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1. Introduction. It is well known that the Laplacian
operator is the infinitesimal generator of Brownian motion in
R™. Moreover, the classical harmonic measures are the
hitting measures of Brownian motion. In other words, there
is a natural correspondence between the Brownian motion and
the classical harmonic functions. In this paper we will show
that any family of abstract harmonic functions satisfying the
axioms of M. Brelot [4] are annihilated by the infinitesimal
generator of a diffusion, and that the corresponding harmonic
measures are the hitting measures of the diffusion. This
answers a question raised by P. A. Meyer [11] who has proved
the existence of a Markov semi-group associated with a harmonic
sheaf. Using the diffusion associated with the harmonic sheaf
we will then obtain a probabilistic criterion for the regularity
of boundary points, and investigate the conditions under which
two harmonic sheafs have the same regular boundary points.

The main result of the paper is based on a previous paper
[6] in which, for a given family of hitting measures and mean
hitting times, an explicit construction of a diffusion is presented.
The discussion of regular points is based on the Cartan-Brelot-
Naim fine topology [5] and its probabilistic interpretation which
is due to E.B. Dynkin [8].

2. Preliminaries. Let Q be a non compact, locally
compact space with a countable base. Let Q =Q ' {®} be the
one point compactification of Q, and let T designate the class
of open subsets of Q.

We will use the language of sheaf theory without defining
all the terms. The definitions may be found in the book of
R. Godement [9].
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. A preharmonic presheaf is a mapping F from T to
U{C(UN Q) Ue T}, where C(U) is the vector space of
continuous functions on U, such that the following conditions
are satisfied:

(i) F(U) < C(UN Q);

v
(ii) if U C V, there exists a homomorphism pU :F(V)-F(U)

such that pg is the identity on F(U) and such that if UCVCW

then pV =p'o" .
Py “PuPv

(iii) if fe C(UN Q) and if for every V C U,
flVvN Qe F(V), then fe F(U);

(iv) if U is connected and if fn/’f and fn€ F(U), then

either f =+ or else fe F(U);
(v) the constant functions belong to F(U).

A function fe€ F(U) will be called a harmonic function on U.

Note that in his axiom system M. Brelot [3], [4], [5]
does not include (v). However he shows that for any harmonic
sheaf there is a related one in which the constant functions do
belong.

An open subset D of Q is called regular if it has non
null boundary 8 D and satisfies the conditions:
(i) for any finite continuous function f on 9D there

D
exists a unique function Hf of F(D) such that

lim H?(y) ={(x) for every x¢€ 0 D;
y>x

D
(ii) if £>0, Hf >0

(iii) D is connected.
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A harmonic presheaf is a preharmonic presheaf in which
there is a base of relatively compact regular sets for the
topology on Q. The associated sheaf of germs of a harmonic
presheaf is called a harmonic sheaf.

PROPOSITION 2.1. If fe F(U), then f has no minimum
or maximum in U. (M. Brelot [5].)

Let A designate the family of regular sets. Then if
Ue A and x€ U, Hf(x) is a positive linear functional on
8) . ‘s
C(9U). Hence H (x) defines a positive Radon measure on

the Borel subsets of 8 U which we will designate by hy U(x, .)

and HU(x) = f f(y) h
f
9uU
probability on 9 U with respect to the point x.

(x,dy). We call h_,_(x,.) the hitting

oU 9 U

A hyperharmonic function v(.) in an open set D is a real
valued function on D such that

(i) v(.) is lower semi-continuous,
(ii) v(.) > - oo,

(iii) for every regular open set UC U C D,

vix) > v(y) hy _(x,dy) .
= fa - U

PROPOSITION 2.2. (M. Brelot [4].) If a hyperharmonic
function is +% in the neighborhood of a point it is +% in the
connected component containing this point.

A function v(.) is said to be superharmonic in an open
set U if it is hyperharmonic in U and it is finite on an
everywhere dense subset of U.

Let v(.) be a superharmonic function which is defined
and bounded below in an open set U. Then there is a largest
harmonic minorant. If the largest harmonic minorant is 0
we say that v(.) is a potential.

The fine topology on Q is the least fine topology for

309

https://doi.org/10.4153/CMB-1965-021-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1965-021-4

which ail the superh:imonic functions are continucus. That is,

if x_  is a fine interior point of U, then U contains an open

0
neighborhood of X, oF else if contzins the interseciion of an
open reighborhood of X with a set of the form {x: v(x) < c}
where v(.) is a nonnegative superharmonic function with
v(xo) <c.

3. Blankets of Regular Sets. We now give a slightly
different introduction to the concept of a regular set. A bound: ry
point x_ of an open set D is said to be a regular boundary

0

point if there exists a superharmonic function v(.) such that

Iim v(x) =0 and v(x)>0 for x¢e DN where N is
- X xX

X%, 0 9

some neighborhood ci Xy

v(.) is called a barrier at xo.

H. Bauer [1] has shown that if every boundary point of a
domain D is a regular boundary point then the set D is a
regular set.

A subfamily o/ of A is a blanket of regular sets if the
following conditions are satisfied:

(i) -~ is a base for the topology of Q, and

(ii) if b, D,, ..., D € +, then D N ... YD and
1 n 1 n

D - 51 U ...U D belongto A ifthey are nonempty.
n

A set D is said to be double regular if every point

%, € 9D is a regular boundary point of both D and Q - D.

THEOREM 3.1. Let F(.) be a harmonic presheaf o»
Then given any relatively compact regular subset of Q. =zuv
there is a double regular subset contained in D.

Proof. If D is a relatively compact regular subset of 17,
there are two nonproportional harmonic functions. In this case
M. Brelot [4] has shown there exists a positive potential in 1.
Now let D'T D' C D. Another result of M. Brelot [4] impiio
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v{.), which is bounded and

rmenic in the complement of D'.

, then A ={x: v(x)>c/2} isa

: .« yular set. This follows from the result of H. Bauer
.ve since v(.) forms a barrier for every boundary

{ .+ and Q- A. qg.e.d.

“7OLLARY. The class of double regular sets forms
3 blanket of double regular sets.

wroof. H. Bauer [1] has shown that if x is a regular
boundary point of D and if D' C D and if x€ D' then x
iec a regular boundary point of D'. Hence conditions (i) and (ii)
ave satisfied. Condition (iii) is satisfied in virtue of the above
tlizorem and the fact that there is a base of regular sets. q.e.d.

Jow by assumption every compact is contained in a regular
ot and hence in a double regular set.

g
L}

[“

OREM 3.2. Given any harmonic sheaf there exists
@ nonstationary strict Markov process with continuous paths
up to the boundary of any compact subset, ', of Q. If we

v
4
Tl

s
3 F = ’ ’ ’ h i
designate the process by X (xt 4 Ft Ps x) where x is

the position at time t,l is the time at which the boundary of T
s . .
is first reached, Ft is the o -field generated by x s<u<t,
s
and P is the probability measure on Fg given that the

v . starts at x at time s, then the following condition
is satisiied: h x, A)=P x €A here D is a regular
is satisfied BD( ) s x( - ) w is any reg

subset, x¢ D, A is a Borel subset of 9D and T is the time
at which the boundary of D is first hit, that is

T =inf(t: ={t) € 3 D). (Recall that the Markov property is that
i#0<s<i<u, A aBorel subset of Q, then

P x{ ¥ A !F } o= (x € A), except for a set of
’ %
- probability zero. The other technical conditions as well

inition of the strict Markov property are found in

311

https://doi.org/10.4153/CMB-1965-021-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1965-021-4

Proof. The theorem is an immediate consequence of
theorem 3.1 above and [6, theorem 5.4].

4. The Existence of Mean Hitting times. If De A,
then eD(.) is a mean hitting time for D if:

i) 0< < oo, €D,
(i) eD(x) 0, X

(i1) e‘D(' ) is a continuous function on D,

(iii) if D' e A, D' = D'C D, then

e (x) - h, _ (x,dy) e _(y) =
D faD, 8D D

e (%)

/_\.. b

(iv) if N 1is a fine neighborhood of x and D ¢
b

D NN , then there exists an € > 0 such that e_ (x) > ¢ for
n X

D

n
all n,

(v) eD(x)—>O as x — 0D.

Let D be a given relatively compact regular set and /
the class of double regular subsets of Q. Now we can find a

countable subclass Di’ DZ, ... of . which is a base for open

subsets of ' . We define e (x) as follows:
1

"

e (x) 1 if xe D_,
i i

the solution of the Dirichlet problem in I' - D, with
1

boundary value 1 on 9D, and zeroon 9Tt
i

)
Finally, let er(x) = Z.
i=

00
N. e (x) where X
1 1 1 =

A, <%, A >0.
1 1 i

THEOREM 4. 1. er(. ) is a mean hitting time for .

Proof. Let F be a fine neighborhood of x and let O
— n

be a sequence of regular sets decreasing to F. Now if x is

312

https://doi.org/10.4153/CMB-1965-021-4 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1965-021-4

not an interior point of F, there exist sets -A and U such
that x€ A' =AM UCF, where U is a relatively compact set
in which f(y) > f(x) - €¢/2 and A is a set of the form
A={y: fy) <f(x)+ €} where f(.) is some superharmonic
function. If 0' =0 M U then 0'yA'. We must show that
n n n

ey (x) > >0 for all m. Now because f is a superharmonic

m
function f(x) > f f(y) h8 o (x,dy) = Im. Let pm =

90 m
m

h (x, 90" M A). Then f(x)>1 >p (f(x)-¢€/2)
90 m — m—"m
m
+ (1-pm) (f{(x) +¢ ) and hence p > 2/3 for all m. Now there
m—

is some 1 such that Di - I_D. C U. Because
1

O‘mﬂ A COoU, ei(x) - f ‘ ei(y)ha o (x,dy) >n > 0 for some q

0 m
m

and hence er(x) - ja . er(y) h

m

30" (x,dy) > n > 0 which
m

completes the proof of the theorem.

THEOREM 4. 2. Given any harmonic sheaf containing the
constants there is a strict stationary Markov process with
continuous paths, that is, a diffusion, whose infinitesimal

generator annihilates all the functions of the sheaf.

Proof. Given a mean hitting time it is shown in ([6],

sections 6 and 7) that there exists a random time change which
transforms the nonstationary process X = (xt, L, F: , Ps,x)

into a stationary strict Markov process with continuous paths,
that is, a diffusion. This diffusion will be designated by

X = (SEt, Z, F:, Px) where :‘Et is the position of the path at the
time t, Z is the time at which the boundary of I' is first hit,
F: is the o -field of subsets of paths generated by ;Eu’

s<u<t, and Px is the probability measure on F* given

that the process starts at x. Moreover, ha D(x,A) = Px(;z'r € A)

if D is any regular subset and AC 9D, and therefore if h(.)
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. L . . X
is a function in the sheaf G h(x) = lim c= 0,
e .(x)
Uy x U
where Ex designates integration with respect to the messure

P and G is the infinitesimal generator of the diffusion. q.e.d.
x

Note that actually there is a whole family of time changes
correspondong to different possible mean hitting times for the
harmonic sheaf. Blumenthall, Getoor and McKean have
discussed this class of time changes in their paper [2].

5. Probabilistic Interpretation of Regular Boundary Points
The following is a generalization to general harmonic sheaves
of a theorem of J. L. Doob [7] which he stated and proved for
the classical case.

THEOREM 5.4. A point x 1is an irregular boundary
point of an open set D if and only if P (X € D, 0 < s <t for
X s -

some t)=1.

Proof. M. Brelot [5] has shown that a point x is
irregular if and only if it is a fine interior point of { x} U D.
The result then follows immediately from E.B. Dynkin's
theorem [8] which states that x is a fine interior point of D!
if and only if PX(SESG D', 0<s<t for some t)=1. g.e.d.

A harmonic sheaf of functions in Rn is said to be
probabilistically elliptic if:

(i) it has a base of regular sets in common with the
harmonic sheaf of Brownian motion in R®, and

(ii) on these regular sets the harmonic measures are
equivalent to those of Brownian motion in the measure theoretic
sense. Furthermore the sheaf is said to be uniformly prob-
abilistically elliptic if the Radon Nikodym derivatives between
the sheaf harmonic measures and the Brownian motion harmonic
measures are uniformly bounded.

LEMMA. A point x is a regular boundary point of an
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cpen set D if an only if lim sup P (x €dN) =0 for all
y T
y=x
sufficiently small neighborhoods N of x where
v =inf {t: i-"ctﬁ NNDu{x}}.

Proof. Iflim sup P (X € 9N) =0, then as a function of
T

y=x
y this forms a barrier at x. Now if x is an irregular point
it has been shown in the proof of theorem 4.1 that
‘P (X €8N)>0 and hence limsupP (X € 8N)>0. gq.e.d.
X T yoT
y=+x
From this lemma we may easily deduce the fellowing result.

THEOREM 5.2. A point x is a regular boundary point
of an open set D with respect to a uniformly probabilistically
elliptic harmonic sheaf if and only if it is a regular point with
respect to Brownian motion.

Theorem 5.2 is the analogy for probabilistically uniformly
elliptic harmonic sheaves of the theorem of W. Littman, G.
Stampacchia and H. F. Weinberger [10] which states that all
uniformly elliptic differential operators of a certain form have
the same regular points as the Laplacian operator. However
the latter result is a rather deep one. It appears to be an open
question as to whether uniformly elliptic differential operators
are probabilistically uniformly elliptic.
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