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1. Introduction

Consider the Sturm–Liouville differential equation

τy :=
1
w

[−(py′)′ + qy] = λy on [a, b), (1.1)

where p(x), q(x) are complex functions with p(x) �= 0 a.e. in [a, b), and w(x) > 0
on [a, b), 1/p, q, w are all locally integrable on [a, b), −∞ < a < b � +∞, λ is the
so-called spectral parameter. The assumptions on p, q, w ensure that a is a regular
endpoint of the equation τy = λy, and b is a singular endpoint, i.e., at least one
of b = ∞ or

∫ b

a

(
w + 1

|p| + |q|
)

dx = ∞ holds. However, we note that the regular
endpoint b is included in the analysis.
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Spectral theory of differential operators is one of the hot research branches in
differential equations (see the classical books [1, 5, 6, 9]). Among these researches,
the Friedrichs extension plays an important role in the spectral analysis of differen-
tial operators. For a symmetric differential operator with real coefficients which is
lower semi-bounded, the Friedrichs extension is a particular self-adjoint extension
which preserves the lower bound of the given minimal differential operator. Suit-
able boundary value conditions are added on the endpoints to make the extension
be the Friedrichs extension. Following this line, H. G. Kaper, M. K. Kwong and
A. Zettl [13], M. Moller and A. Zettl [19], H. D. Niessen, A. Zettl [20] gave the
characterization of the Friedrichs extensions for singular Sturm–Liouville differen-
tial operators, similar results are obtained by M. Moller and A. Zettl for singular
2n order differential operator, singular block operator matrices by A. Konstantinov
and R. Mennicken [18], Schördinger operator by A. B. Keviczky, N. Saad and R. L.
Hall [15], and for singular Hamiltonian operators with one singular endpoint by
[10, 28–30] with the endpoint being limit-point case, limit-circle case and
intermediate deficiency indices, respectively.

The theory for Sturm–Liouville theory for differential expressions of second order
with complex potentials is currently of great interest as there are applied to so-called
PT -symmetric quantum mechanics in theoretical physics (see [2, 3, 4, 21, 23] and
references cited therein).

When p(x) ≡ 1 and q(x) is a complex valued function with Imq(x) being semi-
bounded, A. R. Sims in his seminal paper (see [23] for details) extended the famous
limit point/limit circle classification of H. Weyl [27] to the case of complex coeffi-
cients. Since the restriction Imq(x) being semi-bounded, it is too sharp to reduce
its applications. The restriction was relaxed in the paper of B. M. Brown, D. K. R.
McCormack, W. D. Evans, M. Plum [3]. However, the classification in [3] formally
depends on the choice of rotation angles (or the half-planes). A new classification of
equation (1.1) which is independent of the rotation angles (or the half-planes) was
given by J. Qi, Z. Zheng and H. Sun [21]. Moreover, the J-self-adjoint realization
was characterized by boundary conditions in [21].

Unlike Sturm–Liouville operators with real coefficients, the spectral theories of
Sturm–Liouville operators with complex coefficients are not fully investigated. In
this paper, we will give the Friedrichs extension without the restriction on q(x),
and p(x) is an arbitrarily complex function. More concise, we obtain the Friedrichs
extension domain not by imposing boundary condition on the singular end-point,
but by asymptotic behaviours of elements in the maximal operator domains at
singular endpoint. The spectral properties of the Friedrichs extension are also given.

This paper is organized as follows. In §2, we give some preliminaries on differential
operators with complex coefficients, the characterizations of Friedrichs extensions
under case I and case II are given separately in §3 and 4. Section 5 deals with the
spectral properties of the Friedrichs extensions.

2. Preliminaries

In this paper, we consider the second order Sturm–Liouville equation

τy :=
1
w

[−(py′)′ + qy] = λy on [a, b), (2.1)
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where p(x), q(x) are complex functions with p(x) �= 0 a.e. in [a, b), and w(x) > 0
on [a, b), 1/p, q, w are all locally integrable on [a, b), −∞ < a < b � +∞, λ is the
spectral parameter.

By L2
w[a, b), we mean the Hilbert space defined by

L2
w[a, b) := {y : (a, b) → C is measurable :

∫ b

a

w(x)|y(x)|2 dx <∞}

with inner product 〈y, z〉 :=
∫ b

a
z̄(x)w(x)y(x) dx and the norm ‖y‖ = (〈y, y〉)1/2 for

y, z ∈ L2
w[a, b). Here w(x) is called the weight function. Similar Hilbert space can

be defined by replacing w(x) with other positive weight functions, such as L2
|p|[a, b)

in §4.

2.1. Classification of (1.1) and corresponding operators

In paper [3], the hypothesis

Ω = co
{
q(x)
w(x)

+ rp(x) : r > 0, x ∈ (a, b)
}

�= C (2.2)

is introduced, where co denotes the closed convex hull (i.e., the smallest closed
convex set containing the exhibited set). Then for each point on the boundary
∂Ω, there exists a line through this point such that each point of Ω either lies
in the same side of this line or is on it. That is, there exists a supporting line
through this point. Let K be a point on ∂Ω. Denote by L an arbitrary supporting
line touching Ω at K, which may be the tangent to Ω at K if it exists. We then
perform a transformation of the complex plane z 
→ z −K and a rotation through
an appropriate angle θ ∈ (−π, π], so that the image of L now coincides with the
new imaginary axis and the set Ω lies in the new right nonnegative half-plane.
Therefore, for all x ∈ (a, b) and 0 < r <∞,

Re
{

eiθ

[
q(x)
w(x)

+ rp(x) −K

]}
� 0. (2.3)

Re
[
eiθ(λ−K)

]
� 0. (2.4)

For convenience, we define all such admissible values of K and θ by Π, i.e.,

Π =
{
(θ,K) : θ ∈ (−π, π],K ∈ ∂Ω,Re

{
eiθ(μ−K)

}
� 0 for allμ ∈ Ω

}
,

and we define

E = {θ ∈ (−π, π] : ∃K ∈ ∂Ω, (θ,K) ∈ Π} . (2.5)

Note that for fixed θ0 ∈ E, the K such that (θ0,K) ∈ Π may be not unique.
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Since Ω �= C is convex and closed space, one sees that Π, E �= ∅, and if we define

Λθ, K =
{
μ ∈ C : Re

{
eiθ(μ−K)

}
< 0
}
, (2.6)

then,

C\Ω =
⋃

(θ,K)∈Π

Λθ, K .

Note that each Λθ, K is a half plane. Then Λθ1, K1 ∩ Λθ2, K2 �= ∅ for θ1 �= θ2(modπ).
Let r → 0 and r → ∞ in (2.3), respectively, we have the following lemma.

Lemma 2.1. For each (θ,K) ∈ Π and λ ∈ Λθ,K there exists δλ > 0 such that

Re
{
eiθ(q −K w))

}
� 0, Re

{
eiθ(q − λw)

}
� δλw, Re

{
eiθp

}
� 0 (2.7)

on [a, b).

With these definitions and the similar line of H. Weyl’s in [27], B. M. Brown et al.
[3] divided (1.1) into three cases with respect to the corresponding half-planes Λθ, K

as follows.

Theorem 2.2 (see [[3], theorem 2.1]). For λ ∈ Λθ, K , (θ,K) ∈ Π(α) (where α is
related to the boundary conditions on regular endpoint), the Weyl circles converge
either to a limit-point m(λ) or a limit-circle Cb(λ). The following distinct cases are
possible, the first two cases being sub-cases of the limit-point case.

(I) there exists a unique solution y of equation (1.1) satisfying∫ b

a

[
Re
{
eiθp

} |y′|2 + Re
{
eiθ(q −K w)

} |y|2]+
∫ b

a

w |y|2 <∞ (2.8)

and this is the only one satisfying y ∈ L2
w[a, b);

(II) there exists a unique solution of equation (1.1) satisfying (2.8), but all
solutions of (1.1) belong to L2

w[a, b).

(III) all solutions of (1.1) satisfy (2.8).

Remark 2.3. If q(x) and p(x) are real-valued, then Ω ⊂ R and (θ,K) = (π/2, 0) ∈
Π, and hence Re

{
eiθp(x)

}
= Re

{
eiθ(q(x) −K w)

} ≡ 0. So case II is vacuous. This
means that the classification mentioned above reduces to Weyl’s limit-point, limit-
circle classification.

Since E is the set of rotation angles, in what follows, by a point θ ∈ E, we
denote the collection of points in the sense of θ module π. If E has only one point,
then the classification of Brown et al. in theorem 2.2 is independent of the choice of
(θ,K) ∈ Π. Using variation of parameters formula, we can verify that if all solutions
of (1.1) belong to L2

w[a, b) for some λ0 ∈ C, then it is true for all λ ∈ C. This also
means that case I is independent of the choice of (θ,K) ∈ Π, too. However, if E has
more than one point, cases II and III depend on the choice of (θ,K) ∈ Π in general
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since the rotation angle θ lies in (2.8). The exact dependence of cases II and III on
(θ,K) is given in [24].

Theorem 2.4. If there exists a (θ0,K0) ∈ Π such that (1.1) is in case II w.r.t.
Λθ0,K0 , then (1.1) is in case II w.r.t. Λθ,K for all (θ,K) ∈ Π except for at most one
θ1 ∈ E (in the sense of mod π) such that (1.1) is in case III w.r.t. Λθ1,K1 , where
(θ1,K1) ∈ Π.

Theorem 2.4 indicates that if there exist θ1, θ2 ∈ E such that θ1 �= θ2 (modπ)
and (1.1) is in case III w.r.t. Λθj ,Kj

for j = 1, 2, then (1.1) is in case III w.r.t. Λθ,K

for all (θ,K) ∈ Π.
In what follows, we always assume that E has more than one point. Firstly, we

prepare some properties of the set E.

Lemma 2.5. Let E be defined as in (2.5).

(i) If E has more than one point, then E is a sub-interval of (−π, π].

(ii) If E has more than one point, then for each λ ∈ C \ Ω, there exist θ1, θ2 ∈ E
with θ1 < θ2 such that for θ ∈ (θ1, θ2) ⊂ E, λ ∈ Λθ, K , where (θ,K) ∈ Π.

Proof. (i) Let θ1, θ2 ∈ E with θ1 �= θ2 (mod π), θ1 < θ2 and K1,K2 be the points
on ∂Ω such that (θj ,Kj) ∈ Π, j = 1, 2. We claim that [θ1, θ2] ⊂ E. For the case
K1 = K2 = K, we prove that (θ,K) ∈ Π for all θ ∈ (θ1, θ2). Set⎧⎪⎨⎪⎩

q(x)
w(x)

+ rp(x) −K = R(x, r,K) eiγ(x,r,K), R(x, r,K) =
∣∣∣∣ q(x)w(x)

+ rp(x) −K

∣∣∣∣ ,
γj(x, r,K) = γ(x, r,K) + θj , r > 0, x ∈ (a, b), j = 1, 2.

It follows from the definition of Π that for j = 1, 2 and r � 0,

Re
{

eiθj

(
q(x)
w(x)

+ rp(x) −K

)}
� 0

on (a, b), or equivalently, cos γj(x, r,K) � 0. Without any confusion, we write
γ(x, r,K) (resp. γj(x, r,K)) as γ (resp. γj). If we set

J = sin(θ2 − θ1) �= 0, J1(x) =
∣∣∣∣cos γ1 sin θ1
cos γ2 sin θ2

∣∣∣∣ , J2(x) =
∣∣∣∣cos γ1 cos θ1
cos γ2 cos θ2

∣∣∣∣ ,
then cos γ and sin γ can be expressed as

cos γ =
J1(x)
J

, sin γ =
J2(x)
J

(2.9)

by using the formulae cos γj = cos γ cos θj − sin γ sin θj for j = 1, 2. This equality
gives that

cos(θ + γ) = cos γ cos θ − sin γ sin θ =
J1

J
cos θ − J2

J
sin θ

=
1
J

[cos γ1 sin(θ2 − θ) + cos γ2 sin(θ − θ1)] (2.10)
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for θ ∈ (θ1, θ2). Since cos γj � 0 for j = 1, 2 implies −π/2 � γ1, γ2 � π/2(mod 2π),
we have from π � θ2 > θ1 > −π, θ2 − θ1 �= π and θ2 − θ1 = γ2 − γ1 that 0 < θ2 −
θ1 < π. Consequently, for θ ∈ (θ1, θ2)

0 < θ2 − θ, θ − θ1 < θ2 − θ1 < π.

Therefore, each term in the right-hind side of (2.10) is nonnegative, so cos(θ + γ) �
0 on (a, b). That is, for r � 0 and x ∈ (a, b),

Re
{

eiθ

(
q(x)
w(x)

+ rp(x) −K

)}
= R(x, r,K) cos(γ(x, r,K) + θ) � 0,

which implies (θ,K) ∈ Π for θ ∈ (θ1, θ2).
In case K1 �= K2, we choose μ0 ∈ Λθ1,K1 ∩ Λθ2,K2 . Then it holds that

Re
{

eiθj

(
q(x)
w(x)

+ rp(x) − μ0

)}
= R(x, r, μ0) cos(γ(x, r, μ0) + θj) > 0

on (a, b) for j = 1, 2 and r � 0 by the definition of Λθ,K , or cos(γ(x, r, μ0) + θj) > 0.
Then, the similar proof in (2.9) and (2.10) yields that

Re
{

eiθ

(
q(x)
w(x)

+ rp(x) − μ0

)}
> 0, θ ∈ (θ1, θ2). (2.11)

Let L be the line defined by

L = {λ ∈ C : Re
{
eiθ(λ− μ0)

}
= 0} (2.12)

for fixed θ ∈ (θ1, θ2). One sees from (2.11), (2.12) and the definition of Ω that
L ⊂ C \ Ω. Set d = dist(L, ∂Ω) and let K ∈ ∂Ω be a point such that d = dist(K,L).
Since

dist(μ,L) = Re
{
eiθ(μ− μ0)

}
, μ ∈ Ω, (2.13)

we have that Re
{
eiθ(μ− μ0)

}
= dist(μ,L) � dist(K,L) = Re

{
eiθ(K − μ0)

}
for

μ ∈ Ω, hence Re
{
eiθ(μ−K)

}
= Re

{
eiθ(μ− μ0)

}− Re
{
eiθ(K − μ0)

}
� 0, or

Re
{

eiθ

(
q(x)
w(x)

+ rp(x) −K

)}
� 0

on (a, b) for r � 0 and θ ∈ (θ1, θ2), which means (θ,K) ∈ Π, or θ ∈ E. This proves
I of lemma 2.5.

(ii) For λ0 ∈ C \ Ω, choose (θ0,K0) ∈ Π and δ0 > 0 such that λ0 ∈ Λθ0,K0 and

Re
{
eiθ0(K0 − λ0)

}
= δ0 > 0.

Since E has more than one point, we can choose θ̃ ∈ E such that θ̃ �= θ0(modπ).
Without loss of generality, we suppose that θ̃ > θ0. It follows from the conclusion of
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(i) that (θ0, θ̃) ⊂ E. For each θ ∈ (θ0, θ̃), there exists a point K(θ) ∈ ∂Ω such that
(θ,K(θ)) ∈ Π. By the definition of Π we have that

Re
{
eiθ0(K(θ) −K0)

}
� 0, Re

{
eiθ(K0 −K(θ))

}
� 0. (2.14)

If we set r(θ) = |K(θ) −K0| and K(θ) −K0 = r(θ) eiη(θ), then (2.14) means that

cos(θ0 + η(θ)) � 0, cos(θ + η(θ)) � 0.

This together with θ > θ0 gives that θ + η(θ) � π/2 � θ0 + η(θ) (mod 2π), hence
θ0 + η(θ) → π/2 (mod 2π) as θ → θ0 + 0. We claim that r(θ) is bounded in a
right-neighbourhood of θ0. Suppose on the contrary, there exists a sequence, say,
{θn} such that θn → θ0 + 0 and rn = r(θn) → +∞ as n→ ∞. Choose η0 ∈ (θ0, θ̃)
such that η0 − θ0 + π/2 < π and a corresponding point K(η0) ∈ ∂Ω such that
(η0,K(η0)) ∈ Π, we have that

0 � 1
rn

Re
{
eiη0(K(θn) −K(η0))

}
=

1
rn

Re
{
eiη0 (K(θn) −K0 − [K(η0) −K0])

}
= Re

{
eiη0

(
eiη(θn) − [K(η0) −K0]/rn

)}
→ cos(η0 − θ0 + π/2) < 0,

which is a contradiction. Since r(θ) is bounded and θ + η(θ) → π/2 (mod 2π) as
θ → θ0 + 0, we have that Re

{
eiθ(K0 −K(θ))

}
= −r(θ) cos(θ + η(θ)) → 0 as θ →

θ0 + 0. Hence

Re
{
eiθ(λ0 −K(θ))

}
= Re

{
eiθ(λ0 −K0)

}
+ Re

{
eiθ(K0 −K(θ))

}
→ Re

{
eiθ0(λ0 −K0)

}
= −δ0 < 0

as θ → θ0 + 0. Therefore, there exists ξ ∈ (θ0, θ̃) such that for all θ ∈ (θ0, ξ),
Re
{
eiθ(λ0 −K(θ))

}
< 0. This means that λ0 ∈ Λθ, K for θ ∈ (θ0, ξ). This completes

the proof. �

Let T be an operator in Hilbert space H, the numerical range of operator T is
denoted by Θ(T ) as follows:

Θ(T ) :=
{

(Tu, u)
(u, u)

: 0 �= u ∈ D(T )
}
.

Let σ ∈ (0, π
2 ) and let Sσ denote the closed sector

Sσ := {0} ∪ {z ∈ C : | arg(z)| � σ},

in the right complex half-plane, cf. figure 1.
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Figure 1. A sector Sσ.

An operator T in Hilbert space H is said to be accretive if the numerical range
Θ(T ) is a subset of the right half-plane, that is, if

Re(Tu, u) � 0for all u ∈ D(T ).

If T is closed, then def(T − ζ) = μ is constant for Reζ < 0. If μ = 0, the left open
half-plane is contained in the resolvent set P (T ) with

(T + λ)−1 ∈ B(H),
‖(T + λ)−1‖ � Reλ−1

}
for Re λ > 0. (2.15)

An operator T satisfying (2.15) will be said to be m-accretive. An m-accretive
operator T is maximal accretive, in the sense that T is accretive and has no proper
accretive extension.

We shall say that T is quasi-accretive if T + α is accretive for some scalar α.
This is equivalent to the condition that Θ(T ) is contained in a half-plane of the
form Reζ �const. In the same way we say that T is quasi-m-accretive if T + α is
m-accretive for some α. Like an m-accretive operator, a quasi-m-accretive operator
is maximal quasi-accretive and densely defined.

A linear operator T in a Hilbert space H is said to be sectorial with vertex γ and
semi-angle θ if the numerical range Θ(T − γI) lies in a sector Sσ for some γ ∈ R,
T is said to be m-sectorial if it is sectorial and quasi-m-accretive.

Now, we turn to define operators by the formal differential operator τ . For any
compact interval [α, β] ⊂ [a, b), using integration by parts, we obtain the so-called
Green’s formula. ∫ β

α

[
ψτφ− φτ+ψ

]
= [φ, ψ](β) − [φ, ψ](α),

where τ+ψ = −(pψ′)′ + qψ = τψ, [φ, ψ] = (φpψ′ − ψpφ′)(x). Since τ+ = τ , we
know τ is formally J-symmetric. Set

Dmax =
{
y ∈ L2

w[a, b) : py′ ∈ ACloc[a, b), and τy ∈ L2
w[a, b)

}
,
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we define the ‘maximal operator’ TM = TM (τ) by

TM : Dmax → L2
w[a, b)

y 
→ TMy = τy =
1
w

[−(py′)′ + qy].

Similarly, we define

D′
0 = {y ∈ Dmax : y(a) = p(a)y′(a) = 0, and

y = 0 outside a compact subset of [a, b)} ,

T |D′
0

= T ′
0 is called the pre-minimal operator, and T ′

0 is closable, its closure, denoted
by T0, is called the minimal operator, its domain is denoted by D0. By the book
of Edmund and Evans [6, P144, theorem 10.7], we know that D′

0 = L2
w[a, b), and

T0(τ)∗ = TM (τ), T0(τ) = TM (τ)∗, so JT0J ⊂ T ∗
0 , where J is the common conjuga-

tion, this means that T0 is a J-symmetric operator. It’s easy to see that for each
y ∈ D0,

y(a) = p(a)y′(a) = 0, and [y, z](b) = 0 for all z ∈ Dmax.

Lemma 2.6. Assume that E has more than one point. We have that T0 is a densely
defined closed sectorial operator in L2

w[a, b).

Proof. The denseness of T0 follows from [6, theorem 10.5]. Since E has more than
one point, we choose θ1, θ2 ∈ E such that θ1 �= θ2. Choose λ0 ∈ Λθ1,K1 ∩ Λθ2,K2 . By
the definition of T0, we see that for u, v ∈ D(T0)

〈(T0 − λ)u, v〉 =
∫ b

a

v̄w(T0 − λ0)u

=
∫ b

a

v̄[−(pu′)′ + (q − λ0w)u]

=
∫ β

α

(pu′v′ + (q − λ0w)uv̄),

Set r(x) = |q(x) − λ0w(x)| and

q(x) − λ0w(x) = r(x) eiα(x), α1(x) = θ1 + α(x), α2(x) = θ2 + α(x). (2.16)

Then lemma 2.1 ensures that cosα1, cosα2 � 0 on [a, b). Since

sin2(θ2 − θ1) = sin2(α2 − α1)

= cos2 α2 + cos2 α1 − 2 cosα2 cosα1 cos(α1 − α2)

� (cosα2 + cosα1)
2
,

so we obtain

cosα1 + cosα2 � | sin(θ1 − θ2)| = δ0 > 0. (2.17)
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Set

pθ = [eiθ1 + eiθ2 ]p, (q − λ0w)θ = [eiθ1 + eiθ2 ](q − λ0w). (2.18)

Then (2.17) implies

Re {(q − λ0w)θ} � δ0|q − λ0w|. (2.19)

Similarly, we have that

Re {pθ} � ε0|p|, (2.20)

where ε0 > 0 is a constant sufficiently small. Hence we have for y ∈ D(T0),

Re
{
(eiθ1 + eiθ2)〈(T0 − λ0) y, y〉

}
= Re

∫ b

a

pθ |y′|2 + Re
∫ b

a

(q − λ0w)θ |y|2

�
∫ b

a

[
ε0|p||y′|2 + δ0|q − λ0w||y|2

]
.

Similarly we have that

Im
〈
(eiθ1 + eiθ2)(T0 − λ0) y, y

〉
�
∫ b

a

[
2|p| |y′|2 + 2|q − λ0 w| |y|2

]
. (2.21)

So T̃ = (eiθ1 + eiθ2)(T0 − λ0I) is a sectorial operator. Since T̃ is obtained by con-
traction and rotation of T0, T0 is a sectorial operator. It is obvious that the operator
T0 is a closed operator. This completes the proof. �

2.2. Sesquilinear forms and Friedrichs extension

The sesquilinear forms in Hilbert space are closely related to the associated opera-
tors, bounded forms and bounded operators are equivalent, there is no such obvious
relationship for unbounded forms and operators. However, there exists a closed the-
ory on the relationship between semi-bounded symmetric forms and semi-bounded
self-adjoint operators, this theory is extended to non-symmetric forms and oper-
ators within certain restrictions. Among these restrictions, the sectorial operators
and sectorial forms are necessary.

A sesquilinear form t[u, v] is defined for u, v both belonging to a linear manifold
D of a Hilbert space H, t[u, v] is complex-valued and linear in u ∈ D for each fixed
v ∈ D and semilinear in v ∈ D for each fixed u ∈ D. D is called the domain of t
and is denoted by D(t); t is densely defined if D(t) is dense in H; t[u] = t[u, u] is
called the quadratic form associated with t[u, v]; a sesquilinear form t is said to be
symmetric if t[u, v] = t[v, u].
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For a sesquilinear form t, its numerical range is defined by

Θ(t) = {t(u)|u ∈ D(t), ||u|| = 1}.
A nonsymmetric sesquilinear form t is said to be a sectorially bounded form from
the left (or simply sectorial) if Θ(t) is a subset of a sectorial of the form

| arg(ζ − γ)| � θ, 0 � θ <
π

2
, γ is real,

γ is called the vertex and θ is corresponding semi-angle of the form t.
If T is a sectorial operator, then the form defined by

t[u, v] = 〈Tu, v〉 with D(t) = D(T ) (2.22)

is also a sectorial form. By [14, theorem 1.27, P318], we know that a sectorial
operator is form-closeable, i.e., the form t defined above is closable, it closure is
denoted by t̃. Particularly, If T is a densely defined, sectorial operator, by the first
representation theorem ([14, theorem 2.1, P322]), the closure t̃ of t generated by
(2.22), generates an m-sectorial operator Tt̃, Tt̃ is called the Friedrichs extension of
T , we denote this operator by TF for convenience, i.e., the Friedrichs extension of
a sectorial operator is the form extension of the corresponding sectorial form.

For the minimal operator T0, by direct calculation, we deduce that the corre-
sponding sesquilinear form is

s[u, v] =
∫ b

a

[pu′v′ + quv], u, v ∈ D(s) = D0.

We know by lemma 2.6 that T0 is a closed sectorial operator, so the Friedrichs exten-
sion exists. In the next two sections, we will characterize the Friedrichs extensions
of T0.

3. The Friedrichs extension under case I

Firstly, we give some spectral results on Hamiltonian differential system{
u′ = Au+B v + ξW2 v,
v = C u−A∗ v − ξW1 u

on [a, b) (3.1)

on the C
2n valued (column) functions Y = (uT , vT )T , where u, v are C

n valued
functions, uT is the transpose of u, A,B,C,W1 and W2 are locally integrable,
complex-valued n× n matrices on [a, b), B,C,W1,W2 are Hermitian matrices and
W1(t) > 0,W2(t) � 0 on [a, b), ξ is the so-called spectral parameter. Assume that
the definiteness condition (see, e.g., [1, chapter 9, p253]) holds:∫ b

a

Y ∗WY > 0 for each non-trivial solution Y of (3.1),

whereW = diag(W1,W2). Let L2
W := L2

W [a, b) be the space of Lebesgue measurable
2n-dimensional functions f satisfying

∫ b

a
f∗(s)W (s)f(s)ds <∞. We say that (3.1)
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is in the limit point case at b if there exists exactly n’s linearly independent
solutions of (3.1) belong to L2

W for ξ = ±i. Particularly, if n = 1 and A,B,C are
real functions, then (3.1) is in the limit point case at b if and only if there exists a
unique solution of (3.1) belonging to L2

W for ξ = i or ξ = −i.
Let D be the maximal domain associated to (3.1), i.e. (uT , vT )T ∈ D if and only

if (uT , vT )T ∈ ACloc ∩ L2
W and there exists an element (fT , gT )T ∈ L2

W such that{
u′ = Au+B v +W2 g,
v′ = C u−A∗ v −W1 f.

(3.2)

It is well known (cf. [11, 16]) that (3.1) is in the limit point case at b if and only if

Y ∗
1 (x)JY2(x) → 0, as x→ b, J =

(
0 −In
In 0

)
(3.3)

for all Y1, Y2 ∈ D, and for each ξ ∈ C with Imξ �= 0 there exists a Green function
G(t, s, ξ) such that for F = (fT , gT )T ∈ L2

W , (3.2) has an L2
W -solution Y given by

Y =
(
u
v

)
=
∫ b

a

G(·, s, ξ)W (s)F (s) ds. (3.4)

Now we give the asymptotic behaviours of elements of Dmax under case I.

Theorem 3.1. Assume that E has more than one point, and (1.1) is in case I. For
each y ∈ Dmax, we obtain

y ∈ L2
|q|, and y′ ∈ L2

|p|,

and for all y1, y2 ∈ Dmax,

p(x) y1(x) y′2(x) → 0, as x→ b. (3.5)

Proof. Since E has more than one point, we choose (θ1,K1), (θ2,K2) ∈ Π (with θ1 �=
θ2(modπ)) and λ0 ∈ Λθ1,K1 ∩ Λθ2,K2 . Then by the definition of Λθ,K , we obtain

Re
{
eiθj (q − λ0 w)

}
� δjw, Re

{
eiθjp

}
� 0, j = 1, 2 (3.6)

for some δ1, δ2 > 0. Set

r(x) = |q(x) − λ0 w(x)|, q(x) − λ0 w(x) = r(x) eiα(x), αj(x) = θj + α(x),

r̃(x) = |p(x)|, p(x) = r̃(x) eiβ(x), βj(x) = θj + β(x), j = 1, 2.
(3.7)

For j = 1, Let y be a solution of (1.1) with λ = λ0. Set u = y, v = −i eiθ1py′,
then (1.1) is transformed into the Hamiltonian differential system

u′ = B v + ξw2 v, v′ = C u− ξw1 u (3.8)

with the new spectral parameter ξ = i, where

C(x) = r(x) sinα1(x), w1(x) = r(x) cosα1(x),

B(x) = sinβ1(x)/r̃(x), w2(x) = cosβ1(x)/r̃(x).
(3.9)

This is the Hamiltonian differential system (3.1) with n = 1, A(x) ≡ 0 and ξ = i.

Clearly, w1 = Re
{
eiθ1(q − λ0 w)

}
� δ0 w > 0, w2 =

Re{eiθ1p(t)}
r2
2

� 0 by (3.6). We
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note further that the coefficients of the Hamiltonian system (3.8) are real func-
tions. It is easy to verify that the definiteness condition holds for the system (3.8).
Therefore, (1.1) is in case I or II w.r.t. (θ1,K1) ∈ Π if and only if (3.8) is in the limit
point case at b.

Let D(θ1) be the maximal domain associated to (3.8), i.e., (u, v)T ∈ D(θ1) if and
only if (u, v)T ∈ ACloc ∩ L2

W and there exists an element (f, g)T ∈ L2
W such that

u′ = B v + w2 g, v′ = C u− w1 f. (3.10)

For y0 ∈ D(τ), set

f0 = τy0, g0 = f0 − λ0y0. (3.11)

Then y0 satisfies

(τ − λ0)y = w−1[−(py′)′ + (q − λ0 w)y] = g0. (3.12)

Set u0 = y0, v0 = −i eiθ1py′0. Then (u0, v0) satisfies

u′ = B v + iw2 v, v
′ = C u− iw1 u− w1f1, f1 =

w

w1

(−i eiθ1g0
)
. (3.13)

Conversely, if (u, v) satisfies (3.13), then y = u solves (3.12).
Let g0 be given in (3.11). Consider the equation (3.13), we get from (3.4) that

(3.13) has a solution (u1, v1)T such that u1 ∈ L2
w1
, v1 ∈ L2

w2
and v1 = −i eiθ1p u′1.

Set y1 = u1. Then y1 satisfies (3.12), hence (τ − λ0)(y0 − y1) = 0. Note that y1 =
u1 ∈ L2

w1
and w1 � δw implies that y1 ∈ L2

w. Thus, y1 − y0 is an L2
w-solution of

τy = λ0y. Since τ is in case I w.r.t. (θ1,K1), it follows from (2.8) that y1 − y0 ∈ L2
w1

and v1 − v0 ∈ L2
w2

. This together with y1 ∈ L2
w1

and v1 ∈ L2
w2

gives that y0 ∈ L2
w1

and v0 ∈ L2
w2

. In fact, we have proved that for y ∈ D(τ),

∫ b

a

|q − λ0w| cosα1|y|2 <∞,

∫ b

a

|p| cosβ1|y′|2 <∞, (3.14)

where α1 and β1 are defined in (3.7). Recall that g0 ∈ L2
w, or −i eiθ1g0 ∈ L2

w

and w1 � δw implies f1 ∈ L2
w1

. It follows (3.13) that (y0, v0) satisfies (3.10) with
f = iy0 + f1 and g = iv0. This yields that

y ∈ D(τ) =⇒ (y, v)T ∈ D(θ1) with v = −i eiθ1py′. (3.15)

Note that Y ∈ D(θ1) if and only if Y ∈ D(θ1). Then for y ∈ D(τ), we have from
(3.15) that (y, v)T ∈ D(θ1) with v = −i eiθ1py′, hence

y ∈ D(τ) =⇒ (y, v)T ∈ D(θ1) with v = i e−iθ1py′. (3.16)

Let y1, y2 ∈ D(τ). Since (3.8) is in the limit point case at b and (yj , vj)T ∈
D(θ1) for j = 1, 2 with v1 = −i eiθ1py′1 and v2 = i e−iθ1py′2 by (3.15) and (3.16),
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respectively, we get from (3.3) that

(y2, v2)
(

0 −1
1 0

)(
y1
v1

)
= i eiθ1 p(y′1 y2 − y1 y

′
2) → 0 (3.17)

as x→ b. Furthermore, for y1, y2 ∈ D(τ), since (yj , vj)T ∈ D(θ1) by (3.15) with
vj = −ieiθ1py′j , j = 1, 2, (3.3) also gives that

(y2, v2)
(

0 −1
1 0

)(
y1
v1

)
= i e−iθ1(p y′2 y1 + e2iθ1p y′1 y2) → 0

as x→ b, or

p y′2 y1 + e2iθ1p y′1 y2 → 0, y1, y2 ∈ D(τ) (3.18)

as x→ b. Similarly, for j = 2, the above methods also give that (3.18) holds for
y1, y2 ∈ D(τ) with θ1 replaced by θ2. Therefore, we have(

e2iθ1 − e2iθ0
)
p y′1 y2 → 0 (3.19)

as x→ b. This clearly gives (3.5) for y1, y2 ∈ D(τ) since θ1 �= θ2 (mod π).
Finally, we prove y ∈ L2

|q| and y′ ∈ L2
|p| for y ∈ D(τ). In fact, the similar proof as

in (3.14) gives that for y ∈ D(τ),∫ b

a

|q − λ0w| cosα2|y|2 <∞,

∫ b

a

|p| cosβ2|y′|2 <∞. (3.20)

Therefore, (3.14), (3.20) and (2.17) together yield that
∫ b

a
|q − λ0w||y|2 <∞ and∫ b

a
|p||y′|2 <∞, or y ∈ L2

|q| and y′ ∈ L2
|p| since y ∈ L2

w. This completes the proof. �

Theorem 3.2. Assume E has more than one point, and (1.1) is in case I. Then
the J-self-adjoint extension T defined by

T : D(T ) → L2
w[a, b)

y 
→ Ty = τy =
1
w

[−(py′)′ + qy]
(3.21)

is the Friedrichs extension of T0, where D(T ) = {y ∈ Dmax : y(a) = 0}.
Proof. Since E has more than one point, we choose (θ1,K1), (θ2,K2) ∈ Π (with
θ1 �= θ2(modπ)) and λ0 ∈ Λθ1,K1 ∩ Λθ2,K2 . Since (1.1) is in case I, we know that T
is a J-self-adjoint extension of T0 by theorem 4.4 in paper [3]. Next, we define

t[u, v] =
∫ b

a

[pu′v′ + quv], u, v ∈ D(t), (3.22)

D(t) =
{
u ∈ ACloc[a, b) : u(a) = 0, u ∈ L2

w[a, b) ∩ L2
|q−λ0w|[a, b), u

′ ∈ L2
|p|[a, b)

}
.

(3.23)

Since (1.1) is in case I, we see by theorem 3.1 that D(T0) ⊆ D(t), so t is densely
defined. Similar method as in lemma 2.6 can deduce t as a sectorial operator. Now
we turn to prove that t is closed.
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Suppose that yn ∈ D(t), yn → y in L2
w[a, b) and

t[yn − ym] =
∫ b

a

[p|y′n − y′m|2 + q|yn − ym|2] → 0

for n,m→ ∞. Let ynm = yn − ym for convenience. Since t[ynm] → 0, we obtain
(eiθ1 + eiθ2)t[ynm] → 0, and

λ0

∫ b

a

w|ynm|2 � 2|λ0|
∫ b

a

w
(|yn − y|2 + |ym − y|2)→ 0.

So we obtain that ∫ b

a

[pθ|y′nm|2 + (q − λ0w)θ|ynm|2] → 0. (3.24)

Since Re {(q − λ0w)θ} � δ0|q − λ0w| and Re {pθ} � ε0|p| for some constants
δ0, ε0 > 0 by (2.19) and (2.20), and noticing t is a sectorial operator, we obtain

ε0

∫ b

a

|p|y′nm|2 + δ0

∫ b

a

|q − λ0w||ynm|2 → 0.

So ∫ b

a

|p|y′nm|2 → 0,
∫ b

a

|q − λ0w||ynm|2 → 0 as n,m→ ∞.

This shows that {y′n} and {yn} are Cauchy sequences in L2
|p|[a, b) and L2

|q−λ0w|[a, b),
respectively. We may assume y′n → z in L2

|p|[a, b). For each fixed x � a,

|ynm(x)| =
∣∣∣∣∫ x

a

y′nm(s) ds
∣∣∣∣

�
(∫ x

a

1
|p(s)| ds

)1/2(∫ x

a

|p(s)||y′nm(s)|ds
)1/2

�
(∫ x

a

1
|p(s)| ds

)1/2
(∫ b

a

|p(s)||y′nm(s)|ds
)1/2

→ 0

as n,m→ ∞, since yn → y in L2
w[a, b), we obtain yn(x) → y(x) point-wise for x � a

as n→ ∞, hence y(0) = limn→∞ yn(0) = 0, and y′(x) = z(x), so y ∈ D(t), and t is
a closed sesquilinear form.

By the first representation theorem [14, P322, theorem 2.1], there exists an m-
sectorial operator T = Tt such that D(T ) ⊆ D(t), t[u, v] = 〈Tu, v〉 for u, v ∈ D(T ),
and D(T ) is a core of t. Since T = Tt, so TF = Tt is the Friedrichs extension of
T0. We prove D(TF ) = {y ∈ Dmax : y(a) = 0} := D̃ to complete the proof. For each
y ∈ D̃, then y ∈ Dmax, by theorem 3.1, y′ ∈ L2

|p|[a, b) and y ∈ L2
|q|[a, b), this together
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with y ∈ L2
w[a, b) implies∫ b

a

|q − λ0w|||y|2 �
∫ b

a

|q|||y|2 + |λ0|
∫ b

a

w|y|2 <∞,

so y ∈ L2
|q−λ0w|[a, b), thus we obtain y ∈ TF . Conversely, for each y ∈ D(TF ), set

TF y = f . By the definition of TF , we obtain t[y, v] = 〈TF y, v〉 = 〈f, v〉 for all v ∈
D(t), or ∫ b

a

wfv =
∫ b

a

[
py′v′ + qyv

]
. (3.25)

Set z′(x) = w(x)f(x) − q(x)y(x) and for arbitrary d < b,

Ad = {v : v′ ∈ L2[a, d], v(a) = v(d) = 0}.
Then for v ∈ Ad ∫ d

a

z′ v = z v
∣∣d
a
−
∫ d

a

z v′ = −
∫ d

a

z v′. (3.26)

If we set

v0(x) =

{
v(x), x ∈ [a, d],
0, x ∈ [d, b),

then v0 ∈ D(t), hence (3.25) and (3.26) imply that∫ d

a

(py′ + z)v′ = 0. (3.27)

Note that

{v′ : v ∈ Ad} = {f : f ∈ L2[a, d],
∫ d

a

f = 0},

which is the set of orthogonal to 1 in L2[a, d]. Therefore, py′ + z = Cd, where Cd is
a constant, hence z′(x) = −(py′)′(x) a.e. x ∈ [a, d], or −(py′)′ + qy = wf on [a, d].
By the arbitrary of d we know that

− (py′)′ + qy = wf on [a, b). (3.28)

This means y ∈ D̃. So D(TF ) = D̃, this completes the proof. �

4. The Friedrichs extension under case II

When τ is not in case I, the J-self-adjoint extension TF is comparatively compli-
cated. Even for the case where the corresponding formal differential operator is
symmetric but not in the limit-point case, the characterization of Friedrichs exten-
sions is hard to be obtained. This problem has been studied by a lot of authors both
for formal symmetric arbitrary order differential operator and Hamiltonian differ-
ential operators [7, 8, 25, 26, 31] and Hamiltonian differential systems [12, 16, 17]
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and references therein. When τ is not in case I, by operator theory we know that such
domain is a restriction of the maximal domain. We should impose some restrictions
on the elements of the maximal domain to instruct the domain of a operator real-
ization. The standard method is to choose suitable number independent elements
from the maximal domain to construct the corresponding boundary conditions at
end-points of the interval considered. The similar result is also valid for the case
where p(x), q(x) are complex valued (see [3, theorem 4.1]).

We will not follow the same line as above to give the Friedrichs extensions asso-
ciated to τ . The following Friedrichs extension is given by the restriction of the
maximal domain on a suitable Hilbert space. The main result of this section is also
a generalization of the corresponding result in [22] to some extent.

Theorem 4.1. Assume E has more than one point, and (1.1) is in case II. For each
y ∈ Dmax with y′ ∈ L2

|p|[a, b), we obtain

y ∈ L2
|q|[a, b),

and for all y1, y2 ∈ Dmax with y′1, y
′
2 ∈ L2

|p|[a, b),

p(x) y1(x) y′2(x) → 0, as x→ b. (4.1)

Proof. Similar to the proof of theorem 3.1, we choose (θ1,K1), (θ2,K2) ∈ Π (with
θ1 �= θ2(modπ)) and λ0 ∈ Λθ1,K1 ∩ Λθ2,K2 . Since (1.1) is in case II (with λ replaced
by λ0), we obtain the Hamiltonian system (3.8) is in the limit point case at b.

Let D(θ1) denote the maximal domain associated to (3.8), we obtain that y ∈
Dmax with y′ ∈ L2

|p|[a, b) yields (y, v)T ∈ D(θ1), wherev = −ieiθ1py′, and y ∈ Dmax

with y′ ∈ L2
|p|[a, b) yields (y, v)T ∈ D(θ1), wherev = ie−iθ1py′. Then as x→ b, we

obtain

p y′2 y1 + e2iθ1p y′1 y2 → 0 for all y1, y2 ∈ Dmax with y′1, y
′
2 ∈ L2

|p|[a, b).

Similar method implies

p y′2 y1 + e2iθ2p y′1 y2 → 0 for all y1, y2 ∈ Dmax with y′1, y
′
2 ∈ L2

|p|[a, b).

The above two formula imply (4.1) holds, so we complete the first part of theorem
4.1. Similar argument as theorem 3.1 deduce y ∈ L2

|q|[a, b) for all y ∈ Dmax with
y′ ∈ L2

|p|. This completes the proof. �

Theorem 4.2. Suppose that E has more than one point and (1.1) is in case II.
Then the J-self-adjoint extension T defined by

T : D(T ) → L2
w[a, b)

y 
→ Ty = τy =
1
w

[−(py′)′ + qy]
(4.2)

is the Friedrichs extension of T0, where D(T ) = {y ∈ Dmax : y(a) = 0, y′ ∈
L2
|p|[a, b)}.
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Proof. Since E has more than one point, we choose (θ1,K1), (θ2,K2) ∈ Π (with θ1 �=
θ2(modπ)) and λ0 ∈ Λθ1,K1 ∩ Λθ2,K2 . We define the sesquliniear form t as (3.22),
then the similar method implies t is a densely defined closed sectorial operator. By
the first representation theorem [14, P322, theorem 2.1], the m-sectorial operator
T = Tt defined by t[u, v] = 〈Tu, v〉 for u, v ∈ D(T ) is the Friedrichs extension of T0.
Now, using the similar method as theorem 3.2, we obtain

D(TF ) = {y ∈ Dmax : y(a) = 0, y′ ∈ L2
|p|[a, b)} := D̃.

Finally, we turn to prove TF is a J-self-adjoint operator by three steps.

(1) JTFJ ⊂ T ∗
F . It is equivalent to prove that

y0 ∈ D̃ =⇒ y0 ∈ D(T ∗
F ), JTFJy0 = T ∗

F y0. (4.3)

Note that for Jy0 = y0 ∈ D̃ and all y ∈ D̃

〈TF y, y0〉 − 〈y, JTFJy0〉 =
∫ b

a

(
y0wτy − ywτ+y0

)
=
∫ b

a

(
y0 [−(py′)′ + qy] − y

[
−(py′0)′ + qy0

])
=
∫ b

a

(
y(py′0)′ − y0(py′)′

)
=
∫ b

a

(
y(py′0)

′ − y0(py′)′
)

= p
(
yy′0 − y0y

′
) ∣∣b

a
.

This equality together with the boundary condition y(a) = y0(a) = 0 gives

〈TF y, y0〉 − 〈y, JTFJy0〉 = p
(
yy′0 − y0y

′
)

(b), (4.4)

(here we denote limx→b p(yy′0 − y0y
′)(x) by p(yy′0 − y0y

′)(b) since this limit always
exists). Since E has more than one point and (1.1) is in case II, we know
from theorem 4.1 that p(yy′0 − y0y

′)(b) = 0, and hence we have y0 ∈ D(T ∗
F ) and

JTFJy0 = T ∗
F y0 by (4.4). This proves that TF ⊂ JT ∗

FJ .

(2) TF is closed operator. Since for u, v ∈ D(α), we find that

〈(TF − λ0)u, v〉 =
∫ b

a

[p u′ v′ + (q − λ0w)u v] .

Suppose yn ∈ D̃ such that yn → y0 and TF yn → f0, or

yn → y0, (TF − λ0I)yn → g0 = f0 − λ0y0 in L2
w[a, b).

Let ynm = yn − ym, as (3.24), we have that {yn} and {y′n} are Cauchy sequences in
L2
|q|[a, b) and L2

|p|[a, b), respectively. Since yn → y in L2
w[a, b) as n→ ∞ and {y′n}
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is convergent in L2
|p|[a, b), we see that,

yn(x) =
∫ x

a

1
p
py′n → y0(x)

pointwise in x as n→ ∞ on [a, b). It follows from τyn = TF yn = fn that

yn(x) =
∫ x

a

1
p

(
py′n(a) +

∫ s

a

[w fn − q yn]
)
.

Note that the convergence of each sequence in the above equality except for {py′n(a)}
implies {py′n(a)} is convergent, and hence by letting n→ ∞ we have that

y(x) =
∫ x

a

1
p

(
ξ +

∫ s

a

[w f − q y]
)
,

where py′n(a) → ξ as n→ ∞. This means that τy = f and y(a) = 0, and hence
y ∈ D̃ and TF y = f . This proves the closedness of TF .

(3) TF is a J-self-adjoint operator. By the definition of anm-sectorial operator
we know defTF = 0. So

def(TF − λ0 I) = defTF = 0,

where λ0 ∈ Λθ1,K1 ∩ Λθ2,K2 . Then it follows from [6, p115, theorem 5.5] that TF is
a J-self-adjoint extension of T0. �

Remark 4.3. If E has more than one point and (1.1) is in case III for at least two
θ1 �= θ2(modπ), then the Hamiltonian system (3.8) is in the limit circle case at
b, by classical Friedrichs characterization of the Dirichlet boundary conditions at
regular endpoint and principal solutions conditions at the singular endpoint as in
paper [10], we can obtain the Friedrichs extension of (1.1) in case III. Here we omit
the details.

5. Spectral properties of the Friedrichs extensions

In this section, we give some of the properties of the Friedrichs extensions and their
applications.

Since TF is anm-sectorial extension of T0, we know that TF has the smallest form-
domain (that is, the domain of the associated form t is contained in the domain
of any other J-self-adjoint extension operator T ), and TF is the only m−sectorial
extension of S with domain contained in D(t). The next theorem characterizes the
spectral properties of TF .

Theorem 5.1. Let σ(TF ) denote the spectrum of the Friedrichs extension operator
TF . Then we have σ(TF ) ⊆ Ω.
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Proof. Since each spectral point of given operator lies in the numerical range of the
operator, we turn to prove the numerical range of TF

Θ(TF ) = {〈TFu, u〉 : u ∈ D(TF ), ||u|| = 1}

is contained in Ω. For all λ ∈ Θ(TF ) there exists u ∈ D(TF ), ||u|| = 1 such that

λ = 〈TFu, u〉 = t[u, u] =
∫ b

a

[p|u′|2 + q|u|2].

First, we assume u �= 0 in any subinterval of [a, b). Then

λ =
∫ b

a

(
p(x)

|u′(x)|2
w(x)|u(x)|2 +

q(x)
w(x)

)
w(x)|u(x)|2 dx

:=
∫ b

a

(
p(x)r1(x) +

q(x)
w(x)

)
w(x)|u(x)|2 dx,

where r1(x) =
|u′(x)|2

w(x)|u(x)|2 ∈ (0,∞). For arbitrary ε > 0, there exists T ′ ∈ (a, b)

such that ∣∣∣∣∣
∫ T ′

a

(
p(x)r1(x) +

q(x)
w(x)

)
w(x)|u(x)|2 dx− λ

∣∣∣∣∣ < ε

4
,

∣∣∣∣∣
∫ b

T ′

(
p(x)r1(x) +

q(x)
w(x)

)
w(x)|u(x)|2 dx

∣∣∣∣∣ < ε

4
.

Since ||u|| = 1 implies
∫ b

a
w(x)|u(x)|2 dx = 1, there exists T

′′ ∈ (a, b) such that

∫ b

T ′′
w(x)|u(x)|2 dx <

ε

4

∣∣∣∣p(T ′)r1(T ′) +
q(T ′)
w(T ′)

∣∣∣∣−1

.

Let T = max{T ′, T
′′} and λT =

∫ T

a

(p(x)r1(x) +
q(x)
w(x)

)w(x)|u(x)|2 dx. Then

|λT − λ| < ε

2
,∫ b

T

w(x)|u(x)|2 dx <
ε

4

[
p(T ′)r1(T ′) +

q(T ′)
w(T ′)

]−1

.

Now we consider the constant λT , by the definition of integrand, for ε > 0, there
exists δ > 0, and a partition a = x0 < x1 < x2 < · · · < xn = T ,∣∣∣∣∣

n∑
i=1

[
p(ξi)r1(ξi) +

q(ξi)
w(ξi)

]
Δ

(∫ xi

xi−1

w(x)|u(x)|2 dx

)
− λT

∣∣∣∣∣ < ε

4
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provided Δ(T ) = max
1�i�n

{xi − xi−1} < δ, where ξi ∈ (xi−1, xi). Since
∫ b

a
w(x)|u(x)|2

dx = 1, we obtain

ρ(Δ) :=
n∑

i=1

[
p(ξi)r1(ξi) +

q(ξi)
w(ξi)

]
Δ

(∫ xi

xi−1

w(x)|u(x)|2 dx

)

+
[
p(T ′)r1(T ′) +

q(T ′)
w(T ′)

] ∫ b

T

w(x)|u(x)|2 dx

∈ co
{
q(x)
w(x)

+ rp(x) : r > 0, x ∈ (a, b)
}
.

So we obtain

|λ− ρ(Δ)| � |λ− λT | +
∣∣∣∣∣λT −

n∑
i=1

[
p(ξi)r1(ξi) +

q(ξi)
w(ξi)

]
Δ

(∫ xi

xi−1

w(x)|u(x)|2 dx

)∣∣∣∣∣
+

∣∣∣∣∣
n∑

i=1

[
p(ξi)r1(ξi) +

q(ξi)
w(ξi)

]
Δ

(∫ xi

xi−1

w(x)|u(x)|2 dx

)
− ρ(Δ)

∣∣∣∣∣
<
ε

2
+
ε

4
+
[
p(T ′)r1(T ′) +

q(T ′)
w(T ′)

] ∫ b

T

w(x)|u(x)|2 dx

=
3ε
4

+
∣∣∣∣p(T ′)r1(T ′) +

q(T ′)
w(T ′)

∣∣∣∣ ∫ b

T

w(x)|u(x)|2 dx < ε,

which implies

λ ∈ co
{
q(x)
w(x)

+ rp(x) : r > 0, x ∈ (a, b)
}

= Ω.

For the case where u(t) ≡ 0 in some sub-interval of [a, b), we define V =⋃n
i=1(ai, bi), where n is finite or n = ∞, (ai, bi) are disjoint open intervals such that

u(x) ≡ 0 for x ∈ (ai, bi), 1 � i � n. We assume further that a < ai < bi < ai+1 and
the set {ai} has no finite accumulation point if b = ∞, and the only possible finite
accumulation point is b if b <∞.

Let τ = τ(x) = m([a, x] − V ), where m denotes the usual linear Lebesgue mea-
sure, and let B = τ(b), Ai = τ(ai), i = 1, 2, · · · , n. [a,B) is obtained from [a, b) by
shrinking each interval (ai, bi) to its left endpoint.

Let DI denote the set of piecewise continuous functions on I. We construct a class
of transformation LV : D[a,b) → D[a,B) as follows: Let f ∈ D[a,b). Then F = LV (f)
is defined by

F (τ) = f(x) if τ = τ(x), τ �= Ai, and F (Ai) = f(ai).
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The function F is obtained from f by collapsing each interval (ai, bi) to a point.
For all λ ∈ Θ(TF ), we obtain

λ =
∫ b

a

[p(x)|u′(x)|2 + q(x)|u(x)|2] dx

=
∫ B

a

[
(LV p)(τ)|(LV u)′(τ)|2 + (LV q)(τ)|(LV u)(τ)|2

]
dτ.

The remainder is similar as above, so we omit the details. In both cases, we have
proved Θ(TF ) ⊆ Ω. This completes the proof. �

Corollary 5.2. Let σ(TF ) denote the spectrum of the Friedrichs extension
operator TF . Then for all (θ0,K0) ∈ Π, we have

inf
{�{eiθ〈(T0 −K0)y, y〉 : y ∈ D(T0), ||y|| = 1

}}
= min

{�{eiθ(μ−K0) : μ ∈ σ(TF )
}}

.
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