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Abstract We rewrite in modern language a classical construction by W. E. Edge showing a pencil of
sextic nodal curves admitting A5 as its group of automorphism. Next, we discuss some other aspects
of this pencil, such as the associated fibration and its connection to the singularities of the moduli of
six-dimensional abelian varieties.
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1. Introduction

In 1895 [14], A. Wiman exhibited the equation of a genus 6 nodal plane sextic W
admitting an S5 action. The equation is:
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In 1981 [6], this sextic attracted the interest of W. L. Edge, who studied not only W
itself, but also a pencil of nodal sextics admitting an action of A5 and having as one of
its members Wiman’s sextic. Moreover, he found a more symmetric equation for W in a
different system of coordinates:

W : x6 + y6 + z6 + (x2 + y2 + z2)(x4 + y4 + z4) − 12x2y2z2 = 0.

Later on, González-Aguilera and Rodŕıguez [8] rediscovered many of Edge’s results and
intended to construct, from the above-mentioned pencil, a semistable pencil with only
three singular members.

Wiman’s sextic and the associated Wiman–Edge pencil are also discussed in several
other texts. In [3,5,11], its relationship with the automorphism group of the degree 5
Del Pezzo surface (i.e. the rational surface obtained as the blowing-up of four points in
general position in P

2) is explained. This relationship was also noted by Edge. In fact, the
rational action on P

2 described at the beginning of the next section can be regularized by
passing to the induced action on the Del Pezzo surface. In these references, the regular
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402 A. G. Zamora

action of A5 (which is the complete group of automorphism of the Del Pezzo surface) is
studied in detail, its character is computed, and it is shown how we can obtain from this
explicit equations for Wiman’s sextic. In [2] it is proved that suitable 125 : 1 covers of
the curves in the Wiman–Edge pencil parametrize families of lines in the Dwork pencil,
the pencil of quintic threefolds given by:

4∑
i=0

x5
i − 5tx0x1x2x3x4 = 0.

In [15], another pencil of sextics invariant under A5 is studied, of which Wiman’s sextic
is also a member (see also [5, Remark 9.5.4]).

The aim of this note is to rewrite Edge’s results in more modern terms and style, and
to restate more accurately, in the light of fibration theory, the statement of Theorem 1
in [8]. We also include an application of Edge’s pencil to the study of the singular locus
of A6 (moduli of principally polarized six-dimensional abelian varieties).

In contrast to [6,11] (another attempt to present Wiman’s sextic in a modern way),
our discussion about Edge’s pencil avoids the use of cross ratios and is entirely based on
analytical projective geometry (i.e. linear algebra).

Little originality can be claimed for this paper. Our only contribution is rewriting in a
(hopefully) more modern language the original and beautiful geometric construction by
Edge, and showing how this pencil provides interesting examples in different problems of
algebraic geometry, besides its own importance for the theory of curves admitting large
automorphism groups.

2. The Wiman–Edge pencil

Fix four points ei, i = 1, . . . , 4 in P
2(C) in general position (we can assume once and for

all that they are the standard frame of reference). Consider the subgroup of birational
automorphisms of P

2 generated by linear automorphisms fixing one of the ei and quadratic
transformations Qi fixing one ei, and having a fundamental triangle determined by the
remaining points. This group turns out to be the symmetric group S5. Indeed, to this
configuration we can associate five pencils of curves: the pencils αi, i = 1, . . . , 4 of lines
passing through ei and the pencil α5 of conics having {ei}i=1,...,4 as base locus. Then our
group acts as the complete set of permutations of this set of five elements.

In this way, if we denote by Li the linear transformation fixing ei and permuting
cyclically the other three points, then Li represents the 3-cycle (lkm), l, k,m �= i, and Qi

represents the transposition (i5).
Each linear automorphism Li determines two distinguished directions (and thus two

lines mi and m′
i through ei) given by the eigenvectors of Li associated with eigenvalues

different from 1. If X is a curve having a node at ei and invariant under Li, then, because
of the invariance, its tangent lines at ei must be precisely mi and m′

i.

Lemma 2.1. Two reducible curves, C and C ′, exist, invariant under the above-
described action of A5. Both curves are the product of an irreducible conic and four
lines.
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Proof. Consider the only conic Ω in α5 having tangent m4 at e4. A simple compu-
tation, using explicit coordinates and associated matrices, shows that its tangents at ei,
i = 1, 2, 3 are some of the distinguished lines that will be accordingly denoted by m1,m2

and m3. Then C := Ω
∏4

i=1 m′
i are A5-invariant as can be checked by computing the

action of 3-cycles. We can construct similarly C ′ = Ω′ ∏4
i=1 mi starting from the unique

conic Ω′ in α5 having tangent m′
4 at e4. �

Definition 2.2. The pencil E : λC + λ′C ′ is called the Wiman–Edge Pencil.

Thus, the general element of E is a plane sextic having nodes at ei with fixed tangents
mi, m′

i. In particular, the nodes at ei are part of the base locus of E. The remaining 12
base points, being determined just like the intersections of C with C ′, clearly correspond
to the intersections of mi with m′

j . In order to determine other reducible members of E,
denote by lij the line joining ei and ej . Then we have the following lemma.

Lemma 2.3. The product Π :=
∏

i,j lij is a member of E.

Proof. We need to prove that Π contains the base locus of E. For this, it would
be sufficient to check that the lines mi and m′

j intersect in a point on llk, with {i, j}
complementary to {l, k} in {1, 2, 3, 4}, and that the same holds for m′

i and m′
j .

Indeed, if we fix coordinates such that e1 = (1 : 0 : 0), e2 = (0 : 1 : 0), e3 = (0 : 0 : 1)
and e4 = (1 : 1 : 1), then the matrix representing L4 is:

⎛
⎝

0 0 1
1 0 0
0 1 0

⎞
⎠ .

The lines m4, m′
4 are given by the lines joining e4 and the eigenvectors of L4 not

corresponding to the eigenvalue 1, and are in accordance expressed as:

m4 : x + ωy + ω2z = 0 m′
4 : x + ω2y + ωz = 0.

A similar computation shows that

m1 : ωy + z = 0 and m′
1 : ω2y + z = 0.

Thus, the intersections of m4 and m′
1 and m′

4 and m1 occur in points on the line:

l23 : x = 0. �
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Note that Π is invariant not only under the action of A5 (as C and C ′ are), but in
fact under the action of S5. This can be proved readily by considering the action of
transpositions.

Now, we are in a position of proving the following.

Proposition 2.4. (i) All the curves in E are invariant under the A5 action.

(ii) 〈φ〉 = Z2 � S5/A5 acts on E interchanging C and C ′.

(iii) There exists another sextic W in E that is invariant under the action of S5.

Proof. (i) The actions being linear on C and C ′, it follows from the fact that these
two curves generate the pencil.

(ii) This is just an explicit computation of the action of (12).

(iii) Consider the line determined by E in P(H0(P2,O(6)). On this line 〈φ〉 acts
interchanging C and C ′. The quotient by the action determines a 2 : 1 cover
of P

1:

Thus, we must have two ramification points, one of them corresponding to Π, and a
second one that is the desired sextic W . �

Definition 2.5. The sextic W , invariant under the action of S5, is the Wiman sextic.

So far, we have determined the existence of three reducible members of E. Probably
more subtle is the existence of a pair of irreducible rational curves R,R′ in E having 10
nodes (see also [8, Lemma 2] and [4, Theorem 6.2.9]).

Proposition 2.6. Two elements R, R′ exist in E admitting at least 10 nodes.

Proof. Denote by p the intersection point of l23 and l14 and by q the intersection of l13
and l24. The line L determined by p and q is invariant under the involution σ := (14)(23),
and the points p and q are fixed by σ.
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Some remarks on the Wiman–Edge pencil 405

Intersections with elements of E give a 6 : 1 covering of P
1, which factorizes through

the quotient by σ:

The ramification points of γ correspond to elements of E having non-transversal
intersection with L.

Given a point x ∈ L, let E be the element of E intersecting L at x. If E is non-singular
at x, then the tangent line TxE is sent under σ to Tσ(x)E. Thus, σ induces a rational
involution (undefined if x is a singular point of E) on the set of tangent lines

{TxE | E ∈ E, x ∈ L}.
This determines an invariant subspace for the action of σ on (P2)∨. Computing the

eigenspaces of σ, this subspace is readily identified with the set of lines passing through
the point r given by the intersection of l12 and l34. In other words, if TxE is well defined,
it must be a line passing through r.

We conclude that all the ramification points of γ are given by intersections of L with
singular points of elements of E. This set of singular points is invariant under the action
of σ, and therefore they occur as pairs of singular points of the same member of E (except
for the fixed points p and q). Moreover, the same construction can be done interchanging
the roles of p, q and r. Therefore, and owing to the invariance under A4, if a curve E ∈ E

has singular points on L, it must have six singular points apart from the four nodes
corresponding to the base locus of E.

We can now determine the ramification points of γ: C, C ′ and Π contribute with six
simple ramification points. There remain four ramification points to be counted with
multiplicity. By the previous discussion, they must correspond to the intersection with
L of a pair R, R′ of curves in E having each two singular points of multiplicity two on
L, and thus six singular points aside from the four on the base locus of E. Using the
invariance under A4, we can see that R and R′ are irreducible and the singular points
are actually nodes. �

In the next section, it will be shown that C, C ′, Π, R and R′ are the only singular
members of E.

Note that the rational action described in this section gives rise to the total auto-
morphism group of the Del Pezzo degree 5 surface obtained by blowing up the points
ei, i = 1, . . . , 4. Almost all the results we have explained here are proved by a different
method in [3, Theorem 6.2.9]. See also [5, § 8.5.4] and [8]. We have tried here to translate
Edge’s original arguments into the language of linear projective algebra.

3. The associated fibration

We can construct a fibration f : X → P
1 obtained from E by the standard procedure of

resolving the base locus of E. This will be a genus 6 fibration in the sense that its general
fibre will be a non-singular genus 6 curve.
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For this, we need to perform a blowing-up centred at each of the 12 simple points of
the base locus, the situation being more complicated for the points ei. In fact, as the
general curve in E has nodes at ei with fixed tangents mi, m′

i, after blowing up ei we
obtain an induced pencil Ẽ with two base points, one in each point of the exceptional
divisor corresponding to the directions mi and m′

i.
Thus, we need to perform a new blow-up centred at each of these points. In this way,

X is obtained after a total of 12 + 3 × 4 = 24 blow-ups.
We conclude that X is a rational surface with

K2
X = 9 − 24 = −15 e(X) = 3 + 24 = 27.

Now, being f a genus 6 fibration, the total number δ of nodes on the fibres of f must
satisfy:

e(X) + 4(g − 1) = 27 + 20 = 47 ≥ δ.

Denoting by F̃ the proper transform of a sextic F in E, the bound 47 is achieved by
the following.

• C̃ contributes with 10 nodes. The same is valid for C̃ ′. The total contribution of these
two fibres is 20.

• R̃ and R̃′ contribute with at least six nodes each, giving a total of at least 12.

• Π̃ contributes with 15 nodes.

We conclude that these nodes are all the singular points in the fibres of f . Thus, f is
a semistable fibration and has exactly five singular fibres.

The dual graphs of the singular fibres are the following:

R, R̃′ the six petal flower C̃, C̃ ′ The Pentacle or K5 Π̃ Petersen’s graphs

So far, the conclusions are as follows.

Theorem 3.1 ([6, 8]). Let E be the Wiman–Edge pencil and f : X → P
1 its associ-

ated fibration. Then f is a semistable fibration with exactly five singular fibres. All the
irreducible components of the singular fibres are rational curves, and their associated dual
graphs can be described as: two six-petal flowers (corresponding to irreducible rational
curves), two pentacles (corresponding to the union of five (−4)-rational curves) and one
Petersen’s graph (corresponding to the union of 10 (−3)-rational curves).

https://doi.org/10.1017/S0013091517000232 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091517000232


Some remarks on the Wiman–Edge pencil 407

Theorem 3.1 is important in the context of the following problem. Let f : X → P
1 be

a semistable non-trivial fibration; what is the minimal number of singular fibres? If s
denotes the number of singular fibres of f , then we have the following theorem.

Theorem 3.2. Let f : X → P
1 be a semistable non-trivial fibred surface, and assume

the general fibre of f is a genus g curve. Denote by s the number of singular fibres of f .
Then we have the following:

(i) s ≥ 4 ([1]),

(ii) if g ≥ 2, then s ≥ 5 ([12]).

Thus, the Wiman–Edge fibration gives (another) example of a fibration with the min-
imal possible number of singular fibres (see [12]). For other results and examples related
to this problem, see [13].

The example provided by the pencil E seems to corroborate that having a minimal
possible s could be related to the fact that the singular fibres are the union of rational
curves.

The title of the paper [8] suggests the existence of a semistable fibration with only
three singular fibres. This is, in fact, the assertion of Theorem 1.

The argument used in that paper is the following: using the notation in § 1, consider
the involution (12); this involution acts on the curves in E, leaving fixed W and Π and
interchanging C and C ′ and R and R′. Thus, making ‘the quotient’ for the action of (12)
on the set of curves in the pencil, we obtain a pencil with only three singular members:
the classes of C, R and Π. The problem here is that if we want to consider the alluded
quotient as a subvariety of the moduli of semistable 6 genus curves, it must be constructed
from an action on an algebraic variety, and not only on the set of fibres of the pencil.

Thus, in order to construct this quotient, we need to consider the automorphism σ
induced in X by (12), make the global quotient Y of X by this automorphism and
consider the resulting fibration f̄ :

The image of W̃ under π is therefore the quotient W ′ := W̃/σ. Now, the ramifications of

π : W̃ → W ′

are induced by the intersections of W with the line L12 : x = y. These give in principle a
total of six ramification points, but L12 contains the points e1 and e4 that transform in
W̃ to non-fixed points of σ. In other words, the involution (12) interchanges the tangent
lines m1 and m′

1 and m4 and m′
4, as simple computations show. In this way, π : W̃ → W ′

has only two ramification points and Riemann–Hurwitz gives gW ′ = 3. As f̄ is a genus 6
fibration, we conclude that W ′ appears with multiplicity 2 as a fibre of f̄ .

The conclusion is as follows.
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Proposition 3.3. Let σ be a the automorphism of X induced by (12). The quo-
tient Y � X/σ is a non-singular surface, and the associated fibration f̄ : Y → P

1 is
non-semistable and has exactly four singular fibres, one of them (corresponding to the
quotient of the Wiman sextic W ), is a 2-multiple of a non-singular genus 3 curve.

That Y is non-singular follows from the fact that σ is a pseudo-reflection (it is indeed
induced by a reflection!) [4]. In [7] a classification of non-semistable pencils admitting
only three singular fibres can be found.

4. Singular locus of A6

Let Ag be the moduli space of g-dimensional principally polarized abelian varieties
(PPAV). It is well known that the singular locus of this variety corresponds to abelian
varieties with non-trivial automorphisms. In a series of papers [9,10], the following result
was proved.

Theorem 4.1. Irreducible algebraic subvarieties Ag(p, α) ⊂ Ag exist, parametrizing
abelian varieties X admitting an order p automorphism α with a fixed-type action αΛ on
the lattice Λ defining X.

Much more information can be given about the structure of these subvarieties. For
instance, if

dα : T0X → T0X

denotes the analytical representation of the automorphism α, then in suitable basis

dα = diag(In0 , ξIn1 , . . . , ξ
p−1Inp−1),

and

dim Ag(p, α) =
n0(n0 + 1)

2
+

(p−1)/2∑
i=1

ninp−i.

Returning to the pencil E, we have naturally associated the pencil JE of PPAV consist-
ing of the Jacobians of elements of E (it is better to say the closure of the Jacobian locus
of general elements in E). For a general curve C ∈ E, the total group of automorphisms
of C is Aut(C) = A5, which coincides with Aut±(JC), the quotient of Aut(JC) by {±1}.

Consider the irreducible varieties A6(3, α) and A6(5, β) associated with the actions of
the 3-cycle α = (123) and the 5-cycle β = (14532), respectively. The analytical action dα
on an element of JE, and thus on every element of A6(3, α), can be computed as the
action of α on the tangent space of a general JC ∈ JE, and analogously for β. On the
other hand, this tangent space is identified with H0(C,ωC). According to the classical
theory of adjoint linear systems, H0(C,ωC) is given by the space of plane cubics passing
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through the nodes ei. A basis for this space is given by:

{Bij : xox1x2 − x2
i xj = 0}i<j,0≤i,j≤2.

An explicit computation for this action gives that the diagonal form is:

dα = diag(I2, ωI2, ω
2I2),

with ω a primitive 3-root of 1. From this follows that:

dim A6(3, α) = 7.

Analogously we obtain:
dβ = diag(I2, ξ, ξ

2, ξ3, ξ4),

with ξ a primitive 5-root of unity and from this

dim A6(5, β) = 5.

Theorem 4.2. Assume the previous notation. Then:

(i) A6(3, α) and A6(5, β) are irreducible components of SingA6,

(ii) A6(3, α) and A6(5, β) intersect exactly on the Edge–Wiman locus JE,

(iii) the general element of A6(5, β) is not a Jacobian variety.

Proof. The proofs of the first two assertions are computations on the local complete
algebras Oα and Oβ pro-representing the local deformation functor associated with the
automorphisms α and β (for general facts and notation see [9,10]).

Let [X] ∈ A6(3, α) (respectively A6(5, β)) be a general element. Fix in T0X the basis
induced by the cubics Bij . Let Tα and Tβ be the matrices determined by the relations:

dαTdαt = T and dβTdβt = T

in O = C[[tij ]]. Then:

Tα =

⎛
⎜⎜⎜⎜⎜⎜⎝

t11 t12 t13 t14 t14 t16
t12 t22 t23 t16 t13 t23
t13 t23 t22 t12 t16 t23
t14 t16 t12 t11 t14 t13
t14 t13 t16 t14 t11 t12
t16 t23 t23 t13 t12 t22

⎞
⎟⎟⎟⎟⎟⎟⎠

and

Tβ =

⎛
⎜⎜⎜⎜⎜⎜⎝

t11 t11 t11 t14 t14 t16
t11 −t11 − t25 −t11 − t14 0 t25 −(t14 + t16 + t25)
t11 −t11 − t14 −t11 − t25 t25 0 −(t14 + t16 + t25)
t14 0 t25 −2t25 t14 t25
t14 t25 0 t14 −2t25 t25
t16 −(t14 + t16 + t25) −(t14 + t16 + t25) t25 t25 t66

⎞
⎟⎟⎟⎟⎟⎟⎠

.
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First of all, note that the normalizer of α in A5 is the subgroup of order 6, isomorphic
to S3 and generated by α and τ := (23)(45).

Now, denote by G = Aut+(X) the automorphism group of X modulo {±1} for X ∈
Ag(3, α) a general element. It follows from [10], Lemma 2.2, that |G| = 2k3l, but given
G ≤ A5 the only possibilities are |G| = 12, 6 or 3. We want to prove that |G| is in fact
equal to 3.

Assume |G| = 6. In this case, 〈α〉 is the only order 3 subgroup of G and 〈α〉 � G.
Therefore

〈α〉 = NG(〈α〉) = NA5(G) = 〈α, τ〉,
τ denoting the order 2 element (23)(45).

In this case, we must have an inclusion A6(3, α) ⊆ A6(2, τ).
On the other hand, τ is represented, in the fixed basis, by the matrix

dτ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 0 0
0 0 0 0 0 1
0 0 1 0 0 0
1 0 0 0 0 0
0 0 0 0 1 0
0 1 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

If τ ∈ G, then the identity dτTαdτ t = Tα must hold in Oα. But a simple computation
shows that this is not the case, the equation given by the relation being t12 − t13 = 0.
The geometric interpretation of this fact is that A6(2, τ) intersects A6(3, α) along a
co-dimension 1 subvariety.

We must check now that |G| = 12 is also impossible. Note first that the number s3 of
3-Sylow subgroups of G must be 4. Indeed, s3 = 1 must imply that

12 = |NG(〈α〉)| | |NA5(G)| = 6.

In this way, G admits a unique subgroup of order 4, and we have G � A4, with A4 ≤ A5

realized as the subgroup fixing either 4 or 5. Thus, we must have either (14)(32) ∈ G or
(15)(23) ∈ G. A new simple computation in the local algebra deformation shows that
both cases are impossible. For instance, assume σ = (15)(34) ∈ G. Then:

A6(3, α) ⊆ A6(2, σ).

We have, always in the fixed basis:

dσ =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −1 0 0 0 0
−1 0 0 0 0 0
0 1 1 0 0 0
0 −1 1 1 −1 0
1 0 1 0 0 0
−1 0 −1 0 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

.

A computation shows that the entry (1, 1) of dσTαdσt is t22; this is different from t11,
which turns out to be the (1, 1) entry of Tα. We conclude that

dσTαdσt �= Tα,
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and the assumed inclusion is impossible. The case σ = (14)(32) ∈ G can be discharged
by a similar calculation, the matrix of dσ being:

dσ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 1 0 −1 −1
0 1 −1 −1 1 0
0 0 0 0 1 1
0 0 0 0 0 −1
0 0 1 1 0 0
0 0 0 −1 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

We now proceed under similar lines in order to prove that if G = Aut+(X) is the
automorphism group (modulo {±1}) of a general [X] ∈ A6(5, β) then, G is cyclic of
order 5. In this case, the order of G must be a divisor of |A5| = 60 and must be divisible
by 5. Moreover, by (ii) (whose proof is independent of these arguments), G �= A5. The
only possibility then is |G| = 10 and G isomorphic to the dihedral group D10. In this
case, we must have σ = (14)(23) ∈ G, and once again the computation of the relation

dσTβdσ = Tβ

implies that the inclusion A6(5, β) ⊆ A6(2, σ) is impossible.
For (ii), in order to compute the local equations of the intersection A6(3, α) ∩ A6(5, β),

we must find the ideal generated by

dαTβdαt = Tβ

in Oβ . The matrix representing dα is:

dα =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 1 0
0 0 0 0 0 1
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠

.

Thus, after a simple computation we obtain that the ideal of the intersection is Iαβ =<
tij >i,j �=1,4. Therefore, the dimension of the intersection is 1, and given that the Wiman–
Edge locus JE is contained in this intersection we conclude part (ii).

The proof of (iii) is a computation on dimensions of moduli spaces. We have previously
observed that dimA6(5, β) = 5. Assume that [X] ∈ A6(5, β) represents a Jacobian variety,
say X = JC, and consider the quotient of C by the action of β:

π : C → C0.

Then the genus of C0 coincides with the multiplicity of 1 as an eigenvalue in the induced
action on H0(C,ωC). Thus, by the choice of β, gC0 = 2, the Riemmann–Hurwitz formula
implies that π is unramified.

Thus, 6-genus curves admitting an Z5-action equivalent to β and contained in A6(5, β)
are parameterized by pairs (Y, η) with Y a genus 2 curve and η a 5-torsion point in JY .
Therefore, they have moduli 3 × 2 − 3 = 3. �
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