length scale η; (b) conditional p.d.f. p∗

d/η = pd/η(dω |
dω > 40η); (c) p.d.f. normalized by the Taylor microscale λT ; (d) conditional p.d.f. p∗

d/λT
= pd/λT (dω | dω >

λT ). Comparison of results in the hatched regions of (a,c) is precluded by variability in measurement resolution
across cases, including the ASL case shown in the insets. The conditional p.d.f.s in (b,d) are used to evaluate
the distribution tail shape parameterized by the slope md . Data symbols correspond to the experimental datasets
in table 1.

experimental cases with coarser �x. Additionally, while there is an orders-of-magnitude
difference in detected vortex size for the ASL case in the insets of figure 5(a,c), the
difference is consistent with the orders-of-magnitude increase in �x seen in table 1. We
therefore draw no conclusions regarding either the distribution mode across cases or the
detected size of ASL vortex cores.

Relative to the DNS case, some of the experimental results exhibit an increased number
of vortices smaller than 10η in figure 5(a). This increased detection of small vortices is
likely an artefact of residual measurement noise. While it is possible to further quantify
and filter the noise (see, e.g. Foucaut, Carlier & Stanislas 2004), its effect is confined to
the hatched region of figure 5 which is already subject to resolution bias and is excluded
from further analysis.

Regarding the distribution shape, Herpin et al. (2013) showed that the size probability pd
approximately follows a log-normal distribution, except with a somewhat thicker tail than
the log-normal case. The figure 5 distribution tails are consistent with these findings. The
tails deviate from a purely log-normal distribution and instead approximate a power law.
The distribution tails shown in figure 5(b,d) are conditional p.d.f.s, e.g. p∗

d/η = pd/η(dω |
dω > 40η), which describe the probability given the diameter is above the threshold shown
as a dashed line in figure 5(a,c). The conditional p.d.f. is equivalent to taking pd above the
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threshold and rescaling to achieve area unity under the tail region. The rescaling removes
the statistical contribution of the small-diameter vortices – which are affected by spatial
resolution and measurement noise – to the amplitude of the normalized distribution tails.
Given that the tail shape is not affected by resolution (see Appendix A), the p∗

d plots allow
for an unbiased comparison across cases for a consistent range of diameters.

The power law shape of the distribution tail is given by p∗
d ∝ dω

−md . The collapse of the
tails in figure 5(b,d) is due to a consistent slope md ≈ 6 − 7 across cases, suggesting md
is independent of Reynolds number and the surface roughness geometries tested here. The
slope is the same for the ASL case, and also does not vary with wall-normal position.
The steepness of the slope md ≈ 6 − 7 imposes an effective maximum value on the
vortex core size, where the probability density decreases by orders of magnitude and
becomes negligibly small across a narrow range of sizes. However, the relevant scaling
parameter cannot be determined by the shape of the power law, as md is independent of the
normalization as seen in figure 5(b,d). In this regard, the diameter of the largest detected
vortex cores may be O(100η) as in figure 5(b) or O(1 − 10λT) as in 5(d).

To discern the scaling parameter relevant to the largest vortex cores, the curvature of
pd in the region preceding the power law must be considered. Given the sensitivity of
the small-diameter vortex statistics to the measurement resolution (Appendix A), it is not
possible to separate a physical trend in the figure 5 pd curvature from the variability of
resolution across the experiments studied here. These experimental factors can be avoided
by focusing the analysis on the DNS flow case. Owing to the Reynolds dependence η/λT ∼
Re−1/4

L where ReL = u′L/ν, the dω statistics for the DNS case were grouped in intervals
of ReL based on the local mean values for u′ and L at the vortex position zω.

Figure 6(a,b) shows distributions of dω for eight intervals of ReL within the DNS case.
Having already demonstrated the power law shape of the probability tail in figure 5, the
abscissa is shown with linear scaling in figure 6(a,b) to highlight amplitude differences
along the tail. With η normalization, there is a clear Reynolds number trend in the
distribution tail region corresponding to large diameter vortex cores. Normalization by
λT in figure 6(b) leads to improved agreement across the range of ReL represented. There
is no apparent trend in Reynolds number along the tails of pd/λT and the remaining narrow
scatter is attributed to incomplete statistical convergence.

The general collapse of pd/λT in 6(b) suggests the largest vortex cores are confined
by the same scaling that describes the ISL thickness. Considering also the steep slope
md ≈ 6 − 7 in figure 5, the results indicate that the vortex core size is bounded between
η and λT (Davidson 2015). Note that this conclusion applies only to strongly rotating
prograde spanwise vortex cores. The strict detection criteria introduce selection biases
which exclude larger, weakly rotating motions such as bulges and, as discussed later in
§ 5.3, likely under-detects Kolmogorov-scaled vortices.

3.3. Vortex inferred rate of strain
Figure 6(b) provides promising results regarding the linkage between λT and the size of the
largest spanwise vortex cores. This relation is explored further here by assessing the rate
of strain α acting on the detected vortices. The strain can be inferred using the radius rω

fitted previously by the Oseen model along with the Burgers vortex radius definition rω =√
4ν/α given in § 2.3. The vortices are described here in terms of a strain rate α rather than

a time t (as in the Oseen model) to emphasize the physical relevance of the strain field. In
this sense, the present section provides insight into the straining motions corresponding to
the largest vortex cores and the vortex size that results from these motions.
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Figure 6. Probability distributions of the vortex core diameter dω and strain rate α = 16νdω
−2 inferred from

the Burgers vortex. Diameter p.d.f. pd normalized by (a) the Kolmogorov length scale η and (b) the Taylor
microscale λT . Strain rate p.d.f. pα normalized by (c) the Kolmogorov time scale τη and (d) the large-eddy
turnover time T . Data shown are for the DNS case in intervals of the integral Reynolds number ReL determined
by the local flow properties at the wall-normal position of the vortex. The upper right plot shows a profile of
ReL for reference.

The relevant parameters for a strain rate comparison are the Kolmogorov time scale τη =√
ν/ε and large-eddy turnover time scale T = L/u′ introduced in § 2.2. Inserting these

time scales into the expression dω ∼ √
νt returns the Kolmogorov length scale √

ντη =
(ν3/ε)1/4 = η and Taylor microscale

√
νT = L/

√
ReL ∼ λT , respectively. An important

advantage of considering the strain rate is the amplified Reynolds dependence τη/T ∼
Re−1/2

L .
As with the diameter statistics, an objective comparison of strain rates across

experimental cases is precluded by the variability in experimental factors. Instead, the size
analysis of DNS vortices in figure 6(a,b) is repeated for the strain rate in 6(c,d). The strain
rate was estimated by inverting the Burgers vortex definition as α = 16νdω

−2. Statistics for
α are presented using the same intervals of ReL as for dω. By using the vortex wall-normal
position zω to determine the relevant parameter values, it is assumed that the net effect
of non-local eddies is captured in their contribution to the local values for T and ReL. In
other words, the local parameters T(zω) and ReL(zω) are assumed to be representative of
the average eddy inducing strain on the vortex.

The normalized strain rate distributions in figure 6(c,d) are consistent with the vortex
diameters in 6(a,b). The Reynolds-number trend in figure 6(c) corresponds to vortices
with low strain rate and large diameter. Normalization of the strain by T in figure 6(d)
accounts for the ReL dependence and yields reasonable collapse of the distributions.
The normalization by T also provides better agreement than the mean shear time scale
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Figure 7. Wall-normal profile of the average streamwise velocity difference �Ui across ISLs. From figure 4
of Heisel et al. (2020b). Data symbols correspond to the experimental datasets in table 1.

(∂U/∂z)−1 (not shown here) which overcompensates for the Reynolds-number trend seen
in figure 6(c). Note that grouping the strain statistics in intervals of z/δ rather than ReL
is less successful due to the non-monotonic profile of ReL(z) shown in the upper right
plot of figure 6. The result suggests that the low-magnitude strain imposed on the detected
Oseen-type vortices corresponds to a large-eddy time T instead of Kolmogorov scales, and
further supports λT as the relevant parameter for describing the size of the largest vortex
cores in the outer layer.

4. Velocity statistics

The primary velocity properties presented in the current section are the velocity
differences: the streamwise velocity difference across the ISLs �Ui and the azimuthal
velocity difference across the vortex diameter �uω. Statistics on the mean flow in the
direction of the ISL and vortex centres are also provided. Results on the advection
velocities of the detected structures are not given here, but are available elsewhere (Heisel
2020).

4.1. Shear layer streamwise velocity
The ISL average characteristic velocity �Ui is equivalent to the velocity difference
between the UMZs bounding the shear layer. A wall-normal profile of this UMZ velocity,
estimated using binned intervals of z/δ, was previously given in figure 4 of Heisel et al.
(2020b). The profile of �Ui is reproduced here as figure 7 for convenience. As noted in
Heisel et al. (2020b), �Ui remains proportional to uτ throughout the outer layer, including
for the TNTI in the wake region. The velocity decreases moderately across the boundary
layer. The scaling and wall-normal trend are both consistent with previous studies (de
Silva et al. 2017; Gul et al. 2020). As a reminder, probability distributions of �Ui are not
available due to the conditional averaging technique used to estimate the parameter.

4.2. Vortex azimuthal velocity
The velocity probability distributions for prograde vortex cores are shown in figure 8 using
the same format as the diameter p.d.f.s. The distributions again contain several decades
of probability which facilitates characterization of the shape. Unlike the size statistics,
the velocity distributions are shown with linear spacing of the abscissa. The distribution
tails are consistently linear in this plotted format, indicative of exponential tails given
by pu ∝ exp(−�uω/mu), where mu characterizes the linear slope of the tail seen in the
figure. Variability in the pu mode is in part explained by differences in spatial resolution
as demonstrated in Appendix A, most notably for the ASL case. Thus, no conclusions are
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Figure 8. Probability distributions pu of azimuthal velocity for all prograde vortex cores: (a) p.d.f. normalized
by the Kolmogorov velocity uη; (b) conditional p.d.f. p∗

u/uη
= pu/uη (�uω | �uω > 15uη); (c) p.d.f. normalized

by the friction velocity uτ ; (d) conditional p.d.f. p∗
u/uτ

= pu/uτ (�uω | �uω > 3uτ ). Comparison of results in
the hatched regions of (a,c) is precluded by variability in measurement resolution across cases. The conditional
p.d.f.s in (b,d) are used to evaluate the distribution tail shape parameterized by the slope 1/mu. Data symbols
correspond to the experimental datasets in table 1.

drawn here regarding the velocity mode, except to note the mode position may also be
dependent on the vortex wall-normal position.

Same as for the vortex diameter statistics, figure 8(b,d) shows conditional p.d.f.s based
on the thresholds given as dashed lines. The distribution tails given by p∗

u indicate uτ to
yield somewhat better agreement in the tail slope than uη across cases, including for the
ASL case. The tail slope is given as 1/mu rather than the reciprocal because the mean of
an exponential distribution is defined by mu. The probability pu is not fully exponential,
as indicated by the presence of the mode, and mu therefore underestimates the mean in
this case. However, mu is the relevant parameter for the long distribution tail and is likely
important to the central moment statistics such as the average. Hereon, mu is referred to as
a ‘shape parameter’ for the velocity distribution.

The value of mu was estimated for each flow case using a linear fit to the p∗
u tails.

The fits were specifically applied to the regions �uω = (15–40)uη and (3–6)uτ where the
probability statistics show better convergence. In addition to the p.d.f.s shown in figure 8
which include the vortices throughout the outer layer, mu was also estimated for velocity
p.d.f.s in intervals of the wall-normal position based on the vortex centre zω. The resulting
mu values are shown in figure 9.

The shape parameter mu increases with Reynolds number Reτ when normalized by
uη, and is approximately constant across three decades of Reτ when normalized by uτ
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Figure 9. The shape parameter mu describing the exponential probability tail pu ∝ exp(−�uω/mu) for the
vortex azimuthal velocity: (a,b) as a function of Reτ when normalized by uη and uτ , respectively; (c)
wall-normal profile normalized by uτ . Data symbols correspond to the experimental datasets in table 1.

in figure 9(b). This again supports the uτ scaling for the probability tail suggested visually
in figure 8. Similar to the scaling analysis for dω, a weak Reynolds-number dependence
is expected for the velocity scale separation. Given uτ and δ are the same order as the
respective integral scales u′ and L in the outer layer, the velocity scales are related as
uτ /uη ∼ Re1/4

τ . Figure 9(a) supports this relationship, where the shape parameter exhibits
the same weak Reynolds-number dependence mu/uη ∼ Re1/4

τ . The velocity tail statistics
are better converged with less uncertainty across cases than the diameter mode position,
and the Reτ trend is apparent even within the laboratory datasets in figure 9(a).

In the wall-normal profile of mu in figure 9(c), the shape parameter decreases moderately
with increasing z. The trend matches closely with �Ui(z/δ) in figure 7, where mu ≈
0.5�Ui throughout the outer layer. Given mu represents an underestimated value of the
statistical mean �Uω for the modified exponential distributions in figure 8, the azimuthal
velocity of large vortices follows the same scaling and is quantitatively similar to the shear
layer velocity �Ui, indicating a close dynamical relationship between the largest prograde
vortex cores and the ISLs.

The vortex statistics presented thus far, i.e. dω and �uω, are not independent from
one another. The relation between the vortex core size and velocity is explored in
Appendix B. The appendix results show that the population of detected vortex cores within
the distribution tail of pd coincide with vortices also within the tail of pu. The vortex cores
exhibiting uτ velocity scaling are therefore the same cores for which the influence of λT is
observed.

4.3. Radial and wall-normal velocities
We now turn the focus to the velocity components indicating flow to and from the vortex
cores and shear layers in the x–z measurement plane. These velocities, which are relative
to the advection velocity of the considered flow regions, provide insight into the temporal
evolution of these features in a more Lagrangian sense. In the case of the vortex cores,
the relevant component is the radial velocity ur in cylindrical coordinates relative to the
vortex centre. For each detected vortex core, the local flow field around the fitted vortex
centre was compiled to create a profile of ur(r) as a function of radial distance r from
the vortex centre. The results were filtered to only include vortex cores larger than the
mode for each dataset (dω � 10η ≈ 0.3λT ) which are the focus of the study. A limited
number of measurement points exist within the radius of the small vortices such that it
is difficult to determine their radial trend. To average the profile across all the remaining
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Figure 10. Average velocity profiles demonstrating the mean flow into the vortex cores and ISLs in the x–z
plane. (a) Vortex radial velocity ur(r) relative to the vortex centre r = 0, normalized by its radius rω and the
turnover time scale T . (b) Wall-normal velocity w relative to the ISL velocity wi and midheight zi, normalized
by the Taylor microscale λT and the friction velocity uτ . The dashed lines correspond to the average vortex
radius (a) and ISL thickness (b). Data symbols correspond to the experimental datasets in table 1.

vortices in a given flow case, the distance r was normalized by the radius rω such that
r/rω = 1 corresponds to the edge of each vortex core. The resulting average radial profiles
of ur are provided in figure 10(a). Note that the Oseen model fitted to the vortices assumes
ur(r) = 0, and any deviations from zero thus indicate physical behaviour that overcomes
the selection bias of the imposed model.

The average ur(r) profile is close to zero within the vortex core (r/rω < 1) and follows
a trend of increasingly negative flow outside the core. There is generally good agreement
across datasets, including the ASL case, with ur normalized by rω/T . Normalizing both
axes by rω ensures the negative slope outside the vortex is not a function of the detected
vortex size in the plot. Even though the field measurements only detect the largest vortex
cores and likely augment their size to some extent due to the spatial resolution, the statistics
for �uω and ur in the very-high-Reynolds-number ASL case are entirely consistent with
the vortex velocity trends in the laboratory-scale flows.

Assuming 1/T is representative of the strain rate α for the largest vortex cores as
suggested by figure 6(d), the proportionality of ur with 1/T outside the vortices in
figure 10(a) is consistent with the profile ur(r) = −αr predicted by the Burgers vortex.
The result confirms the flow field around the vortex on average moves towards the vortex
core at a speed proportional to the large-eddy strain rate 1/T . By continuity, this inward
flow must be balanced by axial, out-of-plane motion as discussed further in § 5. The overall
shape of the radial profile and apparent transition point at r = rω may in part be due to
the fitted Oseen model or spatial resolution, and confirmation with alternative methods is
required.

For the shear layers, the wall-normal velocity component w indicates flow towards
the layers. The shear layers have an average orientation approximately 15 degrees above
horizontal (Squire 2017), consistent with ramp-like structures, but in the present analysis
the ISLs are considered horizontal for simplicity. The same conditionally averaged ISL
profiles as in figure 4(a) were computed for w. The average profile of w relative to the ISL
midpoint is shown for each flow case in figure 10(b), excluding the ASL measurements
whose resolution Δx is coarser than the range of z − zi in the plot.

The best agreement across cases is achieved using the same normalization parameters as
for the streamwise velocity case: λT for the relative position z − zi and uτ for the relative
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velocity w − wi. In the ISL reference frame, the average flow above the ISL is moving
down into the shear layer (w<wi) and the flow below is moving up into the shear layer
(w > wi). These same trends were observed in previous studies (Eisma et al. 2015; de
Silva et al. 2017).

The normalization of the velocity w − wi by the strain parameter λT/T yielded relatively
less agreement across experimental datasets compared to uτ . There may be multiple
processes resulting in the figure 10(b) profile such that a straining mechanism does not
govern the scaling of the average velocity. For instance, the ISLs on average have a small
net positive wall-normal velocity Wi ∼ 0.1uτ (de Silva et al. 2017). The average relative
velocity 〈w − wi〉 may therefore be a combined result of the ISL advection Wi associated
with shear stress events in addition to the local compressive flow into the ISL. For most
of the flow cases, the average value of the strain parameter λT/T in the log region is
approximately half the average value of Wi, and the ratio decreases for increasing Reynolds
number.

A notable deviation in figure 10(b) is the centre-most region of the profile for the
DNS case where the wall-normal velocity is uniform, i.e. see the ‘∗’ markers near
(w − wi)

+ ≈ 0.25. The velocity profile is asymmetric such that there is a larger velocity
difference above the centre than below, and the DNS profile centre was offset to match the
bulk velocity difference outside the ISL. We attribute the DNS profile shape to a possible
Kolmogorov-scaled centre region of the shear layers, which is consistent with predictions
(Chini et al. 2017; Montemuro et al. 2020). A similar uniform centre is apparent for some
of the experimental cases when the profiles in figure 10(b) are further conditioned to only
consider ISLs in the wake region far from the wall where the local η(z) is larger and
the resolution Δx/η is improved. The same wall-normal velocity profile shape has also
been observed in previous ISL studies (Eisma et al. 2015). A more precise analysis of this
centre-most region of the shear layers is not included here, as the focus of the study is the
overall thickness of the layers and their relation to λT .

5. Discussion

The following discussion provides an interpretation of the experimental evidence
presented thus far. The interpretation includes dynamics that cannot be fully validated
with the current experimental observations in the x–z measurement plane. We interpret
the detected large prograde vortex cores as structures closely associated with the internal
shear layers. While the present results do not spatially correlate the vortex cores and ISLs,
previous works observed a strong alignment between these features (Klewicki & Hirschi
2004; Heisel et al. 2018). Additionally, the instantaneous shear ∂u/∂z at the vortex centres
is significantly higher than the local mean shear at the same position, indicating many of
the vortex cores coincide with the intense shear regions. Specifically, the shear local to the
vortices is (on average) 5–10 times larger than the mean shear in the logarithmic region
for each flow case, and the factor increases in the wake region. We therefore expect that
vortex cores aligned with the ISLs are at least partially responsible for the signature of λT
and uτ scaling apparent from the distributions in figures 6 and 8.

5.1. Mutual interaction of turbulent structures
One of the more revealing results to this point is the possible influence of the large-eddy
turnover time T on the properties of the biggest detected prograde vortex cores, see, e.g.
figures 6(b) and 10(a). Coupled with the importance of uτ to the vortex azimuthal velocity
as seen in figure 9(b,c), the results indicate the local larger-scale motions play a critical
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Figure 11. Wall-normal profiles of the turnover time estimated from average local UMZ properties Hm/�Um.
(a) Compared with the large-eddy turnover time T . (b) Compared with the Taylor microscale λT based on the
isotropic relationship λT ≈ √

15νT . Data symbols correspond to the experimental datasets in table 1.

role in determining the properties of the largest vortex cores. However, the parameter T
was estimated from time-averaged flow properties and is not explicitly related to any type
of coherent velocity structure such as UMZs.

To link T with the local UMZs, we used the average UMZ profiles given in Heisel
et al. (2020b) to construct a z-dependent ‘UMZ turnover time’ Hm(z)/�Um(z), where Hm
is the average wall-normal thickness of detected UMZs, and �Um = �Ui is the average
velocity difference across the shear layer between adjacent UMZs. The resulting profile
is shown in figure 11. There is a consistent relationship between the UMZ turnover time
and T in the lower half of the outer layer in figure 11(a), with reasonable agreement across
flow cases including the atmospheric measurements. While the proportionality changes
moderately throughout the boundary layer, i.e. the normalized profile is not constant, the
result suggests the contribution of the local momentum zones to the average parameter T is
statistically important. It is thus reasonable to assume the T-scaled strain field acting on the
shear layers and vortex cores corresponds in part with the local UMZs. Note that previous
studies found the lifetime of shear stress events in the log region to have the same scaling
z/uτ in the log region as the UMZ turnover time (Lozano-Durán & Jiménez 2014). The
trend in the wake region (and specifically z � 0.4δ) can be explained by the influence of the
free-stream condition on the statistics. The UMZ turnover time only considers structures
detected below the TNTI, whereas T is calculated using the full velocity series which in
the wake region is a combination of boundary layer turbulence and the free stream.

The relation between λT and T is given by λT = √
15νT , where the constant 15 holds

for isotropic turbulence as noted in § 2.2. Replacing T with the UMZ turnover time in
this definition, figure 11(b) compares the Taylor microscale estimated from local UMZ
properties with the observed value for λT . The profile is relatively flat near the value 0.4 to
0.5 throughout the outer layer and there is again good agreement across flow conditions.
Having already linked T to the local UMZs, the result in figure 11(b) indicates a further
connection between these UMZs and the size of the shear layers and large vortex cores
along the UMZ interfaces.

The observed organization of the UMZs, shear layers and vortex cores in
high-Reynolds-number turbulence is summarized in the figure 12(a) idealized profile.
The UMZs have average thickness Hm which is proportional to z in the log region
and transitions to outer δ-scaling in the wake region (Heisel et al. 2020b). The average
difference in streamwise velocity �Um between the UMZs is proportional to uτ throughout
the outer layer, and decreases moderately with increasing z/δ (de Silva et al. 2017;
Gul et al. 2020; Heisel et al. 2020b). The position of the largest spanwise vortex cores
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Figure 12. Simplified depiction of one possible mechanism for the interaction of coherent structures. (a) The
observed functional dependencies of the flow organization into relatively uniform velocity structures separated
by inclined ISLs with corresponding spanwise prograde vortices. (b) Proposed interaction of velocity structures
and vortices by the stretching mechanism, where the spanwise strain corresponds to counter-rotating streamwise
rolls. The shear layer is depicted as a sheet with no variability in y due only to lack of measurements in this
plane. Dashed line structures represent the possible periodicity.

statistically coincides with the shear layers (Heisel et al. 2018). Both the shear layers and
their corresponding large vortices have characteristic size λT (figures 4 and 6) and velocity
uτ (figures 7 and 8). The evidence here suggests their size (figure 6), in addition to the
radial velocity ur in the case of the vortices (figure 10), is closely related to properties of
the local UMZs (figure 11).

The Burgers (1948) vortex model, already discussed multiple times in this work, can
be invoked once again to formalize the interaction between the vortices, shear layers
and UMZs. A key assumption in applying the full model here is the extension of the
findings into the spanwise direction y. While the UMZ and large-eddy turnover times in
figure 11 are based on flow properties measured in the x–z plane, the Burgers model for
spanwise vortices requires the UMZs to have a diverging spanwise velocity component
to exert a tensile stress on the vortices. This diverging spanwise flow has been previously
observed and associated with counter-rotating streamwise rolls. Studies have shown the
roll signature to coincide with velocity structures – specifically side-by-side low- and
high-velocity streaks – and share the same scaling behaviour in the log region as the UMZs
(del Álamo et al. 2006; Lozano-Durán et al. 2012; Jiménez 2018). The velocity structures
and their streamwise roll signature are depicted in relation to the shear layers and vortex
cores in figure 12(b). Similar depictions of stretching are given in turbulence texts (e.g.
Davidson 2015). Owing to the lack of spanwise measurements, the depiction shows no
y variation in the geometry of the shear layers and vortex cores. The three-dimensional
shape of the interaction is a topic for future research.

To extend the findings into the spanwise plane as shown in figure 12(b), it is assumed
that the streamwise turnover time T is proportional to its spanwise counterpart. The strain
field associated with the diverging flow of the streamwise rolls, with assumed scaling
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α ∼ 1/T ∼ �Um/Hm, then corresponds to spanwise stretching of the shear layers and
large vortex tubes. The stretching induces flow into these features by continuity, where
the velocity is proportional to α, which is consistent with the findings in figure 10.
An approximate equilibrium is reached between the inward flow and the growth of
the layers by viscous diffusion when the size is δω ∼ √

νT ∼ λT . The presence of
diverging streamwise rolls beneath the ISLs is supported by recent experiments in the
spanwise–wall-normal plane (Gul et al. 2020; Chen, Chung & Wan 2021), and a similar
mutual interaction of streamwise rolls and internal shear layers has been proposed based on
asymptotic analysis in the limit of infinite Reynolds number (Chini et al. 2017; Montemuro
et al. 2020).

The mechanism provides one possible pathway for the transfer of energy from
larger-scale velocity structures into the dissipative shearing and vortical features. It also
explains the observed size behaviour of the shear layers and large vortex cores. The
equilibrium state of the size – as opposed to uninhibited diffusive growth as in the Oseen
model – is consistent with the steep probability tail in pd(dω) suggesting a confinement
of the vortex size. Simple stretching models such as the Burgers vortex quickly reduce
the size of large vortex tubes with dω � O(λT) such that the observed range of sizes is
effectively between η and λT (Davidson 2015). These findings are also consistent with
visualizations of velocity fields in high-Reynolds-number boundary layers in which the
presence of sharp shear layers is persistent in every instantaneous flow realization.

The primary purpose of figure 12(b) is to visualize the proposed interaction between
UMZs and shear layers. It is important to note the depicted interaction is an incomplete
description of the structural organization in boundary layer turbulence, and is likely
one of several mechanisms relevant to the so-called self-sustaining process. The strain
and stretching interaction does not address either the initiation or breakdown of
the UMZ structures involved in the organization. It also does not explicitly account
for the ramp-like inclination of the shear layers, their fractal geometry, or their
three-dimensional shape. Future works involving spanwise measurements are required to
evaluate the three-dimensionality and validate the axial (spanwise) stretching interaction
in high-Reynolds-number wall turbulence. Further, while the depiction in figure 12
shares commonalities with reduced-order models including the wall-distance scaling and
spanwise vortex heads of the attached eddy model (Marusic & Monty 2019), analysis of
three-dimensional experimental data is required to properly reconcile the present findings
with these models.

Lastly, while only the diverging spanwise flow is discussed above, the counter-rotating
streamwise rolls presumably also include converging flow regions (depicted by a dashed
line in figure 12b) which would lead to vortex compression rather than stretching. Vorticity
primarily aligns with the stretching and intermediate strain eigenvectors, and tends to tilt
under compressive events (Guala et al. 2005; Holzner et al. 2010). If the vortex orientation
is tilted by the converging flow of the rolls, the tilted vortices and the signature of their
statistics would not be fully captured in the x–z measurement plane. This may explain why
stretching is statistically more relevant in the present results. The explanation assumes
the phenomenology of small-scale strain vorticity interaction is not qualitatively different
between isotropic and wall turbulence (see, e.g. Chacin & Cantwell (2000), Tsinober
(2001) and references therein).

5.2. The relevance of the Taylor microscale in boundary layer turbulence
For numerous decades, the Taylor microscale has been used as a statistical turbulence
parameter, despite the elusiveness of its physical representation in the flow. Taylor (1935)
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originally described the parameter as ‘the average size of the smallest eddies responsible
for the dissipation of energy’. While it has long been known this description is incorrect,
as the smallest eddies correspond to the Kolmogorov scales, there has not been a widely
accepted replacement to this phenomenological definition.

In the present findings, the intermediate length scale λT ∼ √
νT emerges from the role

of large-scale straining motions in bounding the size of the shear layers (figure 4) and
largest vortex cores (figure 6). This process is depicted structurally in figure 12(b). The
observations and the scaling definition above suggest the Taylor microscale statistically
describes the size of turbulent features that are affected by both viscosity and the
large-scale strain field. These features – the shear layers and large vortex cores – are in
part governed by their mutual interaction with larger-scale coherent velocity structures
such as UMZs. The role of viscosity in this interpretation is consistent with the definition
for λT given by da Silva et al. (2014). In addition to boundary layer ISLs (Eisma et al.
2015; de Silva et al. 2017), λT scaling applies to the thickness of shear layers in isotropic
turbulence (Ishihara et al. 2009; Elsinga et al. 2017), the TNTI in jet turbulence (da Silva
& Taveira 2010) and the boundary layer TNTI, as previously noted (Chauhan et al. 2014b).

By this interpretation, λT is a dynamically important parameter related to coherent
features in the flow, especially in high-Reynolds-number turbulence where these features
are increasingly distinct from the Kolmogorov- and integral-scaled motions. This work
contributes to the growing body of evidence presenting λT as a relevant length scale.
However, to confirm the role of intermediate scales like λT in the phenomenology of
turbulence, corroboration is required using high-resolution measurements and simulations
across an increasing range in both Reynolds number and analysis methods.

5.3. Vortex selection bias
While the evidence here demonstrates the dynamics pertaining to the largest vortex
cores, no arguments can be made regarding smaller vortices. There is a preponderance of
worm-like, Kolmogorov-scaled vortices in isotropic turbulence (see, e.g. She et al. 1990;
Jiménez et al. 1993; Moisy & Jiménez 2004), and it is reasonable to expect similar features
in boundary layer flows. However, there are a number of factors in the present study that
reduce the detection of these small-diameter and low-velocity vortices in the respective pd
and pu distributions. Foremost is the measurement spatial resolution whose influence is
demonstrated in Appendix A.

Additionally, the detection methodology detailed in § 2.3 directly imposes a selection
bias, where the vortex statistics specifically reflect flow features that resemble the Oseen
model vortex. Visual inspection of the fitted results revealed that many of the largest
detected vortices comprise a cluster of high-intensity λci regions that together resemble
a large Oseen vortex. For example, the core region in figure 2(a) may be a possible
cluster of smaller vortices rather than a single concentric motion. Three-dimensional
measurements and a different methodology such as the q-criterion based on the second
invariant of the deformation tensor (Hunt, Wray & Moin 1988) may lead to detection of the
individual smaller vortices within the cluster. For instance, da Silva & Taveira (2010) and
da Silva et al. (2014) used two detection methodologies to identify separate populations of
Kolmogorov-scaled vortex ‘worms’ within larger vortices whose size corresponded to the
thickness of interfacial layers.

Finally, an indirect form of selection bias is orientation. Owing to the mean
shear direction, the large vortex cores spanning the shear layers preferentially have
spanwise out-of-plane rotation. In contrast, the smallest vortices may have less or no
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preferential direction. The detection of spanwise vortices in the x–z plane therefore will
identify many of the large vortex cores, but only a small portion of the small-scale vortices
may appear in the given measurement plane. Based on the resolution limitations and
selection biases, we restrict our conclusions to the detected large vortex cores, and note
that the smallest vortices are under-detected in this study.

6. Summary

The properties of prograde spanwise vortex cores and ISLs in turbulent boundary layers are
evaluated here across a range of experimental datasets including smooth- and rough-wall
conditions and ASL measurements. The analysis corroborates previous studies on the
scaling behaviour of both UMZ interfaces and internal shear layers (Eisma et al. 2015;
de Silva et al. 2017; Gul et al. 2020), and confirms the scaling also applies for rough-wall
flows. Probability distributions of the vortex core properties reveal signatures of these
same scaling parameters on the vortex statistics. The largest detected vortex cores are
confined in size by the Taylor microscale λT (figure 6) and have azimuthal velocity
governed by the friction velocity uτ (figures 8 and 9). Selection biases inherent to
the methodology preclude any conclusions regarding the smallest vortices, which are
expected to be Kolmogorov scaled. The sensitivity of the vortex size statistics (figure 5)
to experimental factors such as measurement resolution, which is especially penalizing
for the field experiment, does not allow for an unambiguous scaling assessment of vortex
core size across cases. Accordingly, quantitative support for the influence of λT on the
largest vortex cores is primarily provided by DNS results (figure 6). However, the uτ

velocity scaling of the large vortex cores is confirmed across all experiments, including the
atmospheric measurements. The results demonstrate that ISLs and large prograde vortex
cores throughout the entire outer layer are dependent on the wall shear condition defined
by uτ .

Further analysis of the vortex properties suggests a dynamic connection between the
largest vortex cores and local large-scale coherent velocity structures such as UMZs.
The inferred strain rate acting on the largest vortex cores (figure 6) and the mean radial
flow into these vortices (figure 10) both correspond to a large-eddy turnover time scale
T = u′2/ε. The relevance of an intermediate scale such as λT can then be explained in
terms of the simplified Burgers vortex model, where the size of the ISLs and largest
vortex cores is determined by both viscous diffusion and the strain of local large-scale
motions. The spanwise strain required to satisfy this model cannot be directly detected
from the measurements presented here, but is assumed to be associated with pairs of
counter-rotating streamwise rolls (figure 12).

The observed signature of the large-scale strain on smaller-scale structures also provides
insight into the persistence of the self-organized UMZs and ISLs in high-Reynolds-number
boundary layers. The ISLs and spanwise vortex cores are constrained such that a limited
range of ISL thickness and vortex diameter are observed in every flow realization. This
proposed interaction between the local larger-scale velocity structures, ISLs, and vortex
cores features two key processes in turbulence evolution: vorticity production occurs via
the vortex stretching mechanism, and energy production results from the coupling of the
velocity with the large gradients across the shear layers. These interactions are inferred
from the present observations in the streamwise–wall-normal measurement plane, and the
three-dimensionality of the interaction should be investigated through further research.
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Appendix A. Spatial resolution effects on vortex probability statistics

Given the smallest turbulent motions have size O(η), the present analysis ideally would
have used experiments and simulations at matched spatial resolutions with small �x/η
or �x+. However, such a matched comparison was not feasible for the range of Reynolds
number tested. We therefore present each case with its native resolution, and accept that
variability in spatial resolution across the cases will influence certain statistics. The effect
of resolution on vortex probability statistics is evaluated here to determine which results
are (in)dependent of resolution and to confirm the validity of conclusions drawn in the
main article.

The resolution test involved filtering the DNS velocity fields and reapplying the vortex
detection on a coarsened grid. A box filter, equivalent to a two-dimensional moving
average, was applied to achieve an effect similar to the averaging across a PIV interrogation
window. The filtered field was then downsampled to achieve a grid spacing equal to the
filter size. Figure 13 compares vortex statistics for the original DNS velocity fields and for
three filter sizes which span the range of resolutions (in �x+) for the PIV experiments in
table 1.

The number density, calculated as the number of vortex cores in each histogram bin
divided by the bin width, is shown for the vortex diameter and velocity in figure 13(a,c),
respectively. The number density indicates the change in detected vortices of each size and
velocity due to the coarsened resolution. The primary effect of resolution on the vortex
diameter is to decrease the number of small vortex cores detected, which additionally
leads to a shift in the probability mode to a larger diameter. We therefore do not make
any conclusions regarding the value of the probability mode or the distribution shape for
diameters smaller than the mode.

A second effect of coarse resolution is to increase the number of large-diameter vortex
cores detected. The increase is likely caused by multiple factors, most notably: (i) the size
is augmented by smoothing effects across the filter (i.e. PIV window) which increases the
vortex footprint; (ii) the low-pass filter reduces the swirling strength in the field, which
decreases the λrms threshold and leads to the new detection of large and weak vortices.
These results indicate the diameters for the ASL case in figure 5 represent only the largest
vortex cores in the atmosphere, and the fitted diameters of O(10 − 100λT) are likely
overestimated.

Similar to the diameter, coarsening the resolution leads to the detection of fewer
small-velocity vortices in figure 13(c) and a shift in vortex velocity mode. Statistics for the
velocity mode are therefore also unreliable due to a dependence of resolution. Unlike the
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Figure 13. Probability distributions of vortex statistics for the DNS case filtered to coarsened grid resolutions:
(a) number density Nd of diameter; (b) conditional p.d.f. p∗

d of diameter probability tail; (c) number density
Nu of velocity; (d) conditional p.d.f. p∗

u of velocity probability tail. Data markers are for the unfiltered DNS
velocity fields, and lines indicate results from the DNS fields filtered and downsampled to the specified effective
resolution.

diameter, however, the filter smoothing decreases the velocity difference across the vortex
core and leads to a small decrease in number of detected large-velocity vortices.

Most importantly for the present study, the filter and spatial resolution do not change
the shape of the probability tail. While the resolution influences the number of vortex
cores with large diameter or azimuthal velocity, the tail slopes in the figure 13(b,d)
conditional p.d.f.s are negligibly affected by the coarsened resolution. Conclusions of the
study regarding the power law shape of the vortex diameter probability tails (figure 5) and
the influence of uτ on the velocity probability tails (figure 8) are thus considered to be
independent of the variation in spatial resolutions across the cases.

Appendix B. Vortex joint probability statistics

In the Oseen model used to detect spanwise vortex cores, the vortex properties are related
through the functional dependence �uω ∝ Γ dω

−1 from Biot–Savart law. The circulation
Γ is also related to the total out-of-plane vorticity within the area of the vortex core: Γ ∝
ωyd2

ω. Combined with the first dependence, this yields an expected relationship �uω ∝
ωydω. The azimuthal velocity difference therefore increases with both the rate of rotation
(ωy) and size (dω).

The correlation of vortex size and velocity is apparent through the joint p.d.f.
pd,u(dω, �uω). An example joint p.d.f. for the Reτ = 3800 smooth-wall case of table 1
is shown in figure 14(a). The shape of the individual p.d.f.s, including the position of
their mode, are shown for reference. If the two variables are statistically independent
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pd,u (dω,�uω) = pd,u/pd pu

�uω dω �uω dω �uω dω

Figure 14. Example of the relative joint probability p̃d,u(dω, �uω) of vortex size and velocity from the Reτ =
3800 smooth-wall case. (a) Observed joint probability pd,u (colour) compared with the individual p.d.f.s (solid
lines) and positions of the p.d.f. modes (dotted lines). (b) Product of the two individual p.d.f.s pdpu (colour),
representing the joint probability if dω and �uω were statistically independent. (c) The relative probability p̃d,u
(colour) from the ratio of the probabilities in (a) and (b).
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Figure 15. Following the example in figure 14, relative joint probability p̃d,u(dω, �uω) for each experimental
case, excluding the ASL measurements. Dotted lines indicate the modes of the individual p.d.f.s. Each plot lists
the wall condition and Reynolds number corresponding to table 1.

(i.e. uncorrelated), their joint p.d.f. is equal to the product of the individual p.d.f.s at
every size and velocity: pd(dω) pu(�uω). This product is shown in the figure 14(b) joint
distribution representing the independent case. There are clear visual differences between
the colour plots in figure 14(a,b). The independent case in figure 14(b) is aligned with
the individual p.d.f. modes, whereas the more linear shape of pd,u in 14(a) indicates the
expected positive correlation.

A more quantitative analysis of the relationship is achieved by simply taking the ratio of
the observed joint p.d.f. with the independent case

p̃d,u(dω, �uω) = pd,u(dω, �uω)

pd(dω)pu(�uω)
. (B1)
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We refer to p̃d,u as the ‘relative’ joint probability, i.e. relative to the independent case,
and note different terminology and notation may be used in the statistics literature. The
p̃d,u values for the example case are shown in figure 14(c). For p̃d,u > 1 (red regions),
the joint probability is more likely than if the variables were independent, and conversely
the joint probability is less likely for p̃d,u < 1 (blue regions). More specifically, the value
(p̃d,u − 1) × 100 % provides the per cent change in probability from the uncorrelated case.

The relative joint probability is shown for each flow case in figure 15, excluding the
ASL measurements. The figure confirms the positive correlation: larger vortex cores are
more likely to have higher azimuthal velocity than in the independent case. The positive
correlation is itself neither surprising nor particularly revealing. The more important result
for the present analysis is the apparent presence of four distinct probability regions whose
boundaries correspond approximately to the modes of the individual p.d.f.s. The region
corresponding to the largest variability and uncertainty across experiments are the vortices
smaller than the mode with dω � 0.3λT (dω � 10η at these Reynolds numbers), referred
to as ‘small-diameter’ vortices in the present discussion. Figure 15 shows the probability of
a small-diameter vortex with large velocity to be negligibly small, such that the population
of detected small-diameter vortices also have �uω values primarily confined below the
mode. Conversely, the population of vortices corresponding to the probability tail of pu
also have size within the large-diameter tail of pd. The role of vorticity in determining �uω

does not decorrelate the pd,u(dω, �uω) statistics to an extent where mixed magnitudes are
commonly observed, e.g. a small-diameter vortex with large velocity. The probability tail
trends for pd in § 3.2 and pu in § 4.2 therefore relate to the same population of detected
vortex cores residing in the upper-right region of the figure 15 plots, where the evidence
suggests the relevant scaling parameters are λT (figure 6) and uτ (figure 8).
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