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The repayment of financial debt: some
mathematical considerations

JOHN STUBBS and JACOB ADETUNJI 

1.  Introduction
This paper focuses on the mathematics behind the repayment of

financial debt. The availability of credit, the inevitable accompaniment of
which is debt, is an essential component of a monetised economy. Without it
most people would not be able to purchase large items like homes, cars and
other expensive consumer durables. Businesses would not expand and
prosper without access to credit. However, the debt incurred by the
availability of credit can also bring huge stress, and indeed distress, from
personal and commercial insolvencies to the inhumanities of debt bondage
associated with modern-day slavery and human trafficking.  The historical
origins of debt lie in antiquity and even pre-date the existence of monetised
economies [1]. 

Since the global financial crash of 2008, concern has been expressed in
both the UK and the USA over the level of debt burden on personal finances
[2, 3, 4, 5]. According to both the IMF [6] and UNCTAD [7], the covid-19
pandemic has substantially increased debt levels across virtually all
countries.  The UK debt counselling charity, StepChange, reported in 2020
the increasing indebtedness of many households from loss of income due to
the pandemic [8]. In 2021 the Bank of England reported that, while the UK
household debt burden had not increased in general during the pandemic,
the share of households reporting financial difficulty had started to increase,
particularly for households with unsecured loans [9]. Then, with the war in
Ukraine starting in 2022, global investment managers Fidelity International
reported in May 2022 that the resulting higher energy prices and food
scarcity, particularly lack of sunflower oil, could have serious implications
on the creditworthiness of many already indebted borrowers [10].  In the
USA, the Congressional Research Service argued that during the pandemic
levels of personal debt default were mitigated by loan forbearance
agreements enabling temporary suspension, but not cancellation, of
repayments [11]. With increasing levels of debt there is then the attendant
risk of defaulting on the debt repayment, with major implications for both
lender and borrower.

In view of the adverse social consequences of unsustainable debt, it is
worthwhile to examine the mathematics behind debt or loan repayment.
Under UK consumer credit protection and Truth in Lending legislation in
the USA, financial institutions, if approached for a loan of capital, will quote
the following:
(i) periodic repayments required for a given interest rate and term (time

duration) of repayments
(ii) term of the loan for a given interest rate and periodic repayments
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(iii) cumulative interest paid on the debt for a given repayment over a
specified term and annual interest rate (the finance charge)

(iv) annual (nominal) interest rate levied for a given periodic repayment
over a specified term.

This paper derives the equations that determine these four quantities and
then continues to model the effects of repayment deferral and loan
forbearance arrangements on the levels of interest paid by the borrower.
While derivations of the necessary equations can be found at various places
within most texts on financial or actuarial mathematics e.g. [12, 13, 14], the
contribution of this paper is to bring all the relevant equations together
within a single work for readers who are not familiar with the specialised
notation employed in financial (actuarial) mathematics. Algebraic formulae
are also developed to construct debt repayment (amortisation) schedules and
numerical examples are given in the use of the derived equations.

It is recognised that different methodologies can be used to repay debts
and these can result in different repayment schedules, as exemplified in [13].
The most common method used by financial institutions, and the one
adopted here, is repayment by equal instalments made over a specified
period of time—a fixed (or level) annuity in actuarial terms.  It is further
assumed that all debt repayments are made at the end of each repayment
period, as is often the case in practice, and that interest rates remain the
same throughout the term of the loan.

The mathematical analysis presented here is similar to that given in [15]
and [16] on the financing of pensions and end-of-life care respectively. Here
however, in focusing on financing debt, attention shifts to a critical social
issue that can seriously impact adults in all age ranges but particularly
younger people, often with long-term adverse consequences.   Finally, it
should be noted that none of the mathematical modelling presented should
replace the need for independent professional debt counselling. 

2.  Notation

Capital borrowed (debt): A0

Total number of repayment periods: n
Outstanding debt (principal) after time (repayment) periods   Ai i ∈ {0,1,2… }
Interest paid after time (repayment) periods    Ii i ∈ {0,1,2… }
Repayment periods per annum: k
Repayments per time period: Pk

Interest conversions per annum:   K 1 ≤ K < ∞
Annual rate of interest: ra

Interest rate per repayment period: rk
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3.  The debt repayment model
As detailed in [15], the accumulated value of 1 unit of capital at  per

cent per interest period at the end of  interest periods is  and the
accumulated value of 1 unit of capital at  per cent per annum compounded

 times is .  When the two are equivalent

rk
k (1 + rk)k

ra

K (1 + ra
K )K

(1 + rk)k = (1 +
ra

K )K

,  from which  rk = (1 +
ra

K )K/k

− 1 (1)

and as  (continuous compounding) .K → ∞ (1 + rk)k → era

It may be noted that when  is known as the Annual Effective
Rate (AER) of interest, while  is the nominal rate or, when expressed as a
percentage, the Annual Percentage Rate (APR) of interest; (1) shows the
relationship between the two.

k = 1 rk
ra

Initially when  i.e. on debt evaluation date, the outstanding debt,
or total amount borrowed, is . Then after one, two and three successive
repayment period, or , ,   years:

i = 0
A0

1
k

2
k

3
k

A1 = A0 (1 + rk) − Pk

A2 = A1 (1 + rk) − Pk

= A0 (1 + rk)2 − Pk {(1 + rk) + 1}
A3 = A2 (1 + rk) − Pk

= A0 (1 + rk)3 − Pk {(1 + rk)2 + (1 + rk) + 1} .
After  repayments summing the resulting geometric seriesn

An = A0 (1 + rk)n − Pk
⎧
⎩⎨

(1 + rk)n − 1
rk

⎫
⎭⎬

. (2)

The following may be noted about (2):
- it expresses the outstanding debt (principal) after  repayments of .n Pk

- lending institutions generally quote interest rates as annual (nominal)
rates, so by substituting (1) into (2)  can be expressed in terms of .An ra

- it requires , as in the case of  money has no time value and
the debt is interest free, in which case .

ra ≠ 0 ra = 0
Pk = A0 / n

- it can be expressed as a recursive relation where after  time periods:i

Ai = Ai − 1 + Ai − 1rk − Pk (3)
and, by substituting (2) into (3) and rearranging, the following useful
equations are developed:
- the interest paid in each repayment period:

Ai − 1rk = rkA0 (1 + rk)i − 1 − Pk {(1 + rk)i − 1 − 1} (4)
- the debt repaid in any one repayment: 

Ai − 1 − Ai = (Pk − rkA0) (1 + rk)i − 1 (5)
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- the cumulative debt repaid after  repayments:i

A0 − A1 = Pk
⎧
⎩⎨

(1 + rk)i − 1
rk

⎫
⎭⎬

− A0 {(1 + rk)i − 1} . (6)

Equations (4), (5) and (6) are important for their use in the development of
debt amortisation schedules as shown below in the numerical example.

4.  Debt repayments
The debt is fully repaid, i.e.  amortised, when ; hence by

rearrangement of (2) repayments  are given by
An = 0

Pk

Pk =
rkA0 (1 + rk)n

(1 + rk)n − 1
. (7)

Monetary values can only be given to two decimal places, yet the precise
theoretical value of repayments arising from (7) may extend to an infinite
number of decimal places. Furthermore, there are then cumulative rounding
errors in the amortisation of the debt.  Consequently, a common commercial
practice is to round up repayments to the nearest whole unit of currency for

 repayments. The final,  repayment then is a smaller amount.  If
is the adjusted (rounded up) repayment for  repayments, then the final
repayment , with  and with the accrual of one repayment period
of interest, is given by

n − 1 n th PkA
n − 1

PkF PkF < PkA

PkF = An − 1 (1 + rk) ,
which from (2) gives

PkF = A0 (1 + rk)n − 1 − PkA
⎧
⎩⎨

(1 + rk)n − 1 − 1
rk

⎫
⎭⎬

(1 + rk) . (8)

5.  Term (time duration) of the repayments
The repayment periods  taken to amortise the debt in full are found

from rearranging (2) with 
n

An = 0

n =
ln (Pk) − ln (Pn − rkA0)

ln (1 + rk)
, (9)

from which it is required that —otherwise the repayments would
be insufficient to pay the interest on the capital loaned and so the debt would
increase and never be repaid.

Pk > rkA0

6.  Cumulative interest payable on the debt 
The cumulative (total) amount of debt (principal) repaid at time  is

given by (6) but the total amount of repayment made is . Hence the
cumulative interest  paid at time  is given by: 

i
iPk

Ii i

Ii = iPk − (A0 − Ai)
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which may more usefully be rearranged as

Ii = Ai − A0 + iPk, (10)
and substituting (2) into (10) gives

Ii = A0 {(1 + rk)i − 1} − Pk
⎧
⎩⎨

(1 + rk)i − 1
rk

⎫
⎭⎬

+ iPk. (11)

The following should be noted:
(i) on amortisation of the debt, when  and , (10) becomesi = n An = 0

In = nPk − A0

(ii) since it is required that  then it is seen from (11) that the use of
 will result in a slightly lower cumulative interest paid than with

since the raised monthly repayment pays off more of the debt slightly
sooner.

PkA > Pk
PkA Pk

7.  The annual rate of interest
Equation (2) has no explicit algebraic solution for . Rearranging (2),

again with , gives
rk

An = 0

rkA0 (1 + rk)n − Pk (1 + rk)n + Pk = 0; (12)
approximate graphical solutions or more accurate numerical solutions to
(12) (e.g. by the Newton-Raphson method) can be found as detailed in [17,
§8.4] and [18,  §3.9]. Having determined ,  is then found from
rearranging (1),

rk ra

ra = K {K (1 + rk)k − 1} (13)
or, in the case of continuous compounding,

ra = k {ln (1 + rk)} . (14)
Equations (7), (9) and (11), respectively, answer the questions (i), (ii), (iii)
posed in the introduction while (iv) is found from solving (12) for  then
using (1) to find the annual interest rate . Debt amortisation schedules can
be constructed from using (2), (4), (5), (6) and (11).

rk
ra

8.  Debt forbearance arrangements
Suppose debt repayments, initially negotiated to extend over  time

periods, are suspended at time  (i.e. after repayments) until time  with
. At time  repayments resume and continue until

amortisation of the debt.   Of particular concern here to both borrower and
lender, but maybe particularly to the former, is the interest (finance charge)
paid over the full term of the debt repayments.  Repayment levels of  are
used below, but equally , the upwardly adjusted level, could be used with
the only difference being slightly lower interest paid.

n
m t

0 < m < t < n t

Pk
PkA
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After repayments, the outstanding debt is given by

Am = A0 (1 + rk)m − Pk
⎧
⎩⎨

(1 + rk)m − 1
rk

⎫
⎭⎬

, (15)

where  is initially determined from (7) as if the debt would fully amortise
after all  repayments.

Pk
n

The total interest  paid on the first  repayments, from (10), is given
by

Im m

Im = Am − A0 + mPk. (16)
Substitution of (15) into (16) gives

Im = A0 {(1 + rk)m − 1} − Pk
⎧
⎩⎨

(1 + rk)m − 1
rk

⎫
⎭⎬

+ mPk.

At time  the outstanding debt  is given byt At

At = Am (1 + rk)t − m (17)
and the interest  paid during the forbearance period  isIt − m t − m

It − m = Am {(1 + rk)t − m − 1} . (18)
Since  the accumulated interest  at time , becomesIt = Im + It − m It t

It = Am (1 + rk)t − m − A0 + mPk, (19)
and substitution of (15) into (19) gives

It = A0
⎧
⎩⎨
(1 + rk)t − 1⎫

⎭⎬
− Pk

⎧
⎩⎨

(1 + rk)m − 1
rk

⎫
⎭⎬

(1 + rk)t − m + mPk.

Upon resumption of repayments at time  the debt needs refinancing in order
to amortise. Of the original debt repayment schedule there are still
time periods remaining.

t
n − t

Assume a new repayment level  (say) within the range .
With this new repayment level, a new loan term  (say), with ,
for the outstanding debt  has to be calculated using (7).  The resulting
value of  needs rounding down to the nearest integer value so as to
coincide with a repayment period.  There will then be  repayment periods
of , and a final, lower repayment based on the outstanding debt after
repayments.  Consequently, the debt amortises after a further
repayments made after time . Using (10), after  time periods the interest

 paid is

Qk At < Qk ≤ Pk
N N > n − t

At
N

N
Qk N

N + 1
t N

IN

IN = AN − At + QkN,
and after  time periods the interest paid isN + 1

IN + 1 = AN + 1 − At + Qk (N + 1) , (20)
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where  is found from (2) but with  replaced by . ConsequentlyAN + 1 n N + 1

IN + 1 = At {(1 + rk)N + 1 − 1} − Qk
⎧
⎩⎨

(1 + rk)N + 1 − 1
rk

⎫
⎭⎬

+ Qk (N + 1) .

Total cumulative interest paid on the entire debt is  i.e. (19) + (20),
which gives

It + IN + 1

It + N + 1 = Am(1 + rk)t − m − A0 + mPk + An+ 1 − At + Qk (N + 1). (21)
Substituting ,  and  into (21) gives after some algebra,Am At AN + 1

It + N + 1 = A0{(1 + rk)t + N + 1 − 1} − Pk (1 + rk)t + N + 1 −m⎧
⎩⎨

(1 + rk)m − 1
rk

⎫
⎭⎬

+ mPk

−Qk
⎧
⎩⎨

(1 + rk)N + 1 − 1
rk

⎫
⎭⎬

+ Qk (N + 1).

It may be noted further that:
(i) if the same level of repayment is made both pre- and post-forbearance

period then ,Pk = Qk

(ii) if there is no forbearance period then  and hence (21)
becomes (10), as required, but with  and  replaced by  and
respectively,

t = m = 0
N + 1 Qk n Pk

(iii) if demanded by either the lender or borrower, the annual interest rate
may change at time of refinancing the outstanding debt, but this is not a
necessity of the model.

ra

Figure 1 illustrates the time line for debt repayments under a forbearance
arrangement and shows the interest paid on the debt at different stages in the
extended repayment schedule. 

0 m t n N N+1

 time periodsm no. payments made
 time periods:

 time periods

A0

Im = Am − A0 + mPk
IN = AN − At + QkN

It = Am(1 + rk)t − m − A0 + mPk

IN +1 = AN +1 − At + Qk (N + 1)

 time periodsN + 1

n - t
t - m

FIGURE 1: Extended debt repayment time line in a debt forbearance arrangement
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9.  Debt deferral
If  but  then (17) becomesm = 0 t > 0

At = A0 (1 + rk)t , (22)
meaning that commencement of debt repayment is deferred by  time
periods: a deferred annuity. After a further  repayment periods

t
n

An + t = A0 (1 + rk)n + t − Pk
⎧
⎩⎨

(1 + rk)n − 1
rk

⎫
⎭⎬

(23)

and the interest  paid over the subsequent  time periods of repayment,
using (10) and (22), is given by

In + t n

In + t = An + t − A0 + nPk

= A0 {(1 + rk)n + t − 1} − Pk
⎧
⎩⎨

(1 + rk)n − 1
rk

⎫
⎭⎬

+ nPk. (24)

Since, under the assumptions of the model, repayments are at the end of
each time period (annuity in arrears), the first repayment made under this
arrangement is  periods after the time of debt evaluation.  It may
finally be noted that the interest paid in the above cases of forbearance and
deferral arrangements may usefully be compared with the situation in which
uninterrupted repayments are made from evaluation date through to
amortisation. Such a comparison enables the cost to the borrower of these
deferral or forbearance arrangements to be fully appreciated and is
undertaken in the following numerical example.

t + 1

10.  Numerical example
A borrower owes £10,000 ( ) to be repaid monthly

.  Table 1, with the appropriate equation number, gives
A0 = £10,000

(k = 12)
(i) the monthly repayment level  at 5% annual interest ( ) over a

term of 5 years ( ),
Pk ra = 0.05

n = 60
(ii) the term  of debt repayment with monthly repayments of £200

 at 5% annual interest,
n

(Pk = 200)
(iii) the cumulative interest  paid with 5% annual interest and monthly

repayment level as set in (i), over a term of 5 years,
In

(iv) the annual percentage interest rate (APR), which is , with
monthly repayments of £200 over a term of 5 years.

100 × ra

Each result is given for four different interest conversion periods: annual,
quarterly, monthly and continuous.

https://doi.org/10.1017/mag.2023.51 Published online by Cambridge University Press

https://doi.org/10.1017/mag.2023.51


212 THE MATHEMATICAL GAZETTE

 Interest conversion periods

 Equations
used

  
(annual)
K = 1   

(quarterly)
K = 4    

(monthly)
K = 12   

(continuous)
K → ∞

(i)   Pk 7 188.20 188.62 188.71 188.76

(ii)   n 9 56.02 56.15 56.18 56.20

(iii)   In 11 1292.24 1317.05 1322.74 1325.61

(iv)  100ra 12, 13, 14 7.68 7.47 7.42 7.40

TABLE 1: Repayment details on a debt of £10,000 repaid monthly

Table 2 gives the first six iterations of the Newton-Raphson method for
solving (12) from which, by use of (13) and/or (14) the annual interest rates
can be determined.  In each case the results are given in Table 1  for annual,
quarterly, monthly, and instantaneous interest conversion periods: ,

,  and , respectively.
K = 1

K = 4 K = 12 K → ∞

 rk 1 2 3

0.00550 -1.50810 1872.75824 0.00631

0.00631 0.31831 2675.09390 0.00619

0.00619 0.00734 2552.05447 0.00618

0.00618 0.00000 2549.10172 0.00618

0.00618 0.00000 2549.10001 0.00618

0.00618 0.00000 2549.10001 0.00618

TABLE 2: Newton-Raphson iterations for finding  where ,  and  arerk 1 2 3

,1 : f (rk) = rkA0 (1 + rk)n − Pn (1 − rk)n + Pk

,2 : f (rk) = A0 (1 + rk)n + nrkA0 (1 + rk)n − 1 − nPk (1 + rk)n − 1

.3 : rk −
f (rk)
f ′ (rk)

If the monthly repayments in Table 1 corresponding to each of the four
interest conversion periods are rounded up from £188.20 to £189.00

 then there will be 59 repayments of this amount with final
monthly repayments  being given in Table 3 for the four interest
conversion periods under consideration.

(PkA = 189.00)
PkF
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 Interest conversion periods

 Equations 
used K = 1 K = 4 K = 12 K → ∞

Pk 7 188.20 188.62 188.71 188.76

PkA  189.00 189.00 189.00 189.00

PkF 8 135.02 163.01 169.44 172.68

TABLE 3: Final  monthly repayments when previous  repayments are
rounded up.

n th n − 1

Tables 1 and 3 show that the compounding frequency  per annum
makes only a marginal difference to the repayment amounts . The utility
however of providing such information is that it allows the borrower, faced
with a given repayment level, to ascertain what interest compounding
frequency is being applied by the lender even though such information
might not be provided by the lender in the loan agreement.   By contrast,
Table 1 shows that, the cumulative interest  paid on the debt rises more
substantially with increasing frequency of compounding. A final point to
note regarding the levels of final repayments  shown in Table 3 is that the
value of £135.02 for  appears inconsistently lower than other values
of . The reason for this is that  is not a linear function of  but rather
an inverse exponential (logarithmic) function. 

K
PK

In

PkF
K = 1

PkF PkF K

In Figure 2, the increasing repayment levels, derived from using
equations (1) and (7), on a £10,000 debt are shown for annual interest rates

 in the range  taken at 0.5% intervals. Only annual ,
and instantaneous interest conversions  are shown and the
closeness of the two lines indicates the marginal difference interest
compounding frequency makes to repayment amounts. 

ra 1 ≤ ra ≤ 10 (K = 1)
(K → ∞)

1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 9.0 9.5 10.0 (%)

250

200

150

100

50

M
on

th
ly

 re
pa

ym
en

ts

Annual interest rates

K = 1

K → ∞

Annual interest conversion

Instantaneous interest conversion

 FIGURE 2: Monthly repayments on a £10,000 debt over a 5 year term with annual
interest rates between 1 and 10 percent. Interest conversion periods shown are annual

and instantaneous.
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For the case of annual interest conversion , the most commonly
used in commercial practice, the first and last few lines of a debt repayment
(amortisation) schedule are shown in Table 4. Note that the outstanding debt
on the 60th repayment is negative because a 60th repayment of £189.00
would overpay the debt by £53.98, hence the reduced final monthly
repayment of 2.

(K = 1)

£189.00 − £53.98 = £135.0

59 monthly payments: 189.00

60th (final) payment:  135.02

Payment Cumulative 
interest 
at 5% pa

Cumulative
principal 
repaid

Principal
repaid

Payment 
period 
interest
at 5% pa

Outstanding
principal 

n
(eq. 10)

Ij = Ai − A0 + iPk  
(eq.6)

A0 − Ai
(eq. 5)

Ai −1 − Ai
(eq. 4)

rk ∗ Ai −1
(eq. 2)
An

0     10000.00

1 40.74 148.26 148.26 40.74 9851.74

2 80.88 297.12 148.86 40.14 9702.88

3 120.41 446.59 149.47 39.53 9553.41

: : : : : :

58 1284.16 9677.84 186.93 2.07 322.16

59 1285.47 9865.53 187.69 1.31 134.47

60 1286.02 10053.98 188.45 0.55 -53.98

TABLE 4: Amortisation schedule for debt of £10,000 at 5% annual interest repaid
over 60 months

Suppose in the above example that the borrower arranges for a cessation of
repayments after two years  for six months : a
forbearance arrangement.  Figure 3 shows the increase in cumulative interest
paid (finance charge) on the debt, again for annual interest rates  in the
range  and taken at 0.5% intervals.  Only annual interest
conversion  is considered.  The four situations exhibited in Figure 3
are as follows:

(m = 24) (t − m = 6)

ra
1 ≤ ra ≤ 10

(K = 1)

(i) there is neither a deferral nor a forbearance arrangement in place
. This is found from (10) and presented just for

comparative purposes with (ii), (iii) and (iv) below,
(m = t = 0)

(ii) post forbearance, the term  of the original repayment schedule is
recalculated, using (9), and extended but keeping the same level of
repayments ,

n

(Pk = Qk = £188.20)
(iii) the repayment level  after the forbearance period is reduced to

£150.00 per month with, again, the term being recalculated from (9)
Qk
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,(Qk = £150,00)
(iv) there is no forbearance period but the commencement of repayment is

deferred for six months  from debt evaluation date.(m = 0, t = 5)
Situations (i) and (iv) are shown in the Figure 3 using (11) and (24)
respectively while situations (ii) and (iii) both use (21).  It is readily seen in
Figure 3 how the amount of interest paid (finance charge) rises with both
deferral and forbearance arrangements as well as with increasing annual
interest rates. While these rises in amounts of interest paid might be
expected, the example shown here illustrates the extent of the increases
using the mathematical model developed. Any interruption of debt
repayment, whether through deferral or forbearance, increases the
cumulative interest paid and this, as Figure 3 shows, becomes particularly
marked as annual interest rates rise.
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FIGURE 3: Cumulative interest (finance charge, £) paid on debt repayments under
forbearance, deferral and uninterrupted arrangements on a debt of £10,000.

11.  Discussion and conclusion
With the debt repayment model derived above, the periodic repayments,

term, cumulative interest and APR can be found for any size of debt.  The
equations that underpin debt amortisation schedules have also been derived.
The utility of these equations lies in the ability they give to intending
borrowers to cross-check their repayment schedule with that provided by the
lending institution.  As stated earlier, the debt repayment methods presented
in this paper are the most usual standard ones applied in the financial industry
but they are not the only ones. Nevertheless, through the use of the equations
presented here, borrowers will be able to gain a clearer perspective on the
type of financial commitment which they are about to undertake.

While constant interest rates have been assumed throughout the term of
the debt repayments, the use of a range of annual rates in the numerical
example shows how the interest paid (finance charge) increases with the
higher levels of interest levied on the debt.  The higher rates of interest may
be particularly pertinent to those seeking unsecured credit given the greater
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risk of debt default, as indicated in the introduction.
The paper has shown further how measures to ease the burden of debt

through deferral of repayments and/or the arrangement of debt forbearance
periods (payment holidays) only increase the borrowing cost through the
raised levels of interest that have to be paid on any outstanding debt.
Application of the equations derived above enable the borrower to provide a
numerical calculation of the cost of extending the term of the indebtedness.
Hence the financial consequences of prolonged indebtedness become
apparent while recognising that this may be the only remedy to avoid
complete debt default.

The financial upheavals from the covid-19 pandemic and the war in
Ukraine referred to earlier are indeed only likely to exacerbate the adverse
consequences of prolonged financial indebtedness.  With almost everyone
across the world encountering financial debt at some stage in their lives and
given the onerous burden debt can place on people, the ability to calculate
the full financial liability incurred can only be of assistance to understanding
personal finance.  However, it must again be emphasised that the ability to
undertake these calculations should not be taken as any indication of the
advisability of incurring debt.
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