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Abstract. We consider the McMullen maps fλ(z) = zn + λz−n with λ ∈ C
∗ and n ≥ 3.

We prove that the closures of escape hyperbolic components are pairwise disjoint and
the boundaries of all bounded escape components (the McMullen domain and Sierpiński
holes) are quasi-circles with Hausdorff dimension strictly between 1 and 2.
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1. Introduction
1.1. Background and main result. In 1988, McMullen [McM88] introduced a rational
map fλ(z) = z2 + λz−3 as a singular perturbation of z �→ z2. In his article, McMullen
showed that for λ sufficiently small, the Julia set J (fλ) of fλ is a Cantor circle
(homeomorphic to a product of a Cantor set and a circle).

In 2005, Devaney and his group [BDL+05, DL05, DLU05] generalized the work of
McMullen and studied a more general family of McMullen maps:

fλ(z) = zn + λ

zm
(1.1)

with λ ∈ C
∗ = C \ {0} and n ≥ 2,m ≥ 1. They showed that this family exhibits a very rich

dynamical behavior while it has such a simple form. In [DLU05], the authors showed that
if the free critical orbits escape to ∞, then its Julia set is either a Cantor set, a Cantor circle,
or a Sierpiński carpet. Later on, Devaney and his group published a variety of papers on
this McMullen family, see [Dev04, Dev05, Dev06, Dev07, Dev08, Dev13, DL05, DLU05,
DM07, DP09]. Among these articles, lots of them devoted to the particular case of n = m

* The original version of this article contained an error in the name Pascale Roesch. This error has been corrected.
A notice detailing this error has been published.
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in equation (1.1), that is,

fλ(z) = zn + λ

zn
(1.2)

with λ ∈ C
∗ and n ≥ 3. In the following, we only study this family.

In the parameter plane, we study the escape locus of this family which consists of those
maps such that all critical orbits are attracted by the super-attracting fixed point ∞. Every
connected component of the escape locus is a hyperbolic component, called an escape
component. It was proved in [QRWY15] that every escape component is bounded by a
Jordan curve. It can also be shown that each hyperbolic component outside the escape
locus belongs to a homeomorphic copy of the Mandelbrot set.

In this article, we explore the geometric regularity of the boundaries of escape
components. There is a unique unbounded escape component which is called the Cantor
locus. Like in the case of polynomials, a map in the Cantor locus has all of its critical
values in the Fatou component of ∞. Hence, its Julia set is a Cantor set. In [QRWY15],
the authors proved that cusps are dense on the boundary of the Cantor locus. In the bounded
escape components, the McMullen maps behave more like non-polynomial rational maps.
A map in a bounded escape component has one of its finite critical values belonging to
a strict pre-image of the Fatou component of ∞. There is a unique escape component
centered at the origin which is called the McMullen domain such that a map in it has its
Julia set as a Cantor circle. All the other escape components are called Sierpiński holes
since maps in them have Julia sets as Sierpiński carpets. The main purpose of this article
is to characterize the geometric property of all bounded escape components. We obtain the
following result.

THEOREM 1.1. The boundary of each bounded escape component is a quasi-circle with
Hausdorff dimension strictly between 1 and 2.

We show that these geometric properties can be deduced from the following more
precise topological characterization about the closures of escape components.

THEOREM 1.2. The closures of escape components are pairwise disjoint.

1.2. Idea of proof. The proof of Theorem 1.2 proceeds by seeking contradiction. The
key step is to show that the boundary of each bounded escape component does not
intersect with the boundary of the Cantor locus. To prove this, we first construct a local
para-puzzle system in the parameter space which is the counterpart of a dynamical puzzle
system introduced in [QWY12, QRWY15]. With the aid of this para-puzzle system,
we can characterize the dynamical behavior of the hypothetical intersection points. We
exclude all possibilities except the intersections at parabolic parameters. Then we use the
parabolic implosion theory introduced in [Lei00, Shi00] to exclude the parabolic case.
Indeed, on one hand, the intersection point could be accessed by a parameter ray which
consists of maps with critical values in a strict pre-image of the Fatou component of ∞.
On the other hand, according to the parabolic implosion theory, the Fatou coordinate
remains stable under a perturbation within a particular sector. After showing that the
parameter ray is contained in the sector, we conclude that the maps on this parameter
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ray should have critical points in the Fatou component of ∞ (not in a strict pre-image of
the Fatou component of ∞). This is a contradiction. Finally, we show that the closures
of bounded escape components are pairwise disjoint. One hidden difficulty is to exclude
the intersection of two bounded escape components with potentially the same dynamical
property. We solve this by establishing a rigidity result of bounded escape components.

To prove Theorem 1.1, we first observe the boundary of the Fatou component of ∞ is
a quasi-circle with Hausdorff dimension strictly between 1 and 2 for the map which does
not belong to the closure of the Cantor locus. Then, Theorem 1.2 allows us to transfer this
property to the boundaries of bounded escape components in the parameter space via a
holomorphic motion.

1.3. Outline of the article. The content is arranged as follows. Section 2 includes
some basic terminology and results for the McMullen family, and the construction of
the dynamical puzzle system with some relevant results. In §3, we construct a local
para-puzzle system which reveals the relation between the position of the parameter and
the structure of its corresponding dynamical puzzle system. Section 4 presents a rigidity
result of post-critically finite McMullen maps in the escape locus. In §5, we use the local
para-puzzle system to study the properties of the maps which belong to the boundaries of
escape components. In §6, we use the parabolic implosion theory to exclude the possibility
that any bounded escape component and the Cantor locus have no common boundary point.
In §7, we finish the proofs of Theorems 1.1 and 1.2.

2. Preliminary
2.1. Overview of McMullen family. The McMullen family in equation (1.2) admits a
symmetric conjugacy

e2πi/(n−1)fλ(z) = (−1)nfe2πi/(n−1)λ(e
2πi/(n−1)z) (2.1)

for all λ ∈ C
∗. Hence, it suffices to study maps whose parameters belong to the sector

F0 :=
{
λ ∈ C

∗ : 0 ≤ arg λ ≤ 2π
n− 1

}
. (2.2)

We denote the interior of F0 as F .
The critical set of fλ is {0, ∞} ∪ Cλ, where Cλ = {c ∈ C : c2n = λ}. Here, ∞ is a

super-attracting fixed point of fλ which has only two pre-images 0 and ∞. There are only
two critical values v±

λ = ±2
√

λ other than ∞ (here, v±
λ is well defined for λ ∈ F0, v+

λ is
defined to be the one belonging to {z ∈ C : 0 ≤ arg z < π}). Let

Zk(λ) :=
{

{∞}, k = 0,

{z ∈ C : f k−2
λ (z) = 0}, k ≥ 2.

(2.3)

For k ≥ 2, Zk(λ) is the set of all (k − 1)th iterated pre-images of ∞ under fλ with ∞
itself excluded.

LEMMA 2.1. (Böttcher coordinate) For each zk(λ) ∈ Zk(λ), the Böttcher coordinate
φzk(λ) near zk(λ) is defined in the following.
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(1) For k = 0, z0(λ) = ∞, φ∞(λ) is defined to be

φ∞(λ)(z) = lim
k→∞

nk
√
f kλ (z) (2.4)

with φ′
∞(λ)(∞) = 1. It satisfies the equation φ∞(λ)(fλ(z)) = (φ∞(λ)(z))

n and
φ∞(λ)(e

πi/nz) = eπi/nφ∞(λ)(z).
(2) For k = 2, z2(λ) = 0, φ0(λ) is defined to be φ0(λ) := n

√
φ∞(λ) ◦ fλ which satisfies

that φ′
0(λ)(0) = n

√
λ.

(3) For k ≥ 3 and zk(λ) ∈ Zk(λ) \ ⋃
l≥0 f

−l
λ (Cλ), φzk(λ) is defined to be φzk(λ) :=

φ0(λ) ◦ f k−2
λ .

Remark 2.1. Let D(a, r) denote the disk with the center at a and radius r, and let
Dr = D(0, r). By §9 in [Mil11], φ−1

zk(λ)
can be extended on a maximal disk C \ Dszk (λ)

with szk (λ) = 1 or with szk (λ) > 1 such that ∂φ−1
zk(λ)

(Dszk (λ)
) ∩ ⋃

l≥0 f
−l
λ (Cλ) �= ∅.

Each Böttcher coordinate φzk(λ) introduces a system of dynamical rays and equipotential
curves near zk(λ). The dynamical ray Rtzk(λ) with angle t ∈ R/Z is defined to be Rtzk(λ) :=
φ−1
zk(λ)

((szk (λ), ∞]e2πit ). The equipotential curve Eszk(λ) with s ≥ szk is defined to be

Eszk(λ)
:= φ−1

zk(λ)
(se2πiR/Z).

Consider the subset of the parameter plane, called the escape locus, which consists of
parameters of maps all of whose critical orbits escape to infinity. That is,

H := {λ ∈ C
∗ : lim

k→∞ f kλ (Cλ) = ∞}.

The escape locus H is an open subset of the parameter plane. Maps inside H are
called escape maps. Connected components of H are called escape components. It is
worth mentioning that all escape components are hyperbolic components. According to
the discussion in [QRWY15], hyperbolic components not in H have ‘renormalizable’
type. It could be proved that all hyperbolic components of this type belong to small copies
of the Mandelbrot set, see Figures 1 and 2.

Let Bλ denote the Fatou component containing ∞. Let Tλ denote the Fatou component
containing 0, which is the unique component of f−1

λ (Bλ) different from Bλ itself. We can
further distinguish those escape components by counting the number of iterations needed
for Cλ to be mapped into Bλ. For λ ∈ H , we define its order N(λ) to be

N(λ) = min{k ∈ N : f kλ (Cλ) ⊂ Bλ}.
It is obvious that the order N(λ) takes a constant value on each component of H . Hence,
we can decompose the escape locus such that H = ⋃

k≥0 Hk , where Hk = {λ ∈ H :
N(λ) = k} consists of all escape maps with order k.

Remark 2.2. It is known that λ ∈ H0 if and only if v±
λ ∈ Bλ, H1 = ∅, and λ ∈ Hk for

k ≥ 2 if and only if f k−1
λ (v±

λ ) ∈ Tλ.

According to [DLU05, Roe06, Ste06], we have the following escape trichotomy and
parameterization for escape components.
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FIGURE 1. Parameter plane for n = 3.

FIGURE 2. Parameter plane for n = 4.

THEOREM 2.2. (Escape trichotomy and parameterization) We have the following
trichotomy and the parameterization.
(1) The Cantor locus H0 is the unique unbounded hyperbolic component. The

parameterization map �H0 : H0 → C \ D defined by �H0(λ) := φ∞(λ)(v
+
λ )

2 is
a holomorphic homeomorphism. For λ ∈ H0, its Julia set J (fλ) is a Cantor set, see
Figure 3.

(2) The McMullen domain H2 is the unique hyperbolic component containing 0.
The parameterization map �H2 : H2 → C \ D defined by �H2(λ)

n−2 := (φ∞(λ) ◦
fλ(v

+
λ ))

2 is a holomorphic homeomorphism with limλ→0 λ�H2(λ) = 22n/(n−2).
For λ ∈ H2, its Julia set J (fλ) is a Cantor circle, see Figure 4.

(3) Sierpiński holes are connected components of Hk with order k ≥ 3. For each
Sierpiński hole U , the parameterization map �U : U → C \ D defined by
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FIGURE 3. For λ ∈ H0 in Cantor locus, J (fλ) is a Cantor set.

FIGURE 4. For λ ∈ H2 in the McMullen domain, J (fλ) is a Cantor circle.

�U (λ) := φ0(λ) ◦ f k−2
λ (v+

λ ) is a holomorphic homeomorphism. For λ ∈ U , its
Julia set J (fλ) is a Sierpiński carpet, see Figure 5.

Remark 2.3. Hyperbolic components not in H are called non-escape components. All
non-escape hyperbolic components are contained in small copies of the Mandelbrot set.
A map belonging to a non-escape hyperbolic component has its critical orbit

⋃
k≥0 f

k
λ (Cλ)

attracted by attracting periodic orbits different from ∞, see Figure 6.

It is easy to verify that for λ ∈ H0,

�H0(e
2πi/(n−1)λ) = e2πi/(n−1)�H0(λ) (2.5)

and

�H0(λ) = �H0(λ). (2.6)
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FIGURE 5. For λ in a Sierpiński hole, J (fλ) is a Sierpiński carpet.

FIGURE 6. For fλ is a non-escape hyperbolic map, J (fλ) is connected.

Let U ⊂ H be an escape component. The parameter ray Rt
U in U with angle t ∈ R/Z

is defined to be Rt
U := �−1

U ((1, ∞)e2πit ). The equipotential curve E sU in U with level s
is defined to be E sU := �−1

U (se2πiR/Z).

2.2. Dynamical puzzles. Let � ⊂ C be a hyperbolic region and X be a subset of C. Let
π1 : �×X → � and π2 : �×X → X be two projections defined by π1(λ, z) = λ and
π2(λ, z) = z respectively. A holomorphic motion of X, parameterized by �, with the base
point at λ0 ∈ �, is a map h : �×X → �× C such that:
(1) for each x ∈ X, the map λ �→ π1 ◦ h(λ, x) is the identity map;
(2) for each x ∈ X, the map λ �→ π2 ◦ h(λ, x) is holomorphic;
(3) for each λ ∈ �, the map x �→ π2 ◦ h(λ, x) is injective;
(4) the map x �→ π2 ◦ h(λ0, x) is the identity map.
Let us denote hλ : X → C for the map x �→ π2 ◦ h(λ, x).
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THEOREM 2.3. (Slodkowski [Dou95, Slo95]) Suppose h : �×X → �× C is a holo-
morphic motion, then h can be extended to a holomorphic motion h : �× C → �× C.
For the extended holomorphic motion h, for each λ ∈ �, the map hλ : C → C is a
quasi-conformal homeomorphism. Furthermore, the Beltrami coefficient μλ = ∂hλ/∂hλ

of hλ satisfies

‖μλ‖∞ = ess sup
x∈X

|μλ(x)| ≤ eρ(λ,λ0) − 1
eρ(λ,λ0) + 1

, (2.7)

where ρ(λ, λ0) is the hyperbolic distance between λ and λ0 in �.

Let τ : R/Z → R/Z be defined by τ(θ) = nθmod Z. Let 
k = (k/2n, (k + 1)/2n]
for 0 ≤ k ≤ n and 
−k = (k/2n+ 1

2 , (k + 1)/2n+ 1
2 ] for 1 ≤ k ≤ n− 1. Obviously,

(0, 1] = ⋃
−n<j≤n 
j . Let 
 be the set of all angles θ ∈ (0, 1] whose orbits remain in⋃n−1

k=1(
k ∪
−k) under iterations of τ . Let


per =
( ⋃
p≥1

{θ ∈ 
 : τpθ = θ}
)

\
{

1,
1
2

}
.

Then,
 is a Cantor set and
per is a dense subset of
. Following [Dev04, QRWY15], for
each θ ∈ 
, there is a cut ray �θλ which cuts the Julia set into two parts. Instead of giving
the precise definition of cut rays, we summarize the essential properties of cut rays in the
following Theorem 2.4. It is the combination of Theorem 3.2, Lemma 3.3, Theorem 3.4 in
[QRWY15].

THEOREM 2.4. (Properties of cut rays) For any θ ∈ 
per and λ ∈ F0, the cut ray�θλ with
angle θ is a Jordan curve containing 0 and ∞ and symmetric with respect to 0 satisfies the
following properties:
(1) f

p
λ (�

θ
λ) ⊂ �θλ, where p is the period of θ ;

(2) �θλ ∩ J (fλ) is a Cantor set, and �θλ ∩ Bλ = Rθ∞(λ) ∪ Rθ+1/2
∞(λ) ;

(3) fix any λ0 ∈ F , there is a holomorphic motion h : F ×�θλ0
→ F × C based at λ0

such that hλ(�
θ
λ0
) = �θλ;

(4) fix any λ0 ∈ R+, there exists a neighborhood Wθ containing R+ and a holomorphic
motion h : Wθ ×�θλ0

→ Wθ × C based at λ0 such that hλ(�
θ
λ0
) = �θλ.

If for some N ≥ 1, (�θλ \ {0, ∞}) ∩ (⋃1≤k≤N f kλ (Cλ)) = ∅, then for any α ∈⋃
0≤k≤N τ−k(θ), there is a unique Jordan curve �αλ containing 0 and ∞ such that

fλ(�
α
λ) = �

τ(α)
λ and Rα∞(λ) ∪ Rα+1/2

∞(λ) = �αλ ∩ Bλ. Under this circumstance, the Jordan
curve �αλ is also called a cut ray (see Figure 7).

LEMMA 2.5. [QRWY15, Lemma 3.7] Let λ ∈ F0, and R
t0
∞(λ) and R

t1
∞(λ) be two

dynamical rays with distinct angles t0 and t1. If

(�θλ \ {0, ∞}) ∩
( ⋃
k≥1

f kλ (Cλ)

)
= ∅ (2.8)
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R0
∞(λ)

R
1
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∞(λ)

R
1
4
∞(λ)

R
3
4
∞(λ)

R
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∞(λ)

R
1
3
∞(λ)

FIGURE 7. Cut ray �θλ with angle θ = 1
4 , 1

3 , 1
2 , (n = 3).

for θ ∈ 
per , then there is a cut ray �αλ with angle α ∈ ⋃
k≥0 τ

−k(θ) separating Rt0∞(λ)

from R
t1
∞(λ).

In [QWY12], the authors used cut rays to construct a puzzle system for the McMullen
family and studied the local connectivity of Julia sets. Puzzles are a regular tool in
studying holomorphic dynamics, see [BH92, Hub93, KL09, KSvS07, LvS98, Pet96,
QY09, Roe07, Roe08, Sch04].

For any L > 1, denote XLλ := {z ∈ Bλ : |φ∞(λ)(z)| > L}. Given a parameter λ ∈ F0,
we can find 
λ = {θ1, θ2, . . . , θN } ⊂ 
per and L > 1 such that each cut ray �θλ with
θ ∈ 
λ is well defined and Cλ ∩XLλ = ∅. In the dynamical plane of fλ, the graph of
depth 0 associated with 
λ is defined to be

I 0
λ(
λ) = ∂XLλ ∪ ((C \XLλ ) ∩

⋃
m≥0

(�
τm(θ1)
λ ∪�τm(θ2)

λ ∪ · · · ∪�τm(θN )λ )).

The graph of depth k is defined to be I kλ = f−k
λ (I 0

λ(
λ)). A puzzle piece P kλ of depth k is
a connected component of f−k

λ ((C \XLλ ) \ I 0
λ). The puzzle piece of depth k containing

z ∈ J (fλ) is denoted by P kλ (z). In [QRWY15, QWY12], the authors used the puzzle
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system (fλ, I kλ , P kλ ) to study the dynamics of McMullen maps and obtained the following
results (Theorems 1.1, 1.2, 1.4 in [QWY12] and Theorem 1.1 in [QRWY15]).

THEOREM 2.6. For the McMullen family, fλ(z) = zn + λ/zn with n ≥ 3 and λ ∈ C
∗.

(1) If λ /∈ H0, then ∂Bλ is a Jordan curve. Furthermore, if ∂Bλ contains neither a
parabolic point nor a recurrent critical point, then ∂Bλ is a quasi-circle.

(2) Suppose U ⊂ Hk is an escape component with k ≥ 2 and λ ∈ ∂U \ ∂H0, then for
each z ∈ J (fλ),

⋂
k≥0 P

k
λ (z) = {z} and J (fλ) is locally connected.

(3) Suppose U ⊂ H is an escape component, then ∂U is a Jordan curve.

By part (1) of Theorem 2.6, for λ /∈ H0, the Böttcher coordinate φ∞(λ) can be extended
to a homeomorphism φ∞(λ) : Bλ → C \ D. By part (3) of Theorem 2.6, for each escape
component U ⊂ H , the parameterization map �U defined in Theorem 2.2 can be
extended to a homeomorphism on its closure.

3. Local para-puzzles
In this section, we construct a local-puzzle system at λ0 ∈ F \ H to study the bifurcation
of the puzzle systems (fλ, I kλ , P kλ ) when the parameter λ varies near λ0 (see Figures 8
and 9). This is a local version of the para-puzzle constructed for polynomials, see [ALS10,
Fau93, Hub93, Lyu00, Roe00, Roe07].

PROPOSITION 3.1. (Existence of para-puzzles) For each λ0 ∈ F0 \ H , there exists a
sequence of simply connected open neighborhoods {Pk

λ0
}k≥0 of λ0, which are called

para-puzzle pieces, such that the following hold.
(1) P0

λ0
⊃ P1

λ0
⊃ · · · ⊃ Pk

λ0
⊃ · · · ⊃ {λ0}.

(2) For each k ≥ 0, there exists a holomorphic motion Hk : Pk
λ0

× I kλ0
→ Pk

λ0
× C

such that for each λ ∈ Pk
λ0

, Hk(λ, I kλ0
) = (λ, I kλ).

Proof. Proposition 3.1 will be proved by induction. By parts (3) and (4) of Theorem 2.4,
there exists a simply connected region W containing λ0 such that h : W × ⋃

θ∈
λ0

�θλ0
→ W × C is a holomorphic motion. Here, 
λ0 is a set of angles θ of cut rays �θλ

we picked to construct the graph I 0
λ0
(
λ0). It is not hard to find a simply connected region

P0
λ0

⊂ W containing λ0 such that the map H0 : P0
λ0

× I 0
λ0

→ P0
λ0

× C defined by

H0(λ, z) :=
{
h(λ, z), (λ, z) ∈ P0

λ0
× ⋃

θ∈
λ0
�θλ0

,

(λ, φ−1
∞(λ) ◦ φ∞(λ0)(z)), (λ, z) ∈ P0

λ0
× ∂XLλ0

(3.1)

is a well-defined holomorphic motion which satisfies H0(λ, I 0
λ0
) = (λ, I 0

λ).
Assume the para-puzzle pieces Pm

λ0
and the holomorphic motion Hm : Pm

λ0
× Imλ0

→
Pm

λ0
× C are already constructed for 0 ≤ m ≤ k − 1. The local parameter graph of depth

k − 1 in the para-puzzle piece Pk−1
λ0

is defined to be

I k−1 := {λ ∈ Pk−1
λ0

: v+
λ ∈ I k−1

λ }.
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Ω
1
2
λ

XL
λXL
λ

FIGURE 8. The graph I 0
λ({ 1

2 }) for n = 3.

Ω
1
2
λ

Ω
1
6
λΩ

1
3
λ

f−1
λ (XL

λ )

FIGURE 9. The graph I 1
λ({ 1

2 }) for n = 3.
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By the construction of puzzle system (fλ0 , I kλ0
, P kλ0

), v+
λ0
/∈ I k−1

λ0
. Hence, λ0 /∈ I k−1. Let

λj → λ ∈ Pk−1
λ0

as j → ∞ with {λj : j ≥ 1} ⊂ I k−1. Since Hk−1 is a holomorphic
motion, v+

λj
∈ I k−1

λj
for each j ≥ 1 implies that v+

λ ∈ I k−1
λ . Hence, I k−1 is relatively

closed in Pk−1
λ0

. Define Pk
λ0

to be a simply connected open subset of Pk−1
λ0

\ I k−1

containing λ0 (Pk
λ0

= Pk−1
λ0

if I k−1 = ∅). Since v+
λ /∈ I k−1

λ for λ ∈ Pk
λ0

, there exists
a holomorphic motion Hk such that the following diagram commutes:

Pk
λ0

× I kλ0

Hk−−−−→ Pk
λ0

× C⏐⏐
i.×fλ0

⏐⏐
i.×fλ

Pk−1
λ0

× I k−1
λ0

Hk−1−−−−→ Pk−1
λ0

× C,

(3.2)

where i. : Pk
λ0

→ Pk−1
λ0

denotes the inclusion map. By diagram (3.2), Hk(λ, I kλ0
) =

(λ, I kλ). Hence, Proposition 3.1 holds for m = k.

COROLLARY 3.2. There exists a holomorphic motion hk : Pk
λ0

× (I k−1
λ0

∪ {v+
λ0

}) →
Pk

λ0
× C such that hk|Pk

λ0
×I k−1

λ0
= Hk−1 and hk(λ, v+

λ0
) = (λ, v+

λ ).

Proof. This follows immediately from v+
λ /∈ I k−1

λ for λ ∈ Pk
λ0

.

4. Centers of H

In this section, we discuss the relation between the centers of hyperbolic components of
H and the iterated pre-images of ∞ in the dynamical plane.

Suppose that Uk is a connected component of Hk , k ≥ 2. Recall the parameterization
map �Uk

defined in Theorem 2.2. The center of Uk is defined to be λUk
:= �−1

Uk
(∞) (for

the McMullen domain H2, define λH2 := 0), which satisfies the equation f k−2
λ (v+

λ ) = 0.
Let �k := {λ ∈ C

∗ : f k−2
λ (v+

λ ) = 0}. Then �k is a finite set since f k−2
λ (v+

λ ) = 0 is an
algebraic equation. It follows that Hk has finitely many connected components since the
number of connected components of Hk is equal to #�k .

LEMMA 4.1. Let V ⊂ C
∗ \ ⋃

2≤j≤k−1 �j be a simply connected region, then there exist
(2n)k−2 distinct holomorphic functions zik(λ) defined on V such that f k−2

λ (zik(λ)) = 0,
i = 1, 2, . . . , (2n)k−2.

Proof. Consider the algebraic equation

f k−2
λ (z) = 0. (4.1)

For k = 2, Lemma 4.1 is trivial. For k ≥ 3, since V ⊂ C
∗ \ ⋃

2≤j≤k−1 �j , for each
λ ∈ V , the solution z of equation (4.1) cannot be a critical point of f k−1

λ . For otherwise, by

(f k−2
λ )′(z) =

∏
0≤i≤k−3

(fλ)
′(f iλ(z)),

there is an 0 ≤ i ≤ k − 3 such that f iλ(z) ∈ Cλ which implies f i+1
λ (z) = v±

λ . Hence,
f k−3−i

λ (v+
λ ) = 0, which implies that λ ∈ �k−i−1. This is a contradiction. It follows that
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equation (4.1) has (2n)k−2 distinct roots zi for 1 ≤ i ≤ (2n)k−2. By the implicit function
theorem, there exist (2n)k−2 distinct holomorphic functions zik(λ) defined near λ0 such
that f k−2

λ (zik(λ)) = 0 and zik(λ0) = zi for 1 ≤ i ≤ (2n)k−2. Since V is simply connected,
the (2n)k−2 holomorphic functions zik(λ) can be extended to the whole region V .

Define z0 : C∗ → C to be the constant map z0(λ) = ∞. The functions z0 and each zik
for 1 ≤ i ≤ (2n)k−2 defined in Lemma 4.1 are called root functions.

Recall the definition of Thurston’s combinatorial equivalence and Thurston’s rigidity
theorem, see [DH93, Hub06].

Definition 4.2. (Thurston’s combinatorial equivalence) Let f , g : S2 → S2 be post-
critically finite branched coverings with post-critical sets P(f ) and P(g), respectively.
Suppose that there exist two orientation-preserving homeomorphisms φ, ψ from S2 to
itself such that the following diagram commutes.

(S2, P(f ))
ψ−−−−→ (S2, P(g))⏐⏐
f ⏐⏐
g

(S2, P(f ))
φ−−−−→ (S2, P(g))

(4.2)

Furthermore, φ and ψ satisfy that φ|P (f ) = ψ |P (f ), and φ and ψ are isotopic to each
other relatively to the post-critical set P(f ). Then we say the maps f and g are Thurston
combinatorially equivalent.

Remark 4.1. If φ and ψ are both quasi-conformal homeomorphisms, then the condition of
isotopy in Definition 4.2 can be replaced by homotopy, see [Hub06].

THEOREM 4.3. (Thurston’s rigidity) If two post-critically finite rational maps f , g are
Thurston combinatorially equivalent, then f , g are conformally conjugated.

PROPOSITION 4.4. Let k ≥ 3 and V ⊂ C
∗ \ ⋃

2≤j≤k−1 �j be a simply connected region.
For λ1, λ2 ∈ V ∩ F0, if there exists a root function zik such that zik(λ1) = v+

λ1
and

zik(λ2) = v+
λ2

, then λ1 = λ2.

Proof. Let W := {λ ∈ C
∗ : f lλ(v

+
λ ), 0 ≤ l ≤ k − 3, are k-2 distinct points}. It is obvious

that C∗ \ W is a finite set, so we may assume that V ⊂ W . Define � : V × P(fλ1) →
V × C by

�(λ, f lλ1
(v±

λ1
)) :=

{
(λ, f lλ(v

±
λ )), 0 ≤ l ≤ k − 3,

(λ, id), l ≥ k − 2.
(4.3)

It is easy to check that {f lλ(v±
λ ) : 0 ≤ l ≤ k − 3} ∪ {0, ∞} contains exactly 2k − 2

(or k + 1) distinct points for λ ∈ W \ ⋃
j≤k−1 �j if n is odd (or even). Each of them

is holomorphically dependent on the parameter λ. This implies that � is a holomorphic
motion based at λ1. By Theorem 2.3, � can be extended to a holomorphic motion
� : V × C → V × C. Let F(λ, z) := (λ, fλ(z)) for (λ, z) ∈ V × C.
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CLAIM 1. There exists a lifting mapping � : V × C → V × C of � which is also a
holomorphic motion such that the following diagram commutes.

V × C
�−−−−→ V × C⏐⏐
id×fλ1

⏐⏐
F
V × C

�−−−−→ V × C.

(4.4)

Furthermore, � satisfies the following property on the post-critical set P(fλ1) of fλ1:

�(λ, f lλ1
(v±

λ1
)) =

⎧⎪⎪⎨⎪⎪⎩
(λ, f lλ(v

±
λ )), 0 ≤ l ≤ k − 4,

λ, f lλ(±zik(λ))), l = k − 3,

(λ, id), l ≥ k − 2.

(4.5)

Proof. Since the map �(λ, v±
λ1
) = (λ, v±

λ ) and �(λ, ∞) = (λ, ∞), there exists a unique
lifting map � : V × C → V × C such that it is a holomorphic motion and satisfies the
diagram (4.4).

For l = k − 3, denote h±(λ) = �λ ◦ f k−3
λ1

(v±
λ1
). By equation (4.3) and diagram (4.4),

fλ(h
±(λ)) = f k−2

λ1
(v±

λ1
) = 0. Since zik(λ1) = v+

λ1
, then h±(λ1) = f k−3

λ1
(v±

λ1
) = f k−3

λ1

(±zik(λ1)). By Lemma 4.1, there are 2n distinct pre-images of 0 which are holomorphic
with respect to λ ∈ V . Hence, h±(λ) = f k−3

λ (±zik(λ)) for λ near λ1. Since V is
connected, then h±(λ) = f k−3

λ (±zik(λ)) for all λ ∈ V . The proofs for l ≤ k − 4 and
l ≥ k − 2 are very similar and will be omitted here.

The proof of Proposition 4.4 continues. By Claim 1 and the condition zik(λ2) = v+
λ2

, we
have �λ2 ◦ f k−3

λ1
(v±

λ1
) = f k−3

λ2
(±zik(λ2)) = f k−3

λ2
(v±

λ2
). Hence, �λ2 ◦ f lλ1

(v±
λ1
) = �λ2 ◦

f lλ1
(v±

λ1
) = f lλ2

(v±
λ2
) for all l ≥ 0. By diagram (4.4), we have

C
�λ2−−−−→ C⏐⏐
fλ1

⏐⏐
fλ2

C
�λ2−−−−→ C.

(4.6)

Let H : [0, 1] × C → C be defined by

Ht = (1 − t)�λ2 + t�λ2 .

It is easy to check that H1 = �λ2 , H0 = �λ2 , and Ht |P (fλ1 )
= �λ2 . Hence, �λ2 and �λ2

are homotopic relative to P(fλ1). Since �λ2 and �λ2 are both quasi-conformal homeo-
morphisms, by Remark 4.1 and Theorem 4.3, fλ1 and fλ2 are conformally conjugated.
Since λ1, λ2 ∈ F0, it is easy to check that λ1 = λ2.

COROLLARY 4.5. Let U ⊂ Hk be an escape component and λ = �−1
U (re2πit ) ∩ F0. Let

V ⊂ C
∗ \ ⋃

2≤j≤k−1 �j be a simply connected region containing U , then there exists a
unique root function zik(λ) defined on V such that v+

λ = φ−1
zk(λ)

(ρk(r)e
2πiθk(t)), where
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θk(t) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
t

2
, k = 0,

2nt
n− 2

, k = 2,

t , k ≥ 3,

(4.7)

and

ρk(r) :=

⎧⎪⎪⎨⎪⎪⎩
√
r , k = 0,

n−2√
r2n, k = 2,

r , k ≥ 3.

(4.8)

Proof. First, let us show the existence and uniqueness of the root function. Since
f k−2

λ (v+
λU
) = 0, by Lemma 4.1 and Proposition 4.4, there exists a unique root function

zik(λ) defined on V such that zik(λU ) = v+
λU

(the uniqueness is trivial for k ≤ 2 and
insured by Proposition 4.4 for k ≥ 3).

It follows easily that if λ ∈ U , v+
λ is contained in the Fatou component containing

zik(λ). By Remark 2.1, the Böttcher coordinates φzik(λ) defined in Lemma 2.1 can be

extended to v+
λ . The rest of the proof follows easily from the asymptotic behavior of

the parameterization maps defined in Theorem 2.2 and dynamical Böttcher coordinates
defined in Lemma 2.1.

5. Dynamics of maps on ∂H
Let U ⊂ H be an escape component. In this section, we describe the dynamics of fλ for
λ = �−1

U (e2πit ) ∈ ∂U ∩ F0, where t ∈ R/Z via the puzzle system (fλ, I kλ , P kλ ).

LEMMA 5.1. If λ ∈ F0 \ H0, then for any sequence of puzzle pieces {P kλ }k≥0,
(
⋂
k≥0 P

k
λ ) ∩ ∂Bλ is either empty or a singleton.

Proof. Suppose (
⋂
k≥0 P

k
λ ) ∩ ∂Bλ �= ∅. Then, {P kλ } is a nested sequence of puzzle pieces.

By part (1) in Theorem 2.6, every point in (
⋂
k≥0 P

k
λ ) ∩ ∂Bλ is a landing point of a

dynamical ray. Suppose that φ−1
∞(λ)(e

2πit0) ∈ (⋂k≥0 P
k
λ ) ∩ ∂Bλ. It suffices to show for

t �= t0, φ−1
∞(λ)(e

2πit ) /∈ (⋂k≥0 P
k
λ ) ∩ ∂Bλ. Since each θ ∈ 
λ satisfies equation (2.8) in

Lemma 2.5, by the construction of graphs, there is an angle α ∈ ⋃
k≥0 τ

−k(θ) such
that the cut ray �αλ separates φ−1

∞(λ)(e
2πit ) from φ−1

∞(λ)(e
2πit0). Note that there must be

a k such that α ∈ τ−k(θ) which implies that �αλ ⊂ I kλ . We get that φ−1
∞(λ)(e

2πit ) and

φ−1
∞(λ)(e

2πit0) are separated by the graph I kλ of depth k. This follows that φ−1
∞(λ)(e

2πit ) /∈
P kλ (φ

−1
∞(λ)(e

2πit0)) = P kλ , and hence φ−1
∞(λ)(e

2πit ) /∈ (⋂k≥0 P
k
λ ) ∩ ∂Bλ.

Let us denote K±
λ := ⋂

k≥0 P
k
λ (v

±
λ ).

PROPOSITION 5.2. Let U ⊂ Hk be an escape component with k ≥ 0. If λ0 =
�−1

U (e2πit ) ∈ F0, then there exists zik(λ0) ∈ Zk(λ0) such that

wtk(λ0) := lim
s→1

φ−1
zik(λ0)

(se2πiθk(t)) ∈ K+
λ0

,

where θk(t) is defined in equation (4.7).
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Proof. For k = 0, zik(λ0) = ∞. For k ≥ 2, there is a simply connected region U ∗ ⊃ U

such that U ∗ ∩ (⋃2≤l≤k−1 �l) = ∅. Let zik(λ) denote the root function obtained in
Corollary 4.5. In the following, we prove that for any m ≥ k + 2,

φ−1
zik(λ0)

(
nm−k+2√

Le2πiθk(t)) ∈ Pm−1
λ0

(v+
λ0
). (5.1)

Here, L is the number we choose forXLλ0
to construct puzzles in §2.2. For eachm ≥ k + 2,

choose rm such that 1 < ρk(rm) ≤ nm−k+2√
L and λm = �−1

U (rme
2πit ) ∈ Pm+2

λ0
∩ Rt

U .
Here, ρk is the function we defined in equation (4.8). By Corollary 4.5, v+

λm
=

φ−1
zik(λm)

(ρk(rm)e
2πiθk(t)). By Corollary 3.2, there is no critical value in f−m−1

λ (XLλ ) \ {∞}
for λ ∈ Pm+1

λ0
since there are no critical values of fλ0 in f−m−1

λ0
(XLλ0

) \ {∞}.
Hence, φ−1

zik(λ)
(
nm−k+2√

Le2πiθk(t)) ∈ Im+2
λ is well defined for λ ∈ Pm+2

λ0
. Since both

v+
λm

= φ−1
zik(λm)

(ρk(rm)e
2πiθk(t)) and φ−1

zik(λm)
(
nm−k+2√

Le2πiθk(t)) belong to the dynamical

ray Rθk(t)
zik(λm)

, and Im−1
λ does not contain the equipotential curve Es

zik(λm)
with 1 < s <

nm−k+2√
L, we have

φ−1
zik(λm)

(
nm−k+2√

Le2πiθk(t)) ∈ Pm−1
λm

(v+
λm
). (5.2)

By Corollary 3.2,

hm : Pm
λ0

× (∂Pm−1
λ0

(φ−1
zik(λ0)

(
nm−k+2√

Le2πiθk(t))) ∪ {v+
λ0

}) → Pm
λ0

× C

is a holomorphic motion. Hence, equation (5.2) implies that

φ−1
zik(λ)

(
nm−k+2√

Le2πiθk(t)) ∈ Pm−1
λ (v+

λ )

for all λ ∈ Pm
λ0

. Then equation (5.1) follows by setting λ = λ0.

Certainly, for 1 < s <
nm−k+2√

L, we also have

φ−1
zik(λ0)

(seπiθk(t)) ∈ Pm−1
λ0

(v+
λ0
). (5.3)

Let s → 1. Then, wtk(λ0) := lims→1 φ
−1
zik(λ0)

(se2πiθk(t)) ∈ Pm−1
λ0

(v+
λ0
) for all m ≥ k + 2.

This follows that wtk(λ0) ∈ ⋂
m≥k+2 P

m−1
λ0

(v+
λ0
) = K+

λ0
.

For H0, λ = �−1
H0
(e2πit ) ∈ F0 if and only if t ∈ (0, 1/(n− 1)) and �−1

H0
(1) ∈ ∂F0.

COROLLARY 5.3. Suppose U ⊂ Hk is an escape component. Then for
λ = �−1

U (e2πit ) ∩ F0,

f k−1
λ (K+

λ ) ∩ ∂Bλ = {f k−1
λ (wtk(λ))}.

Proof. By Proposition 5.2, f k−1
λ (wtk(λ)) ∈ f k−1

λ (K+
λ ). Note that

f k−1
λ (φ−1

zik(λ0)
(se2πiθk(t))) ∈ Bλ
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yields f k−1
λ (wtk(λ)) ∈ f k−1

λ (K+
λ ) ∩ ∂Bλ. Conversely, by Lemma 5.1, f k−1

λ (K+
λ ) ∩

∂Bλ = (
⋂
n≥0 P

n
λ (f

k−1
λ (v+

λ ))) ∩ ∂Bλ contains at most one point. This implies that
f k−1

λ (K+
λ ) ∩ ∂Bλ = {f k−1

λ (wtk(λ))}.

6. No bounded escape components attached on ∂H0

The purpose of this section is to prove that the boundary of the Cantor locus is disjoint
with the boundary of any bounded escape component. This result is also the key step of
proving Theorem 1.2.

6.1. Assumptions. Let U ⊂ Hk be an escape hyperbolic component with order k ≥ 2.
To prove that ∂U ∩ ∂H0 = ∅, it suffices to show that Rt0

H0
∩ Rt1

U ∩ F0 = ∅ for any

t0, t1 ∈ R/Z. Here, R
f0
H0

and Rt1
U are parameter rays in H0 and U , respectively. We prove

this by seeking a contradiction under the assumption Rt0
H0

∩ Rt1
U ∩ F0 �= ∅. Let us use

the notation in the proof of Proposition 5.2. The function zik is the root function defined on
U ∗ ⊃ U , such that v+

λU
= zik(λU ).

PROPOSITION 6.1. Let U ⊂ Hk be an escape hyperbolic component with order k ≥ 2.
If Rt0

H0
∩ Rt1

U ∩ F0 �= ∅, then τ k−1(t0) = t0.

Proof. Suppose λ0 ∈ Rt0
H0

∩ Rt1
U ∩ F0. By Proposition 5.2, {wt00 (λ0), w

t1
k (λ0)} ⊂ K+

λ0
.

Then,

{f k−2
λ0

(w
t0
0 (λ0)), f k−2

λ0
(w

t1
k (λ0))} ⊂ f k−2

λ0
(K+

λ0
) (6.1)

and

{f k−1
λ0

(w
t0
0 (λ0)), f k−1

λ0
(w

t1
k (λ0))} ⊂ f k−1

λ0
(K+

λ0
) ∩ ∂Bλ.

By Corollary 5.3, we get

f k−1
λ0

(w
t1
k (λ0)) = f k−1

λ0
(w

t0
0 (λ0)). (6.2)

If f k−2
λ0

(w
t0
0 (λ0)) �= f k−2

λ0
(w

t1
k (λ0)), then by equations (6.1), (6.2), and the fact

f k−2
λ0

(K+
λ0
) ⊂ Pmλ0

(f k−2
λ0

(w
t0
0 (λ0)))

for all integers m ≥ 0, we have that

fλ0 : Pm+1
λ0

(f k−2
λ0

(w
t0
0 (λ0))) → Pmλ0

(f k−1
λ0

(w
t0
0 (λ0)))

is a ramified covering of degree at least two. Since the puzzle pieces are all simply
connected, Pmλ0

(f k−1
λ0

(w
t0
0 (λ0))) must contain a critical value for all m ≥ 0. It follows that

f k−1
λ0

(K+
λ0
) contains a critical value v+

λ0
or v−

λ0
, that is, f k−1

λ0
(K+

λ0
) = K+

λ0
or = K−

λ0
. This

implies that τ k−1(t0/2) = t0/2 or τ k−1(t0/2) = t0/2 + 1
2 . Both lead to the consequence

that τ k−1(t0) = t0.
If f k−2

λ0
(w

t0
0 (λ0)) = f k−2

λ0
(w

t1
k (λ0)), then both dynamical rays f k−2

λ0
(R

θk(t1)

zik(λ0)
) ⊂ Tλ0

and f k−2
λ0

(R
θ0(t0)
∞(λ0)

) ⊂ Bλ0 land on the common point f k−2
λ0

(w
t0
0 (λ0)). Note that

https://doi.org/10.1017/etds.2022.84 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2022.84


3762 W. Qiu et al

f k−1
λ0

(R
θk(t1)

zik(λ0)
) = f k−1

λ0
(R

θ0(t0)
∞(λ0)

) ⊂ Bλ0 is the external ray landing on f k−1
λ0

(w
t0
0 (λ0)).

It follows that f k−2
λ0

(w
t0
0 (λ0)) is a critical point and f k−1

λ0
(w

t0
0 (λ0)) ∈ f k−1

λ0
(K+

λ0
) is

a critical value v+
λ0

or v−
λ0

. We again obtain that τ k−1(t0/2) = t0/2 or τ k−1(t0/2) =
t0/2 + 1

2 , and then τ k−1(t0) = t0.

Suppose that t0 ∈ [0, 1/(n− 1)) satisfies τpt0 = t0 for an integer p ≥ 1. Let
λ0 = �−1

H0
(e2πit0). It follows from [QRWY15] (Lemmas 4.6, 4.8, Theorem 6.2, and

Remark 6.3) that there is a quadratic-like map gλ0 : U → V with a parabolic fixed point
βλ0 ∈ U satisfying

gλ0(βλ0) = βλ0 , g′
λ0
(βλ0) = 1, and g′′

λ0
(βλ0) �= 0,

which is defined according to the following three cases.
(1) If τp(t0/2) = t0/2, then gλ0 = f

p
λ0

, U = PNλ0
(v+

λ0
), and V = P

N−p
λ0

(v+
λ0
) for an N

large, βλ0 = w
t0
0 (λ0), and v+

λ0
is the unique critical value.

(2) If τp(t0/2) = t0/2 + 1
2 and τp(t0/2 + 1

2 ) = t0/2 + 1
2 , then gλ0 = f

p
λ0

, U =
PNλ0

(v−
λ0
), and V = P

N−p
λ0

(v−
λ0
) for an N large, βλ0 = −wt00 (λ0), and v−

λ0
is the

unique critical value.
(3) If τp(t0/2) = t0/2 + 1

2 and τp(t0/2 + 1
2 ) = t0/2, then gλ0 = −f pλ0

, U = PNλ0
(v+

λ0
),

and V = P
N−p
λ0

(v+
λ0
) for an N large, βλ0 = w

t0
0 (λ0), and v+

λ0
is the unique critical

value.

Remark 6.1. In the above, we have assumed that λ0 /∈ R
+. When λ0 ∈ R

+, the regions
U , V will be taken as those constructed in the proof of Lemma 7.2 in [QWY12].

In the following discussion, without loss of generality, we may assume that we are in
case (1). Hence, we have the following Assumption 6.2.

Assumption 6.2. Suppose that U ⊂ Hk is an escape component with k ≥ 2, λ0 ∈ Rt0
H0

∩
Rt1

U ∩ F0, and p|(k − 1) is a positive integer such that τp(t0/2) = t0/2. Then:

(1) there exists N such that gλ0 = f
p
λ0

: PNλ0
(v+

λ0
) → P

N−p
λ0

(v+
λ0
) is a quadratic-like map

with unique critical value v+
λ0

;
(2) gλ0(w

t0
0 (λ0)) = w

t0
0 (λ0), g′

λ0
(w

t0
0 (λ0)) = 1, and g′′

λ0
(w

t0
0 (λ0)) �= 0;

(3) g
(k−1)/p
λ0

(w
t1
k (λ0)) = w

t0
0 (λ0), where wt00 (λ0) is the landing point of ray Rθ0(t0)

∞(λ0)
and

w
t1
k (λ0) is the landing point of ray Rθk(t1)

zik(λ0)
.

6.2. Rational family with parabolic implosion. The original parabolic implosion theory
is established by Douady and Lavaurs [Lav89], see [DH84]. This theory is further
developed by Shishikura, see [Shi98, Shi00]. Here, we use the terminology and results
given in [Lei00, Shi00].

Let �ρ,θ be a bounded connected open set with 0 on its boundary, and F : �ρ,θ ×
C → C, (u, z) �→ Fu(z) be a map satisfying the following conditions.
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f0fs
T (z) = z + 1

FIGURE 10. Illustration of Theorem 6.3.

(1) F : (u, z) �→ Fu(z) is continuous on �ρ,θ × C, holomorphic on �ρ,θ × C, and
Fu(z) is a rational map for each u ∈ �ρ,θ .

(2) Fu(z) = m(u)z+O(z2) as z → 0 with m(0) = 1, F ′′
0 (0) �= 0, and F0 has a unique

simple critical value v0 contained in the parabolic basin of 0.
(3) σ(u) := (m(u)− 1)/2πi maps�ρ,θ univalently onto {z ∈ C : |z| < ρ, | arg z| < θ}

with ρ > 0 small and θ ∈ (0, π).
By equation (2), Fu has two fixed points 0 and q(u) when u ∈ �ρ,θ \{0}. The parabolic

implosion phenomenon for such a family Fu was given as the Douday–Lavaurs–Shishikura
theorem (see Theorem 2.1 in [Lei00]). Since we need only to use the attracting part of
Theorem 2.1 in [Lei00], we translate it to the following Theorem 6.3. Set SM = {z ∈ C :
0 < �(z) < M + 1} for any M ∈ N.

THEOREM 6.3. (Douady–Lavaurs–Shishikura) Let F : �ρ,θ × C → C, (u, z) �→ Fu(z)

satisfy the conditions given above. For any given M ∈ N large, when ρ is small enough,
there exists a continuous map� : �ρ,θ × SM → C, (u, z) �→ �u(z) satisfying the follow-
ing properties (see Figure 10).
(1) For u = 0, �0 : SM → �0(SM) ⊂ �0 is a univalent map where �0 is the attracting

petal of F0 with the parabolic fixed point 0 on its boundary, and�−1
0 is the restriction

of the usual Fatou coordinate ϕ0 : �0 → {z : �(z) > 0}.
(2) For u ∈ �ρ,θ \{0}, �u : SM → C is a univalent map such that �u(SM) is a Jordan

region containing two fixed points 0 and q(u) of Fu on its boundary.
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(3) Whenever z, z+ 1 ∈ SM ,

�u(z+ 1) = Fu(�u(z)).

Furthermore, �u(S0) contains the critical value v(u) of Fu with v(0) = v0.

By this theorem, we call the map F or the family Fu the rational family with parabolic
implosion (RFPI).

Remark 6.2. From equation (3), �u(S0) is a fundamental region of Fu, and Fmu is well
defined and univalent on �u(S0) for any 1 ≤ m ≤ M .

6.3. Application to McMullen family. Set gλ := f
p
λ , where p is given in

Assumption 6.2. Consider the equation gλ(z)− z = 0. By part (2) of Assumption 6.2,
the fixed points of gλ(z) for (λ, z) near (λ0, wt00 (λ0)) can be uniformized by setting
λ = λ0 + u2. That is, there exists r > 0 small enough such that D(λ0, r) ⊂ U ∗ (U ∗
is defined in Proposition 5.2), a local change of coordinates λ : D(0,

√
r) → D(λ0, r)

given by u �→ λ0 + u2, and a holomorphic function p : D(0,
√
r) → C such that p(u)

and p(−u) are the two local fixed points of gλ0+u2 satisfying p(u) = w
t0
0 (λ0 + u2) for

λ0 + u2 ∈ D(0,
√
r) \ H0. Let m : D(0,

√
r) → C, u �→ g′

λ0+u2(p(u)) be the multiplier
of the fixed point p(u). Then, m(u) is holomorphic on D(0,

√
r) and m(0) = 1. It is

evident that

gλ0+u2(z) = p(u)+m(u)(z− p(u))+O(z− p(u))2 as z → p(u). (6.3)

Let Tu(z) := z− p(u) and Fu(ω) := Tu ◦ gλ0+u2 ◦ T −1
u (ω). Then, equation (6.3)

becomes

Fu(ω) = m(u)ω +O(ω2) as ω → 0. (6.4)

Remark 6.3. It is obvious that another fixed point p(−u) of gλ0+u2 has the multiplier
m(−u). So, except the fixed point 0, the other fixed point of Fu is q(u) = p(−u)− p(u)

with the multiplier m(−u) when u �= 0.

Let v(u) := Tu(v
+
λ0+u2) be the critical value of Fu(ω). Let U0 = T0(P

N
λ0
(v+

λ0
)) and

V0 := T0(P
N−p
λ0

(v+
λ0
)). Then by equation (1) of Assumption 6.2, F0 : U0 → V0 is a

quadratic-like map with the unique critical value v(0) ∈ U0, which is obviously contained
in the parabolic basin of 0. When r > 0 is small enough, then by the continuity of Fu
with respect to u ∈ D(0,

√
r), it is easy to find a simply connected region Uu ⊂ U0 such

that Fu : Uu → Vu := Fu(Uu) is also a quadratic-like map with the unique critical value
v(u) ∈ Uu. Furthermore Uu → U0 as u → 0 in Hausdorff topology.

Let �± := λ−1(Rt1
U ) denote the two pre-images of Rt1

U in the u-plane which can be
parameterized by �±(s) := λ−1(�U (se

2πit1)). Obviously, �±(s) → 0 as s → 1.

PROPOSITION 6.4. For any θ ∈ (0, π/2), there exist ρ > 0 and�ρ,θ ⊂ D(0,
√
r)which is

mapped univalently onto {z ∈ C : |z| < ρ, | arg z| < θ} by σ = (m− 1)/(2πi) such that
�+(s) ∈ �ρ,θ or �−(s) ∈ �ρ,θ for s sufficiently close to 1.
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The proof of Proposition 6.4 will be given in the next subsection. By
Proposition 6.4 and the discussion above, F : �ρ,θ × C → C defined by F(u, z) := Fu(z)

is an RFPI.

PROPOSITION 6.5. For any escape component U ⊂ Hk with k ≥ 2, U ∩ H0 = ∅.

Proof. If the proposition is not true, we may assume Assumption 6.2 holds. By
Proposition 6.4, without loss of generality, let us assume �+(s) ∈ �ρ,θ for s(> 1) close
to 1.

Let Ru := Tu(R
θ0(t0)
∞(λ0)

) be parameterized by Ru(s) := Tu(φ
−1
∞(λ)(se

2πiθ0(t0))) and

R̃u := Tu(R
θk(t1)

zik(λ0+u2)
) be parameterized by R̃u(s) := Tu(φ

−1
zik(λ0+u2)

(se2πiθk(t1))). Then we

have Fu(Ru) = Ru and F (k−1)/p
u (R̃u) = Ru by equation (3) of Assumption 6.2. Note that

by Corollary 4.5, the critical value v(u) = R̃u(ρk(s)) for u = �+(s) ∈ �ρ,θ is close to 0.
Hence, F (k−1)/p

u (v(u)) = Ru(s0) ∈ Ru for some s0 > 1. Take M = (k − 1)/p and
� : �ρ,θ × SM → C, as given in Theorem 6.3. Then by part (3) of Theorem 6.3 (see
Remark 6.2), v(u) ∈ �u(S0) and Ru(s0) = FMu (v(u)) ∈ �u(SM).

However, in Remark 2.1, it is pointed out that Ru can be extended continuously
to Ru(n

M√
s0) such that FMu (Ru(n

M√
s0)) = Ru(s0). The invariance and continuity of

Ru ensure that Ru(n
M√
s0) ∈ �u(S0). By Remark 6.2, FMu is univalent on �u(S0).

Hence, FMu (v(u)) = FMu (Ru(
nM
√
s0)) = Ru(s0) implies that v(u) = Ru(n

M√
s0) ∈ Ru. This

contradicts with v(u) = R̃u(ρk(s)) ∈ R̃u, where ρk is defined in equation (4.8) (see
Figure 11).

6.4. Proof of Proposition 6.4. Let Xρ,θ := {|z− 1| < 2πρ : | arg(z− 1)| ≤ π/2 − θ}
and Y±

ρ,θ := {z ∈ H± : |z− 1| < 2πρ} \ (−Xρ,θ ∪Xρ,θ ). By part (3) of the definition of
RFPI, it suffices to show that either m(�+(s)) ∈ Y+

ρ,θ or m(�−(s)) ∈ Y+
ρ,θ for s large.

Recall that by the conjugacy under affine transformation Tu(z) = z− p(u), gλ0+u2 is
conjugated to

Fu(ω) = m(u)ω +O(ω2).

Since the multiplier m(u) is a non-constant holomorphic function in D(0,
√
r) and

m(0) = 1, m(u) has the following expansion:

m(u) = 1 + au� + o(u�), (6.5)

where � is a positive integer and a �= 0.

LEMMA 6.6. � is an odd number.

Proof. It is known that for u ∈ D(0,
√
r) with r > 0 small, Fu : U0 → Vu := Fu(U0)

is a quadratic-like map with the unique critical value v(u) ∈ U0. From Remark 6.3, Fu
has two fixed points 0 and q(u) = p(−u)− p(u) contained in U0 with the multipliers
m(u) and m(−u), respectively. Suppose � is even, then from equation (6.5), we have
m(u)−m(−u) = o(u�), which implies that |m(u)−m(−u)| < |m(u)− 1| for u small
since m(u)− 1 ∼ au�. It follows that
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FIGURE 11. Illustration for the proof of Proposition 6.5.

|m(−u)| ≤ |m(u)−m(−u)| + |m(u)|
< |1 −m(u)| + |m(u)|
= 1 − |m(u)| + |m(u)| = 1.

(6.6)

Hence, q(u) = p(−u)− p(u) is an attracting fixed point of Fu.
However, by the open mapping theorem, we can find u close to 0 and q(u) ∈ Uu such

that |m(u)| < 1. So 0 is also an attracting fixed point of Fu for such u. This is impossible
since Fu is a quadratic-like map on Uu.

LEMMA 6.7. For any θ ∈ (0, π/2), if u is small and | arg(m(u)− 1)| < π/2 − θ , then
m(−u) ∈ D.

Proof. By equation (6.5) and Lemma 6.6 (see Figure 12), m(u)+m(−u)− 2 = o(u�),
and then

|m(u)+m(−u)− 2| = o(|m(u)− 1|) (6.7)

for u small. Let r(u) := |m(u)− 2| and θ(u) := arg(m(u)− 1). It follows that for u small,
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FIGURE 12. Illustration for the proof of Lemma 6.7.

|m(u)− 1| = cos(θ(u))−
√
(r(u))2 − sin2(θ(u))

= cos(θ(u))−
√
(r(u)− 1)2 + 2(r(u)− 1)+ cos2(θ(u))

= cos(θ(u))− cos(θ(u))

√
1 + 2r(u)− 2 + (r(u)− 1)2

cos2(θ(u))

= cos(θ(u))− cos(θ(u))
(

1 + r(u)− 1
cos2(θ(u))

+ o(r(u)− 1)
)

= 1 − r(u)

cos(θ(u))
+ o(r(u)− 1).

Hence, for u small and |θ(u)| ≤ π/2 − θ < π/2, we have

|m(u)− 1| = O(1 − |2 −m(u)|). (6.8)

Coupling it with equation (6.7) gives that |m(u)+m(−u)− 2| < 1 − |2 −m(u)| for u
small. Hence,

|m(−u)| ≤ |m(u)+m(−u)− 2| + |m(u)− 2|
< 1 − |2 −m(u)| + |m(u)− 2| = 1.

(6.9)

PROPOSITION 6.8. For any θ ∈ (0, π/2) and ρ > 0, one of the following is true:
• m(�+(s)) ∈ Y+

ρ,θ for all s > 1 sufficiently close to 1;
• m(�−(s)) ∈ Y+

ρ,θ for all s > 1 sufficiently close to 1.

Proof. Fix any θ ∈ (0, π/2) and ρ > 0. Since �±(s) → 0 and m(�±(s)) → 1 as s → 1,
we have |m(�±(s))− 1| < ρ for s > 1 sufficiently close to 1. Since fλ0+u2 is an escape
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map for u = �±(s), Fu has no attracting fixed points in C. Hence, it follows from
Lemma 6.7, m(�±(s)) ∈ (Y+

ρ,θ ∪ Y−
ρ,θ ) for all s close to 1.

Assume that m(�−(s)) ∈ Y−
ρ,θ for an s > 1, then by continuity, m(�−(s)) ∈ Y−

ρ,θ for all
s > 1 close to 1. It follows that

�(1 −m(�−(s))) ≥ |1 −m(�−(s))| cos θ . (6.10)

Since �+(s) = −�−(s), we have from equations (6.7) and (6.10) that

m(�+(s))+m(�−(s))− 2 = o(�(1 −m(�−(s))). (6.11)

It follows that

�(m(�+(s))) = �(2 −m(�−(s)))− �(2 −m(�−(s))−m(�+(s)))
= �(1 −m(�−(s)))− �(2 −m(�−(t))−m(�+(s)))
> �(1 −m(�−(s)))− |2 −m(�−(s))−m(�+(s))|
> �(1 −m(�−(s)))− �(1 −m(�−(s))) = 0.

(6.12)

Hence, m(�+(s)) ∈ Y+
ρ,θ for all s > 1 close to 1.

Proof of Proposition 6.4. Take ρ small enough. By Proposition 6.8, we can choose an
inverse branch m−1 of m such that m−1(Y+

ρ,θ ) contains �+(s) or �− for s close to 1. Let
�ρ,θ := m−1(Y+

ρ,θ ) ⊂ D(0,
√
r). Then m : �ρ,θ → Y+

ρ,θ is a univalent map. According to
the relation of σ and m, the result follows directly.

7. Proofs of Theorems 1.1 and 1.2
In this section, we will present the proofs of Theorems 1.2 and 1.1.

7.1. Closures of escape components are pairwise disjoint. In this subsection, we finish
the proof of Theorem 1.2. By Proposition 6.5, it remains to show that the closures of escape
components with order at least 2 are pairwise disjoint.

LEMMA 7.1. There is no parameter λ ∈ ∂H such that f mλ (v
+
λ ) ∈ Cλ with m ≥ 0.

Proof. Suppose that λ satisfies f mλ (v
+
λ ) ∈ Cλ with m ≥ 0. Then, either f m+1

λ (v+
λ ) = v+

λ

or f m+1
λ (v+

λ ) = v−
λ . In the first case, we get f mλ (v

+
λ ) is a periodic critical point, which is

clearly impossible.
In the second case, recall the McMullen map satisfies f m+1

λ (−z) = −f m+1
λ (z) or

f m+1
λ (−z) = f m+1

λ (z) depending on whether n is odd or even. So if n is odd, then
f m+1

λ (v−
λ ) = −f m+1

λ (v+
λ ) = v+

λ . This means f 2m+2
λ (v+

λ ) = v+
λ , which deduces to the first

case. If n is even, then f m+1
λ (v−

λ ) = f m+1
λ (v+

λ ) = v−
λ . So f mλ (v

−
λ ) is a periodic critical

point with period m+ 1, which is also clearly impossible.

PROPOSITION 7.2. Suppose U1 ⊂ Hk1 and U2 ⊂ Hk2 are two distinct escape compo-
nents with order k1, k2 ≥ 2, then ∂U1 ∩ ∂U2 = ∅.

Proof. Suppose λ0 = Rt1
U1

∩ Rt2
U2

∈ ∂U1 ∩ ∂U2. Without loss of generality, we may
assume that λ0 ∈ F0. Let Vj be a simply connected open subset of C∗ \ ⋃

2≤�≤kj−1 ��
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containing λ0 and λUj
for j = 1, 2. Here, �l for l ≥ 2 is defined in §4. By Lemma 4.1,

there exist two root functions z
ij
kj
(λ) defined on Vj for j = 1, 2 such that v+

λUj
= z

ij
kj
(λUj

).

Then both zi1k1
(λ0) and zi2k2

(λ0) are well defined.

Let U
ij
kj
(λ0) denote the Fatou component containing z

ij
kj
(λ0) and let

w
tj
kj
(λ0) := lim

s→1
φ−1

z
ij
kj
(λ0)

(se
2πi θkj (tj ))

for j = 1, 2. That is, w
tj
kj
(λ0) is the landing point of dynamical ray Rj := R

tj

z
ij
kj
(λ0)

in

U
ij
kj
(λ0). By Proposition 5.2, {wt1k1

(λ0), w
t2
k2
(λ0)} ⊂ K+

λ0
. By part (2) of Theorem 2.6,

K+
λ0

= {v+
λ0

}. It follows that wt1k1
(λ0) = w

t2
k2
(λ0) = v+

λ0
, which implies the dynamical rays

R1 and R2 land together at the common point v+
λ0

∈ ∂Ui1k1
(λ0) ∩ ∂Ui2k2

(λ0).

Suppose zi1k1
(λ0) �= z

i2
k2
(λ0). Notice that both Ui1k1

(λ0) and Ui2k2
(λ0) will be mapped

eventually to the Fatou component Bλ0 , and Bλ0 is invariant. We get that there exists
m > 0 such that f mλ0

(U
i1
k1
(λ0)) �= f mλ0

(U
i2
k2
(λ0)), but f m+1

λ0
(U

i1
k1
(λ0)) = f m+1

λ0
(U

i2
k2
(λ0)).

(In fact, if k1 �= k2, then m = max{k1, k2} − 2; if k1 = k2, then m < k1 − 2.) Thus,
f mλ0
(R1) and f mλ0

(R2) are two different dynamical rays which land together at f mλ0
(v+

λ0
),

but f m+1
λ0

(R1) = f m+1
λ0

(R2) is a dynamical ray landing on f m+1
λ0

(v+
λ0
) since the Fatou

component f m+1
λ0

(U
i1
k1
) = f m+1

λ0
(U

i2
k2
) is a Jordan domain (see part (1) of Theorem 2.6)

and there is only one dynamical ray landing on f m+1
λ0

(v+
λ0
). This implies f mλ0

(v+
λ0
) ∈ Cλ0 ,

which contradicts with Lemma 7.1.
Suppose zi1k1

(λ0) = z
i2
k2
(λ0). In this case, k1 = k2 ≥ 3 and Ui1k1

(λ0) = U
i2
k2
(λ0). Since

∂U
i1
k1
(λ0) is a Jordan curve and wt1k1

(λ0) = w
t2
k2
(λ0), we have t1 = t2. By the discreteness

of pre-images of 0, it is not hard to see that zi1k1
(λ) = z

i2
k2
(λ) for λ near λ0. Hence,

we can find a simply connected region V ⊂ V1 ∪ V2 containing λU1 , λU2 , and λ0 such
that zi1k1

(λ) = z
i2
k2
(λ) for λ ∈ V . By Proposition 4.4, we have λU2 = e2mπi/(n−1)λU1 for

some m ∈ N. It follows that Rt1
U1

∪ Rt2
U2

∩ R
+ �= ∅. Without loss of generality, we may

suppose Rt1
U1

∩ R
+ �= ∅ and λ′ ∈ Rt1

U1
∩ R

+. It is not hard to check that for λ ∈ R
+,

both Bλ ∩ R
+ and Tλ ∩ R

+ are connected. Hence, we may suppose Bλ′ ∩ R
+ = (z0, ∞),

Tλ′ ∩ R
+ = (0, z1). Since λ′ ∈ Rt1

U1
, then v+

λ′ ∈ [z1, z0] and f k1
λ′ (v

+
λ′) ∈ [0, z1]. Notice

that v+
λ′ = minz∈R+ fλ′(z). It follows that λ′ = λ0 v

+
λ′ = z1 ∈ ∂Tλ′ ∩ ∂Ui1k1

(λ′) which can
be deduced to the previous case.

A combination of Propositions 6.5 and 7.2 completes the proof of Theorem 1.2. The
proof of Proposition 7.2 also implies the following.

COROLLARY 7.3. Suppose U ⊂ Hk is an escape component with k ≥ 2. If λ =
�−1

U (e2πit ) ∈ ∂U , then v+
λ = φ−1

zik(λ)
(e2πiθk(t)) ∈ ∂Uik(λ), where zik is the root function

defined on a neighborhood of U satisfying that v+
λU

= zik(λU ) and Uik(λ) is the Fatou
component containing zik(λ). In particular, v±

λ /∈ ∂Bλ.
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7.2. McMullen domain and Sierpiński holes are quasi-disks. In this section, we prove
that the McMullen domain and all Sierpiński holes are all bounded by quasi-circles. Recall
that U is a McMullen domain or a Sierpiński hole if and only if U ⊂ Hk is an escape
component with k ≥ 2.

LEMMA 7.4. Let W = C \ H0. Then for any λ0 ∈ W , there is a holomorphic motion
based at λ0:

H : W × Bλ0 → W × C. (7.1)

Proof. When λ ∈ W \ {0}, Cλ ∩ Bλ = ∅ and Bλ is a Jordan region. The Böttcher
coordinate φ∞(λ) is a holomorphic homeomorphism from Bλ to C \ D. When λ = 0, set
B0 = C \ D and φ∞(0) = id. By the usual construction of the Böttcher coordinates, it is
easy to check φ∞(λ) is holomorphic with respect to λ ∈ W , even at λ = 0. Hence,

Hλ(z) := φ−1
∞(λ) ◦ φ∞(λ0)(z), z ∈ Bλ0

is well defined for λ ∈ W . Then it is direct to verify that H : W × Bλ0 → W × C,
(λ, z) �→ (λ, Hλ(z)) is a holomorphic motion.

By Theorem 2.3, the holomorphic motion defined in Lemma 7.4 can be extended to a
holomorphic motion H : W × C → W × C. It follows that the following map:

�k(λ) :=
{
H−1

λ (f k−1
λ (v+

λ )), λ ∈ W \ {0},
∞, λ = 0

(7.2)

is well defined on W for all k ≥ 2. Noting that when λ → 0, H−1
λ (f k−1

λ (v+
λ )) → ∞,

�k(λ) is continuous even at λ = 0.
In the following, we always assume that λ0 ∈ W is given.

LEMMA 7.5. The map �k : W → C defined by equation (7.2) is quasi-regular on any
region W ∗ � W .

Proof. Consider the derivative of equation Hλ ◦�k(λ) = f k−1
λ (v+

λ ). Since Hλ and
f k−1

λ (v+
λ ) are all holomorphic in λ, therefore, ∂Hλ/∂λ = ∂f k−1

λ (v+
λ )/∂λ = 0, and we

have

∂Hλ

∂z

∣∣∣∣
�k(λ)

∂�k

∂λ

∣∣∣∣
λ

+ ∂Hλ

∂z

∣∣∣∣
�k(λ)

∂�k

∂λ

∣∣∣∣
λ

= 0, (7.3)

where ∂Hλ/∂z and ∂Hλ/∂z exist almost everywhere since Hλ is quasi-conformal. Thus,∣∣∣∣∂�k/∂λ∂�k/∂λ

∣∣∣∣
λ

∣∣∣∣ =
∣∣∣∣∂�k/∂λ
∂�k/∂λ

∣∣∣∣
λ

∣∣∣∣ =
∣∣∣∣∂Hλ/∂z

∂Hλ/∂z

∣∣∣∣
�k(λ)

∣∣∣∣ = |μλ(�k(λ))|, (7.4)

where μλ is the Beltrami coefficient of Hλ.
Let ρ(·, ·) denote the hyperbolic distance of W . Then,

ρ∗ = sup
λ∈W ∗

ρ(λ, λ0) < ∞.
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By Theorem 2.3, for any λ ∈ W ∗,

ess sup
z∈C

|μλ(z)| ≤ eρ(λ,λ0) − 1
eρ(λ,λ0) + 1

≤ k := eρ
∗ − 1

eρ
∗ + 1

< 1. (7.5)

Therefore,∥∥∥∥∂�k/∂λ∂�k/∂λ

∥∥∥∥∞
= ess sup

λ∈W ∗

∣∣∣∣∂�k/∂λ∂�k/∂λ

∣∣∣∣ = ess sup
λ∈W ∗

|μλ(�k(λ))| ≤ k < 1. (7.6)

It means that �k is a quasi-regular map on the region W ∗.

From the proof of Lemma 7.5, we have the following corollary.

COROLLARY 7.6. Let μ�k(λ) = (∂�k/∂λ)/(∂�k/∂λ) be the Beltrami coefficient of
�k(λ). Let Dm = D(λ0, 1/m) for m > 0 large such that Dm ⊂ W . Then,

‖μ‖m,k := ess sup
λ∈Dm

|μ�k(λ)| → 0 as m → ∞. (7.7)

Proof. It follows immediately from equations (7.5), (7.6), and the fact that supλ∈Dm

ρ(λ, λ0) → 0 as m → ∞.

PROPOSITION 7.7. Let U be an escape component of Hk with k ≥ 2. Then there is a
neighborhood V of U and a quasi-conformal homeomorphism �k : V → C such that
�k(U ) = Bλ0 .

Proof. Set �k : W → C be defined by

�k :=
⎧⎨⎩φ

−1
∞(λ0)

◦ (φ∞(λ0) ◦�k)2/(n−2), k = 2,

φ−1
∞(λ0)

◦ (φ∞(λ0) ◦�k)1/n, k ≥ 3,
(7.8)

or more clearly, using equation (7.2), �k(0) = ∞ and for λ �= 0,

�k(λ) =
{
φ−1

∞(λ0)
◦ (φ∞(λ0) ◦H−1

λ (fλ(v
+
λ )))

2/(n−2), k = 2,

φ−1
∞(λ0)

◦ (φ∞(λ0) ◦H−1
λ (f k−1

λ (v+
λ )))

1/n, k ≥ 3.
(7.9)

When λ ∈ U , it is easy to check that

�k(λ) = φ−1
∞(λ0)

◦�U (λ),

where �U (λ) is defined in Theorem 2.2 which is a holomorphic homeomorphism
from U to C \ D (here for k = 2, we need to extend the definition of �U such that
�U (0) = ∞). It follows that�k : U → Bλ0 is a holomorphic homeomorphism. By parts
(1), (3) of Theorem 2.6, both ∂U and ∂Bλ0 are Jordan curves. Hence, �k : U → Bλ0 is a
homeomorphism with �k(∂U ) = ∂Bλ0 .

By Propositions 6.5 and 7.2, we have U ∩ U ′ = ∅ for any escape component U ′
different from U . Since for fixed � ≤ k, H� has only finitely many components, there
exists a simply connected region W ∗ such that U � W ∗ � W and W ∗ ∩ U ′ = ∅ for all
components U ′ of H� with 0 ≤ � ≤ k which are different from U .
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Now, we restrict �k on W ∗ and then show that �−1
k (Bλ0) = U . That is, if λ ∈ W ∗

such that �k(λ) ∈ Bλ0 , then λ ∈ U .
We first prove that �k(λ) ∈ Bλ0 implies λ ∈ U . From equation (7.9) and the definition

of φ∞(λ), we have that�k(λ) ∈ Bλ0 impliesH−1
λ (f k−1

λ (v+
λ )) ∈ Bλ0 . SinceHλ : C → C is

a quasi-conformal homeomorphism andHλ(Bλ0) = Bλ, we get that f k−1
λ (v+

λ ) ∈ Bλ. This
shows that λ ∈ H� for some � ≤ k. However, by the definition of W ∗, W ∗ ∩ ⋃

�≤k H� =
U . We get that λ ∈ U .

Suppose that �k(λ) ∈ ∂Bλ0 . Since �k is quasi-regular by Lemma 7.5, �k is also
quasi-regular and obviously non-constant. Thus, �k is an open map. It follows that for
any neighborhood N of λ, �k(N ) ∩ Bλ0 �= ∅. Hence, N ∩ U �= ∅, which implies that
λ ∈ ∂U .

Finally, we take a Jordan region V ′ satisfying U � V � W ∗. Let γ = ∂V and � =
�k(∂V ). Then, by the discussion above, � ∩ Bλ0 = ∅. Let B ′ be the component of C \ �
which contains Bλ0 . Noting that a quasi-regular map is the composition of a holomorphic
map and a quasi-conformal homeomorphism, the argument principle can be applied. Since
the point z ∈ Bλ0 ⊂ B ′ has only one pre-image of�k in U ⊂ V ′, we get that every z ∈ B ′
has only one pre-image in V ′. Take V = �k(U

′) ⊂ V ′. Then, V is a neighborhood of U

and �k : V → �k(V ) = B ′ is a quasi-conformal homeomorphism.

COROLLARY 7.8. ∂U is a quasi-circle.

Proof. Take λ0 = λU as the center of U . Then, fλ0 is hyperbolic and hence λ0 satisfies
the condition of part (1) of Theorem 2.6. Hence, ∂Bλ0 is a quasi-circle. By Proposition 7.7,
∂U is also a quasi-circle.

7.3. Hausdorff dimension of the boundary of escape component. Let dimH X denote
the Hausdorff dimension of a Borel subset X of C. The following results are well known,
see [Fal04].

LEMMA 7.9. Let X ⊂ C be a Borel subset. If f : X → C satisfies the Hölder condition

|f (z1)− f (z2)| ≤ C|z1 − z2|α ,

then
dimH f (X) ≤ 1

α
dimH X.

LEMMA 7.10. If f is a non-constant holomorphic map defined on a neighborhood of
X ⊂ C, then

dimH f (X) = dimH X.

Recall that for a K-quasi-conformal homeomorphism, we have the following Mori’s
theorem, see [Ahl06].

THEOREM 7.11. (Mori) Suppose f : D → D is a K-quasi-conformal homeomorphism.
Then for each z1, z2 ∈ D,

|f (z1)− f (z2)| ≤ 16|z1 − z2|1/K . (7.10)
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We also need the following theorem due to Przytycki [Prz06] as we know.

THEOREM 7.12. (Przytycki) Let f : C → C be a rational map of degree d ≥ 2 and �
be a simply connected immediate basin of attraction to a periodic attracting point. Then,
provided f is not a Blaschke product in some holomorphic coordinates or a quotient of a
Blaschke product by a rational function of degree 2, the Hausdorff dimension of ∂� is
greater than 1.

COROLLARY 7.13. Let U ⊂ Hk be an escape component with order k ≥ 2. If λ0 ∈ ∂U
and z0 ∈ ∂Bλ0 , then for any neighborhood U of z0,

dimH (U ∩ ∂Bλ0) = dimH ∂Bλ0 > 1.

Proof. From Theorem 7.12, we have that dimH ∂Bλ0 > 1 as long as λ0 ∈ W \ {0}. So
dimH ∂Bλ0 > 1 if λ0 ∈ ∂U . For any neighborhood U of z0 ∈ ∂Bλ0 ,

f mλ0
(U ∩ ∂Bλ0) = ∂Bλ0

as m is sufficiently large. By Lemma 7.10,

dimH (U ∩ ∂Bλ0) = dimH f
m
λ0
(U ∩ ∂Bλ0) = dimH ∂Bλ0 > 1.

PROPOSITION 7.14. Let U ⊂ Hk be an escape component with order k ≥ 2. Then the
Hausdorff dimension of ∂U satisfies

1 < dimH ∂U < 2. (7.11)

Proof. Astala [Ast94] proved that the image of a set of Hausdorff dimension 1 under a
K-quasi-conformal homeomorphism has the Hausdorff dimension at most 1 + k, where
k = (K − 1)/(K + 1) < 1. It follows that any quasi-circle has the Hausdorff dimension
less than 2. So, dimH ∂U < 2 since ∂U is a quasi-circle by Corollary 7.8. It remains to
show that dimH ∂U > 1.

Choose a λ0 ∈ ∂U and let Dm = D(λ0, 1/m) for m > 0 large such that Dm ⊂ V ,
where V is given in Proposition 7.7. By Corollary 7.6, equation (7.7) holds, that is,

‖μ‖m,k := ess sup
λ∈Dm

|μ�k(λ)| → 0 as m → ∞.

Then, �k , as a quasi-regular map restricted on Dm, has its maximal dilatation

Km,k := 1 + ‖μ‖k,m

1 − ‖μ‖k,m
→ 1 as m → ∞. (7.12)

Let�k be the quasi-conformal homeomorphism defined in equation (7.8), let ηm,k be the
Riemann map from �k(Dm) onto D, and let ξm(λ) : Dm → D be the affine map defined
by ξm(λ) = m(λ − λ0). Then, �̃m,k : D → D defined by �̃m,k := ηm,k ◦�k ◦ ξ−1

m is a
quasi-conformal homeomorphism. It has the same maximal dilatation as�k since φ∞(λ0),
ηm,k , and ξm are all conformal. By Theorem 7.11 and Lemmas 7.9, 7.10,

dimH (∂U ∩ Dm) ≥ 1
Km

dimH(�k(∂U ∩ Dm)). (7.13)
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By Corollary 7.13, there exists a constant c > 1 such that

dimH (�k(∂U ∩ Dm)) = dimH (Um,k ∩ ∂Bλ0) = dimH ∂Bλ0 ≥ c > 1,

where Um,k = �k(Dm) is a neighborhood of z0 := �k(λ0) ∈ ∂Bλ0 . Since Km → 1 as
m → ∞, then dimH (∂U ∩ Dm) > 1 for m large enough. Hence,

dimH ∂U ≥ dimH (∂U ∩ Dm) > 1.

Proof of Theorem 1.1. The proof is a combination of Corollary 7.8 and
Proposition 7.14.
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