
Proceedings of the Royal Society of Edinburgh, page 1 of 21

DOI:10.1017/prm.2024.22

Invariant set generated by a nonreal number is
everywhere dense
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A set of complex numbers S is called invariant if it is closed under addition and
multiplication, namely, for any x, y ∈ S we have x + y ∈ S and xy ∈ S. For each
s ∈ C the smallest invariant set N[s] containing s consists of all possible sums∑

i∈I ais
i, where I runs over all finite nonempty subsets of the set of positive

integers N and ai ∈ N for each i ∈ I. In this paper, we prove that for s ∈ C the set
N[s] is everywhere dense in C if and only if s /∈ R and s is not a quadratic algebraic
integer. More precisely, we show that if s ∈ C \ R is a transcendental number, then
there is a positive integer n such that the sumset Ntn + Nt2n + Nt3n is everywhere
dense in C for either t = s or t = s + s2. Similarly, if s ∈ C \ R is an algebraic
number of degree d �= 2, 4, then there are positive integers n, m such that the sumset
Ntn + Nt2n + Nt3n is everywhere dense in C for t = ms + s2. For quadratic and
some special quartic algebraic numbers s it is shown that a similar sumset of three
sets cannot be dense. In each of these two cases the density of N[s] in C is
established by a different method: for those special quartic numbers, it is possible to
take a sumset of four sets.

Keywords: additive semigroup; multiplicative semigroup; invariant set;
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1. Introduction

As in [16], we say that a nonempty set of complex numbers S ⊆ C is invariant if it
is closed under addition and multiplication. Equivalently, an invariant set S is the
set which is both an additive semigroup and a multiplicative semigroup, namely,
for all x, y ∈ S we have x+ y ∈ S and xy ∈ S. Evidently, the set {0} is invariant.
Any other invariant set S �= {0} is infinite and unbounded, since for any nonzero
s ∈ S we have ns ∈ S for each positive integer n.

For the purposes of this paper, we let N be the set of positive integers, and N0

be the set of non-negative integers. That is N does not include 0, whereas N0 does
include 0.
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2 A. Dubickas

It is clear that for each s ∈ C the smallest invariant set containing s is the set

N[s] =

{∑
i∈I

ais
i

}
, (1.1)

where I runs over all finite nonempty subsets of N and ai ∈ N for each i ∈ I. Indeed,
if s belongs to some invariant set S, then each element of N[s] must belong to the
set S as well, so N[s] ⊆ S. Furthermore, the set N[s] defined in (1.1) is closed under
addition and multiplication and so is invariant.

If in (1.1) the coefficients ai belong not to N but to the set of integers Z and I
runs over all nonempty subsets of the set N0, then the corresponding set is simply
Z[s] = {P (s)}, where P run over all elements of the ring of polynomials Z[x]. A
very similar quantity N0[s], where ai ∈ N in (1.1) and I is a subset of N0 (so a free
positive coefficient is also allowed), has been recently investigated in [2], [6]. There,
it is called an evaluation polynomial semiring at s. Obviously, for each s ∈ C, we
have

N[s] ⊆ N0[s] ⊆ Z[s]. (1.2)

Various problems related to invariant subsets of the set of real numbers R

have been considered in [12], [16] and also recently in [10]. In particular, in [10,
Theorem 2] we showed that if an invariant set S contains a real negative element,
which is not in Z, then S is everywhere dense in R. Of course, these two conditions
are also necessary for the density of N[s] in R, since N[s] ⊆ [0,+∞) for s � 0 and
N[s] ⊆ Z for s ∈ Z. Therefore, in the present notation (with N[s] as in (1.1)) we can
write [10, Theorem 2] as follows:

Theorem 1.1. For s ∈ R the set N[s] is everywhere dense in R if and only if s < 0
and s /∈ Z.

A similar density in R results for the set polynomials evaluated at a given point
s ∈ R whose coefficients belong to some finite subsets of the set Z were obtained in
[8], [20], [21] and in several subsequent papers related to the problem earlier raised
by Erdős, Joo and Komornik. Its solution has been finally given by Feng [13].

In this paper, we investigate the set N[s] for s ∈ C \ R. We will prove the following:

Theorem 1.2. For s ∈ C the set N[s] is everywhere dense in C if and only if s /∈ R

and s is not a complex quadratic algebraic integer.

Of course, if s ∈ R then N[s] ⊂ R, while if s is a complex quadratic algebraic
integer then N[s] is a subset of the lattice Z + Zs, and so is not dense in C. Therefore,
avoiding both these situations for s is indeed necessary for the density of N[s] in C.
The nontrivial part in the proof of theorem 1.2 is to show that for any other s ∈ C

the set N[s] is everywhere dense in C.
It is known that if s ∈ C \ R is an algebraic number, which is not a quadratic

algebraic integer, then the set Z[s] is everywhere dense in C; see, e.g., [24]. An even
stronger result for algebraic s of degree at least 3 can be derived from [5, Theorem
0.1]. However, the set N[s] is the smallest of the three sets considered in (1.2), so
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Invariant set generated by a nonreal number 3

the density of Z[s] does not imply the density of N[s]. In addition, we are interested
not only in algebraic but also in transcendental s.

In fact, for most s our result is much more precise. We will show that in order
to get a set dense in C it is sufficient to use just three powers of s or s+ s2 for
s transcendental or three powers of ms+ s2 with some m ∈ N for s algebraic of
degree d �= 2, 4 with appropriate coefficients from N:

Theorem 1.3. Let s ∈ C \ R be a transcendental number. Then, there is a positive
integer n such that the sumset

Ntn + Nt2n + Nt3n (1.3)

is everywhere dense in C for either t = s or t = s+ s2.
Similarly, if s ∈ C \ R is an algebraic number of degree d /∈ {2, 4} then there exist

n,m ∈ N such that the sumset (1.3) is everywhere dense in C for t = ms+ s2.

Theorem 1.3 implies the sufficiency part of theorem 1.2 for s ∈ C \ R, except for
the case when s is an algebraic number of degree 2 or 4, because the sumset (1.3)
is a subset of N[s] (see (1.1)).

We stress that in the sumset (1.3) it should be at least three terms, because for
any two complex numbers s1, s2 the sumset

Ns1 + Ns2

is contained in a lattice or in a line. Therefore, it cannot be dense in C. In terms of
semigroups, this observation combined with theorem 1.3 implies that, for s ∈ C \ R,
which is not an algebraic number of degree 2 or 4, the smallest finitely generated
additive semigroup A ⊂ N[s] that is everywhere dense in C is of rank 3.

Evidently, no algebraic number s ∈ C \ R can be of degree d = 1. For s ∈ C \ R

of degree d = 2 and any s1, . . . , sk ∈ N[s] there is positive integer q (depending on
s, s1, . . . , sk only) such that

qs1, . . . , qsk ∈ Z + Zt.

Therefore, the sumset

Ns1 + · · · + Nsk ⊆ q−1(Z + Zt) (1.4)

is not dense in C. So, for algebraic s ∈ C \ R of degree d = 2, we cannot expect a
result of the same type as that in theorem 1.3 (not only with sumset of three sets
as in (1.3) but also with sumset of k sets). However, for those numbers the density
problem as claimed in theorem 1.2 can be settled by the following result which
completes the case of algebraic s of degree d = 2:

Theorem 1.4. If s ∈ C \ R is a quadratic algebraic number then the set N[s] is
everywhere dense in C if and only if s is not an algebraic integer.

The case of algebraic s of degree d = 4 is not considered in theorem 1.3 for a
similar reason. It turns out that theorem 1.3 does not hold for some very special
quartic algebraic numbers s.
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4 A. Dubickas

We say that s ∈ C \ R is an exceptional number if it is an algebraic number of
degree d = 4 over Q and there is a real quadratic number field E such that

ψ = s+ s ∈ E and λ = ss ∈ E. (1.5)

Of course, at least one of the numbers ψ, λ in (1.5) must be irrational, since
otherwise s, as a nonreal root of the polynomial

(x− s)(x− s) = x2 − ψx+ λ

with rational coefficients, will be a quadratic number.
For algebraic numbers s of degree d = 4 we will show that the sumset of at

most four sets is everywhere dense in C and that three sets are not sufficient for
exceptional numbers s.

Theorem 1.5. If s ∈ C \ R is a quartic algebraic number, which is not exceptional,
then there exist n,m ∈ N such that the sumset (1.3) is everywhere dense in C for
t = ms+ s2.

On the other hand, if a quartic algebraic number s ∈ C \ R is exceptional, then
for any s1, s2, s3 ∈ N[s] the sumset

Ns1 + Ns2 + Ns3 (1.6)

is not dense in C, but there are t1, t2, t3, t4 ∈ N[s] for which the sumset

Nt1 + Nt2 + Nt3 + Nt4 (1.7)

is everywhere dense in C.

Recall that no sumset of the form (1.4) is dense in C for a quadratic algebraic
number s and s1, . . . , sk ∈ N[s]. Therefore, for such s the set N[s] does not contain
a finitely generated semigroup A that is dense in C (although, by theorem 1.4,
N[s] itself is dense in C if s is not a quadratic algebraic integer). The situation is
different for other s ∈ C \ R. For each of those s, by theorems 1.3 and 1.5, such a
semigroup A ⊂ N[s] exists. Moreover, these theorems also determine the smallest
possible rank of a semigroup A in N[s] that is everywhere dense in C:

Corollary 1.6. For s ∈ C \ R the set N[s] contains a finitely generated additive
semigroup A that is everywhere dense in C if and only if s is a transcendental
number or an algebraic number of degree d > 2. The smallest possible rank of such
a semigroup A ⊂ N[s] equals 3, unless s is an exceptional number in which case the
smallest possible rank of such A equals 4.

Note that t in theorem 1.3 is either s or a quadratic polynomial in s. Also, the
power n will be chosen in lemma 4.3: it depends on t, s, and so on s only. The same
numbers t, n also appear in the first part of theorem 1.5. Furthermore, t1, t2, t3, t4
in the last part of theorem 1.5 are polynomials in s whose degrees depend on s only
(see (7.6) and the proof later on). Therefore, theorems 1.3 and 1.5 also imply the
following approximation result for polynomials with nonnegative coefficients:

https://doi.org/10.1017/prm.2024.22 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.22


Invariant set generated by a nonreal number 5

Corollary 1.7. Let s ∈ C \ R be a transcendental number or an algebraic number
of degree d > 2. Then, there is a positive integer n = n(s), which depends only on
s, such that for any z ∈ C and any ε > 0 there exist a1, . . . , an ∈ N0, not all zeros,
for which

|a1s+ a2s
2 + · · · + ans

n − z| < ε. (1.8)

For most s corollary 1.7 is stronger than theorem 1.2, because in (1.8) the degree
of approximating polynomial is bounded by a constant depending on s only. For the
algebraic number s of degree d = 2, which is not an algebraic integer, the inequality
(1.8) also holds by theorem 1.4. However, in that case, as the sumset (1.4) is not
dense in C for any fixed s1, . . . , sk ∈ N[s], the integer n in (1.8) depends not only
on s. (In principle, it depends on s, z and ε.)

In corollary 1.7, the degree n is fixed, while the coefficients ai ∈ N0 are allowed
to grow. In [13] and similar papers, the coefficients ai all belong to a finite set,
while the degree n is allowed to grow. Specifically, for s > 1 the density in R of the
polynomials

∑n
i=0 ais

i with coefficients ai ∈ Z ∩ [−m,m] has been established for
every s ∈ (1,m+ 1) which is not a Pisot number. In our earlier paper [10], where
the density in R has been investigated, the coefficients were allowed to take values
in N and there was no restriction on the degree, so no condition related to Pisot
numbers appears in theorem 1.1.

Our approach to the proof of theorem 1.3 rests on the following recent result [11]
(whose motivation came from [17]).

Theorem 1.8. For α, β, γ ∈ C the set

Zα+ Zβ + Zγ

is everywhere dense in C if and only if the imaginary parts

�(αβ),�(βγ),�(γα)

are linearly independent over Q.

Unfortunately, we cannot use theorem 1.8 as stated, because we are working not
with the sumset Zα+ Zβ + Zγ, which is an additive group, but with the additive
semigroup Nα+ Nβ + Nγ, which can be smaller. For this purpose, we will establish
the following analogue of theorem 1.8:

Theorem 1.9. For α, β, γ ∈ C the set

Nα+ Nβ + Nγ

is everywhere dense in C if and only if the imaginary parts

�(αβ),�(βγ),�(γα)

are linearly independent over Q and the point z = 0 belongs to the interior of a
triangle with vertices at α, β, γ.
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6 A. Dubickas

In the next section we will prove theorem 1.4. Section 3 is devoted to the proof
of theorem 1.9. Then, in § 4 we will prove five auxiliary lemmas of different types.
In § 5, using theorem 1.9 and one of the lemmas, we will prove a proposition
describing the conditions on t under which the sumset (1.3) is everywhere dense in
C. Finally, in § 6 and 7, combining this proposition with some previous lemmas, we
will complete the proofs of theorems 1.3 and 1.5. It is clear that theorems 1.3, 1.4,
1.5 combined with the explanation of the necessity of the conditions s /∈ R and s is
not a quadratic algebraic integer imply theorem 1.2.

2. The set N[s] for algebraic s without positive conjugates

In this section we assume that s ∈ C \ R is an algebraic number which is not a
quadratic algebraic integer and has no conjugates in (0,∞). We will show how
the desired result about the density of N[s] in C can be easily derived from the
above-mentioned result [24] about the density of Z[s] in C.

Assume that an algebraic number s �= 0 has no conjugates in (0,∞) (including
s itself). Then, s is a root of some nonzero polynomial with nonnegative integer
coefficients. (This result is essentially due to Meissner [19]. It was also proved in
[3], [4], [6], [7], [9], [15].) Hence,

m∑
i=0

ais
i = 0

for some m,a0, am ∈ N and a1, . . . , am−1 ∈ N0. This, by the definition of N[s] in
(1.1), yields

−a0 =
m∑
i=1

ais
i ∈ N[s].

Consequently,

−a2
0 = a0 · (−a0) = (−a0) + · · · + (−a0)︸ ︷︷ ︸

a0−times

∈ N[s]

by the additivity of N[s] and a2
0 = (−a0)2 ∈ N[s] by its multiplicativity. This implies

±a2
0s
j ∈ N[s] for every j ∈ N0. Thus, selecting a = a2

0 ∈ N we get the following:

Lemma 2.1. If s �= 0 is an algebraic number whose conjugates over Q (including s
itself) do not belong to the interval (0,∞), then there is a positive integer a which
depends on s only such that

aZ[s] ⊆ N[s] ⊆ Z[s].

By [24], we know that, if s ∈ C \ R is an algebraic number that is not a
quadratic algebraic integer, then Z[s] is everywhere dense in C. This, combined
with lemma 2.1, implies the following:

Corollary 2.2. If s ∈ C \ R is an algebraic number which is not a quadratic alge-
braic integer and has no conjugates in (0,∞), then the set N[s] is everywhere dense
in C.
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In particular, if s ∈ C \ R is quadratic then it has no real conjugates, since its
only conjugate over Q, which is not equal to s, must be its complex conjugate s /∈ R.
Hence, corollary 2.2 implies theorem 1.4.

3. Proof of theorem 1.9

In the proof of theorem 1.9 we shall use Kronecker’s approximation theorem; see,
for instance, [1, Theorem 9], [14, p. 507], [18].

Lemma 3.1. Let λ1, . . . , λN be real numbers such that 1, λ1, . . . , λN are linearly
independent over Q, and let ω1, ω2, . . . , ωN be arbitrary real numbers. Then, for
any ε > 0, there exist T ∈ N and T1, . . . , TN ∈ Z such that

|λnT − ωn − Tn| < ε (3.1)

for n = 1, 2, . . . , N .

If the point z = 0 does not belong to the interior of a triangle with vertices at
α, β, γ ∈ C, then there is a line L through the point z = 0 such that the points
α, β, γ all belong to the same side of the line L (possibly including the line L
itself). Then, all the points of the sumset Nα+ Nβ + Nγ are also on the same
side of L (including L itself). Consequently, this sumset is not dense in C. Also, if
the imaginary parts �(αβ),�(βγ),�(γα) are linearly dependent over Q, then the
sumset Zα+ Zβ + Zγ is not dense in C by theorem 1.8. Therefore, Nα+ Nβ + Nγ,
as a subset of Zα+ Zβ + Zγ, cannot be dense in C either.

From now on we assume that the point z = 0 belongs to the interior of the
triangle with vertices at α, β, γ and that the three numbers �(αβ),�(βγ),�(γα)
are linearly independent over Q. In order to complete the proof of theorem 1.9 it
remains to show that the sumset Nα+ Nβ + Nγ is everywhere dense in C.

Of course, the linear independence of the above imaginary parts implies that
α, β, γ �= 0. Note that by multiplying all three numbers α, β, γ by the same number
γ−1 we do not change any of the two conditions. The point z = 0 still belongs to
the interior of a triangle with vertices at α, β, 1 (where we use the notation α for
αγ−1 and β for βγ−1) and the three numbers �(αβ),�(β),�(α) are still linearly
independent over Q. We will show that the sumset N + Nα+ Nβ is everywhere
dense in C.

Set

α = u+ iv and β = −w − il,

where u, v, w, l ∈ R. Since the point z = 0 lies in the interior of the triangle with
vertices at α, β, 1, the numbers v, l must be either both positive or both negative.
Without the restriction of generality (by swapping α and β if necessary) we can
assume that v, l > 0. Furthermore, at least one of the numbers u,−w must be
negative, since otherwise z = 0 does not lie in the interior of the triangle α, β, 1.
Again, by swapping α, β by β, α if necessary, we can assume that the number −w
is negative, i.e. w > 0. Therefore, without loss of generality, we can assume that
v, w, l > 0. The sign of u can be arbitrary (it is also possible that u = 0), but the
argument of the complex number α plus π must be greater than the argument of
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8 A. Dubickas

β. (The argument arg z of a complex number z �= 0 is a unique real number in the
interval [0, 2π) for which z = |z|ei arg z.)

Let θ1, θ2 ∈ (0, 2π) be the arguments of α and β, respectively. Then, θ1 ∈ (0, π)
and θ2 ∈ (π, 3π/2). The condition θ1 + π > θ2 automatically holds if u � 0. In
the case when u > 0 the condition θ1 + π > θ2 is equivalent to tan(θ1) > tan(θ2),
namely, v/u > l/w. Hence,

vw

l
− u > 0. (3.2)

Of course, by v, w, l > 0, the inequality (3.2) trivially holds for u � 0. So, from now
on we will assume that v, w, l > 0 and u ∈ R satisfy (3.2).

We know that the numbers �(αβ) = ul − vw, �(β) = −l, �(α) = −v are linearly
independent over Q. Dividing by −l we deduce that the numbers

1,
v

l
,
vw

l
− u

are linearly independent over Q too.
Now, the conclusion of the proof is essentially the same as that in [11]. Fix two

arbitrary real numbers X and Y . We need to show that, for any positive number
ε, there exist a, b, c ∈ N for which the sum a+ bα+ cβ is close to X + iY , namely,

|a+ bu− cw −X| < ε and |bv − cl − Y | < ε. (3.3)

Set

ω1 =
Y

l
and ω2 = −X +

Y w

l
. (3.4)

By lemma 3.1 applied to λ1 = v/l, λ2 = vw/l − u and ω1, ω2 as defined in (3.4), for
any ε > 0, there exist b ∈ N and a, c ∈ Z such that

|bv/l − ω1 − c| < ε and |b(vw/l − u) − ω2 − a| < ε.

Since the numbers v/l and vw/l − u are irrational (as they both and 1 are linearly
independent over Q), the above inequalities have infinitely many solutions in b ∈ N.
For b sufficiently large we must have c ∈ N and a ∈ N due to v/l > 0 and (3.2).
Hence, we can assume that a, b, c ∈ N.

Next, in view of (3.4), by multiplying the first inequality by l > 0, we get

|bv − cl − Y | < εl. (3.5)

Similarly, by (3.4), multiplying the second inequality by l > 0 we deduce

|b(vw − ul) +Xl − Y w − al| < εl.

This inequality can be written in the equivalent form

| − l(a+ bu− cw −X) + w(bv − cl − Y )| < εl.

Now, by the triangle inequality, w > 0 and (3.5), it follows that

|l(a+ bu− cw −X)| < w|bv − cl − Y | + εl � εwl + εl = εl(1 + w),
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Invariant set generated by a nonreal number 9

and hence

|a+ bu− cw −X| < ε(1 + w). (3.6)

It is clear that (3.5) and (3.6) imply (3.3) provided that ε is satisfies

0 < ε � ε

max(l, 1 + w)
.

This completes the proof of the theorem.

4. Auxiliary lemmas

We begin with the following lemma, which will be used in the proof of proposi-
tion 5.1 later on.

Lemma 4.1. Assume that s is a transcendental nonreal number. Then, for at least
one number t ∈ {s, s+ s2} all three numbers t, |t|, t/|t| are transcendental.

Proof. Write s = �eiα, with � > 0 and argument α ∈ (0, π) ∪ (π, 2π). If the num-
bers s, |s| = � and s/|s| = eiα are all three transcendental, then the assertion of
the lemma holds with t = s. If not, then either eiα or � is algebraic. (They can-
not be both algebraic by the assumption of the lemma on s.) We will show that
then the assertion of the lemma holds for number t = s+ s2. Set t = |t|eiβ , where
0 � β < 2π.

From

t = s+ s2 = � cos(α) + �2 cos(2α) + i
(
� sin(α) + �2 sin(2α)

)
we find that

|t|2 = �2 + �4 + 2�3 cos(α) (4.1)

and (
cos(α) + � cos(2α)

)
tan(β) = sin(α) + � sin(2α). (4.2)

Assume first that eiα = cos(α) + i sin(α) is algebraic and � is transcendental.
Then, cos(α) = eiα + e−iα/2 and sin(α) = eiα − e−iα/2i are both algebraic. If |t|
were algebraic, then, as |t|2 and cos(α) are both algebraic, � were algebraic by (4.1),
a contradiction. Hence, |t| is transcendental. Assume that t/|t| = eiβ is algebraic. If
β ∈ {π/2, 3π/2}, then 
(t) = 0. Hence, � cos(α) + �2 cos(2α) = 0, and so cos(α) +
� cos(2α) = 0. This is not the case, because � /∈ Q (where Q stands for the set of
algebraic numbers) and cos(α), cos(2α) = 2 cos2(α) − 1 ∈ Q cannot be both zeros.
It follows that tan(β) in (4.2) is well defined, namely, β /∈ {π/2, 3π/2}.

Since tan(β), cos(α), cos(2α), sin(α), sin(2α) ∈ Q and � /∈ Q, equality in (4.2)
holds only if

cos(α) tan(β) = sin(α) and cos(2α) tan(β) = sin(2α). (4.3)
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10 A. Dubickas

We know that sin(α) �= 0, so cos(α) �= 0 by the first equality in (4.3). Thus,
sin(2α) �= 0. Hence, by (4.3), we obtain tan(β) �= 0 and

cos(α)
sin(α)

=
cos(2α)
sin(2α)

,

which implies

cos(2α) = sin(2α)
cos(α)
sin(α)

= 2 cos2(α) = cos(2α) + 1,

which is absurd. This proves that eiβ = t/|t| is transcendental.
Now, assume that � is algebraic and eiα is transcendental. Then, cos(α) must be

transcendental too. From (4.1) we see that that |t|2 is transcendental, and hence
so is |t|. It remains to prove that eiβ is transcendental. Assume that eiβ ∈ Q. It is
clear that then tan(β) ∈ Q or β ∈ {π/2, 3π/2}. However, if β ∈ {π/2, 3π/2}, then

(t) = 0, which means that cos(α) + � cos(2α) = 0. Then, x = cos(α) is a root of
the nonzero polynomial with algebraic coefficients 2�x2 + x− �. Hence, cos(α) ∈ Q,
a contradiction. Therefore, tan(β) in (4.2) is well defined. Squaring both sides of
(4.2) we obtain

tan2(β)(2�x2 + x− �)2 = (1 − x2)(1 + 2�x)2,

where x = cos(α). Since x is transcendental and �, tan(β) ∈ Q, equality holds only
if the resulting quartic polynomials on both sides are identical. However, their
coefficients for x4 are 4�2 tan2(β) and −4�2. Since � > 0, they are equal only in
the case when tan2(β) = −1, which is impossible. This completes the proof of the
lemma. �

The next lemma is similar to lemma 4.1, but deals with algebraic s rather than
transcendental.

Lemma 4.2. For each algebraic nonreal number s there is m0 ∈ N such that for each
integer m � m0 the argument βm of the number ms+ s2 satisfies βm/π /∈ Q.

Proof. Assume that s = �eiα. Set tm = ms+ s2 = |tm|eiβm . Then, as in (4.2), we
find that

(
m cos(α) + � cos(2α)

)
tan(βm) = m sin(α) + � sin(2α). (4.4)

Since sin(α) �= 0 and m+ 2� cos(α) �= 0 for m sufficiently large, the right hand
side of (4.4) is nonzero. Also, in case cos(α) = 0 we have m cos(α) + � cos(2α) =
−� �= 0. Furthermore, for cos(α) �= 0 we have m cos(α) + � cos(2α) �= 0 for m large
enough. Consequently, tan(βm) is (4.4) is well defined, i.e. βm /∈ {π/2, 3π/2}. Since
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tan(βm) �= 0, we must have

βm ∈ (0, 2π) \
{
π

2
, π,

3π
2

}
.

Also, from (4.4) it follows that

tan(βm) ∈ F = Q(�, cos(α), sin(α)) (4.5)

for each sufficiently large m ∈ N.
Now, from (4.4) we deduce

m(cos(α) tan(βm) − sin(α)) = −�(cos(2α) tan(βm) − sin(2α)). (4.6)

In case cos(α) tan(βm) − sin(α) = 0 we have cos(α) �= 0, and hence tan(βm) =
tan(α). By (4.6), this implies

cos(2α) tan(α) − sin(2α) = − tan(α) = 0,

which is not the case in view of α /∈ {0, π}. Therefore,

cos(α) tan(βm) − sin(α) �= 0. (4.7)

Assume that βm = rmπ with rational number

rm ∈ (0, 2) \
{

1
2
, 1,

3
2

}
. (4.8)

By (4.5), all values of tan(rmπ) belong to the field F . Thus, the degree of the
algebraic number tan(rmπ) is bounded from above by a constant, say c1 = c1(F ) =
[F : Q] = c1(s). The exact degree of tan(rmπ) with rational rm in terms of the
denominator v of rm has been calculated, for instance, in [23, Proposition 4.1]. For
v > 8 it is at least ϕ(2v)/4, where ϕ is Euler’s totient function. From ϕ(2v)/4 < c1
we find that v < c2 for some c2 depending in s only.

Note that, by (4.8), the numerator of rm is less than 2v. Thus, there are only
finitely many of such rational numbers rm satisfying (4.8). Hence, as s = �eiα is
fixed, there a constant c3 = c3(F ) = c3(s) > 0 such that the quotient of

−�(cos(2α) tan(βm) − sin(2α)) and cos(α) tan(βm) − sin(α),

which is nonzero by (4.7), takes at most c3 distinct values. However, by (4.6), this
quotient equals m. This is clearly impossible for m large enough. �

In the next lemma we show the existence of infinitely many triplets of useful
complex points such that the point z = 0 belongs to the interior of a triangle with
vertices at each of these triplets.

Lemma 4.3. Let t = |t|eiβ ∈ C, where the argument β ∈ [0, 2π) of t satisfies β/π /∈
Q. Then, there are infinitely many prime numbers k such that the point z = 0
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12 A. Dubickas

belongs to the interior of a triangle with vertices at tk, t2k, t3k, and also to the
interior of a triangle with vertices at t2k, t4k, t6k.

Proof. For θ ∈ R \ Q the sequence of the fractional parts {θk}, where k runs over
the primes, is everywhere dense in the interval [0, 1]. See, e.g., [22, Section 2–70].
(In fact, by an old result of Vinogradov, this sequence is uniformly distributed in
[0, 1].)

In particular, as β/2π /∈ Q, for each δ > 0, there are infinitely many prime
numbers k such that

1
3
<

{
kβ

2π

}
<

1
3

+ δ. (4.9)

Consequently, for each of those k there is � = �(k) ∈ Z such that 1/3 < kβ/2π − � <
1/3 + δ, which is equivalent to

2π
3
< kβ − 2π� <

2π
3

+ 2πδ. (4.10)

This means that the arguments of the complex numbers tk = |t|keikβ , t2k, t3k lie
in the intervals (

2π
3
,
2π
3

+ 2πδ

)
,

(
4π
3
,
4π
3

+ 4πδ

)
,
(
0, 6πδ

)
respectively. It is clear that for δ > 0 small enough the point z = 0 belongs to the
interior of a triangle with vertices at tk, t2k, t3k.

Likewise, by (4.10), we see that the arguments of the complex numbers
t2k = |t|2ke2ikβ , t4k, t6k lie in the intervals(

4π
3
,
4π
3

+ 4πδ

)
,

(
2π
3
,
2π
3

+ 8πδ

)
,
(
0, 12πδ

)
respectively. Again, for δ > 0 small enough, the point z = 0 belongs to the interior
of a triangle with vertices at t2k, t4k, t6k. �

The following lemma will be useful in treating exceptional numbers in
theorem 1.5.

Lemma 4.4. Let λ �= 0 and ψ be two real algebraic numbers. Assume that for each
sufficiently large m ∈ N the number λ(λ+mψ +m2) is rational or quadratic. Then,
there is a real quadratic field E such that λ, ψ ∈ E.

Proof. Set F = Q(λ, ψ). By the assumption of the lemma, the numbers

τm = λ(λ+mψ +m2),

where m ∈ N is large enough, are all at most quadratic, and all belong to F . Since
F has only finitely many real quadratic subfields (possibly none), there is a real
quadratic field E and an infinite set M ⊂ N such that τm ∈ E for each m ∈M .
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(In the case when all the numbers τm are rational, we can take any real quadratic
field E.) Select m �= m′ in M . Then,

m′τm −mτm′ = (m′ −m)(λ2 −mm′λ) ∈ E,

and hence λ2 −mm′λ ∈ E. Taking m′ ∈M \ {m,m′}, by the same argument, we
obtain λ2 −mm′λ ∈ E. The difference m(m′′ −m′)λ of these two numbers is also
in E, which forces λ ∈ E. Since λ �= 0 and τm ∈ E, we also obtain

ψ =
τm − λ2 −m2λ

mλ
∈ E,

which completes the proof of the lemma. �

The next lemma gives one more approach to establishing the density of a sumset
in C. This time we will use four sets instead of three. This lemma will be used in
the final part of the proof of theorem 1.5.

Lemma 4.5. Let s ∈ C \ R. Assume that the set N[s] contains two elements s1, s2 �=
0 whose quotient ω = s1/s2 is a negative real irrational number. Then, the sumset

Ns1 + Ns2 + Ns1s+ Ns2s

is everywhere dense in C.

Proof. Since the points 0, s2, s2s are not collinear, every complex number can be
written in the form Xs2 + Y s2s with X,Y ∈ R. The idea is to approximate Xs2
by the sumset Ns1 + Ns2 and Y s2s by the sumset Ns1s+ Ns2s.

We will show that for each ε > 0 there exist a1, a2, a3, a4 ∈ N such that

|a1s1 + a2s2 −Xs2| < ε and |a3s1s+ a4s2s− Y s2s| < ε. (4.11)

Since s1 = ωs2, setting

ε1 =
ε

|s2| , ε2 =
ε

|s2s| , ω1 = {−X} and ω2 = {−Y }

and using the identities X = −[−X] − {−X}, Y = −[−Y ] − {−Y }, we can rewrite
the inequalities in (4.11) as

|(−ω)a1 − (a2 + [−X]) − ω1| < ε1 and |(−ω)a3 − (a4 + [−Y ]) − ω2| < ε2.

By lemma 3.1 with N = 1 and λ1 = −ω, we see that for each ε1 > 0 there is a1 ∈ N

and b1 ∈ Z such that

|(−ω)a1 − ω1 − b1| < ε1.

Here, for each sufficiently small ε1, the integer a1 ∈ N must be large. Since −ω > 0,
the integer b1 is positive and large. So the first displayed inequality indeed holds
with a2 = b1 − [−X] ∈ N. This proves the first inequality in (4.11). The proof of
the second displayed inequality is exactly the same, with some a3, a4 ∈ N, which
implies the second inequality in (4.11). �
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14 A. Dubickas

5. Final preparation

In this section we will prove the following proposition:

Proposition 5.1. Let t = |t|eiβ ∈ C be such that β/π /∈ Q and |t|2 is not an alge-
braic number of degree at most 2. Then, there is a positive integer n such that the
sumset

Ntn + Nt2n + Nt3n

is everywhere dense in C.

Proof. Set ξ = |t|2. We claim that ξk is not an algebraic number of degree at most
2 for all sufficiently large prime numbers k. This is trivial if ξ is transcendental.
Assume that ξ is an algebraic number of degree d. By the condition of the propo-
sition, we have d � 3. Evidently, the degree of ξk is d, unless there is a conjugate
ξ′ �= ξ of ξ over Q such that ξk = ξ′k. But then ζ = ξ/ξ′ is a kth root of unity, so its
degree is ϕ(k) = k − 1. However, the number ζ cannot belong to the field Q(ξ, ξ′)
of degree at most d(d− 1) when k > d(d− 1), a contradiction. Thus, ξk is of degree
d (d � 3) for each sufficiently large prime number k.

Since the argument β of a given number t satisfies the condition of lemma 4.3,
there are infinitely many primes k for which z = 0 belongs to the interior of the
triangles with vertices at tk, t2k, t3k and at t2k, t4k, t6k.

Take any n ∈ {k, 2k}. By theorem 1.9, the set

Ntn + Nt2n + Nt3n

is everywhere dense in C if the imaginary parts

�(tnt2n) = −|t|3n sin(nβ),

�(t2nt3n) = −|t|5n sin(nβ),

�(t3ntn) = |t|4n sin(2nβ)

are linearly independent over Q. We will show that this is the case for either n = k
or n = 2k.

Since the number β/π is irrational, we have sin(nβ) �= 0 and cos(nβ) �= 0. Divid-
ing by −|t|3n sin(nβ), we see that the above three numbers are linearly dependent
over Q if and only if so are 1, |t|2n,−2|t|n cos(nβ). This is the case if and only if
the numbers

|t|−n, |t|n, 2 cos(nβ) (5.1)

are linearly dependent over Q.
We claim that the numbers |t|−n and |t|n are linearly independent over Q. This

is trivial if ξ = |t|2 is transcendental. Assume that ξ is algebraic of degree d � 3.
Consider the cases n = k and n = 2k separately. If n = k then the numbers |t|−n
and |t|n are linearly dependent if and only if |t|2n = |t|2k = ξk ∈ Q. However, we
proved that the degree of ξk is d � 3. So, the numbers |t|−n and |t|n are linearly
independent for n = k. Similarly, for n = 2k, the numbers |t|−n and |t|n are linearly
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dependent if and only if |t|2n = |t|4k = ξ2k ∈ Q. This is only possible if the degree
of ξk over Q is 1 or 2, while we know that it is d � 3. Thus, the numbers |t|−n and
|t|n are linearly independent for n = 2k as well.

Now, by the linear dependence of the three numbers (5.1), it follows that in both
cases n = k and n = 2k for some μn, νn ∈ Q, we must have

2 cos(nβ) = μn|t|n + νn|t|−n. (5.2)

In order to complete the proof of the proposition it suffices to show that (5.2)
cannot hold for both n = k and for n = 2k. Assume that (5.2) is true for n = k
and for n = 2k. Then, by (5.2), applying the trigonometric identity cos(2kβ) =
2 cos2(kβ) − 1 and using the notation x = |t|k, μ′ = μ2k, ν′ = ν2k, μ = μk, ν = νk,
we find that

μ′x2 + ν′x−2

2
=

(
μx+ νx−1

)2
2

− 1.

This is equivalent to

(μ′ − μ2)x4 − 2(μν − 1)x2 + ν′ − ν2 = 0. (5.3)

Now, since x2 = |t|2k = ξk is either transcendental or an algebraic number of
degree d � 3 and μ′ − μ, ν′ − ν2, μν − 1 ∈ Q, equality (5.3) must be the identity in
x. Hence, μ′ = μ2, ν′ = ν2 and μν = 1. In particular, from μν = 1 we see that both
μ = μk and ν = νk have the same sign.

If they are both positive then, by (5.2) with n = k and μkνk = 1, we derive that

2 cos(kβ) = μk|t|k + νk|t|−k � 2
√
μk|t|kνk|t|−k = 2

√
μkνk = 2.

Therefore, cos(kβ) = 1, which implies that β/π ∈ Q, a contradiction. Similarly, if
μk and νk are both negative, then from −μk > 0, −νk > 0 and μkνk = 1 we deduce

−2 cos(kβ) = −μk|t|k − νk|t|−k � 2
√

(−μk)|t|k(−νk)|t|−k = 2,

and hence cos(kβ) = −1. Hence, β/π ∈ Q, which is again a contradiction. This
completes the proof of the proposition. �

6. Proof of theorem 1.3

Let s ∈ C \ R be a transcendental number. By lemma 4.1, for some t ∈ {s, s+ s2}
the three numbers t = |t|eiβ , |t| and t/|t| = eiβ are all transcendental. In par-
ticular, this implies that the quotient β/π is irrational and that |t|2 is not an
algebraic number of degree at most 2. Thus, proposition 5.1 yields theorem 1.3 for
transcendental s.

Assume now that s ∈ C \ R is algebraic and has degree d over Q. Clearly, d �= 1.
Also, d �= 2 by the condition of the theorem. By lemma 4.2, we can take a sufficiently
large m ∈ N such that the argument βm of t = ms+ s2 satisfies βm/π /∈ Q. Now,
proposition 5.1 implies theorem 1.3 in case for at least one sufficiently large m ∈ N

the algebraic number |ms+ s2|2 has degree greater than 2.
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16 A. Dubickas

For a contradiction, assume that all numbers

|ms+ s2|2 = (ms+ s2)(ms+ s2) = ss(ss+ (s+ s)m+m2),

m � m0, are of degree at most 2. Setting λ = ss and ψ = s+ s, by lemma 4.4, we
see that there is a real quadratic field E such that λ, ψ ∈ E. Since s is the root of

x2 − ψx+ λ = (x− s)(x− s) ∈ E[x]

and s is of degree d > 2, at least one of the numbers λ, ψ must be quadratic
(otherwise x2 − ψx+ λ ∈ Q[x] and d � 2).

Now, we will show that such s must be exceptional. For this, by (1.5), it suffices
to show that s is quartic. Assume that the conjugates of λ and ψ over Q are λ′ and
ψ′ respectively. Here, λ′ = λ if λ ∈ Q and ψ′ = ψ if ψ ∈ Q. By the above, we must
have either λ′ �= λ or ψ′ �= ψ (or both). With this notation, it follows that s is a
root of the polynomial

Q(x) = (x2 − ψx+ λ)(x2 − ψ′x+ λ′) ∈ Q[x]. (6.1)

If the polynomial Q were reducible over Q then its irreducible factor with the root
s must be cubic. So Q must have a rational root. However, if r ∈ Q is a root of Q,
then, by (6.1),

r2 − ψr + λ = 0 or r2 − ψ′r + λ′ = 0.

Taking an automorphism of the Galois group Gal(E/Q) that maps λ to λ′ and so ψ
to ψ′ (or vice versa) we see that both displayed equalities must hold. Hence, r is at
least a double root of Q, so s cannot be cubic. This proves that Q is irreducible over
Q, and hence s is a quartic number (d = 4), which is not allowed by the condition
of the theorem. This completes the proof of theorem 1.3.

7. Proof of theorem 1.5

Note that in the previous section we have proved the required result for the first
part of the theorem for all quartic numbers s as well except for those with minimal
polynomial Q defined in (6.1). By (1.5) and the irreducibility of Q, these are exactly
exceptional numbers.

To prove the second part of the theorem we assume that for some exceptional
s and some s1, s2, s3 ∈ N[s] the sumset (1.6) is everywhere dense in C. Then, by
theorem 1.9, the imaginary parts

�(s1s2), �(s2s3), �(s3s1),

must be linearly independent over Q. Since s = �eiα ∈ C \ R, we have � sin(α) �= 0,
so that the three numbers

�(s1s2)
� sin(α)

,
�(s2s3)
� sin(α)

,
�(s3s1)
� sin(α)

, (7.1)

must be linearly independent over Q. As s is exceptional, by (1.5), there is a real
quadratic number field E such that

�2 = ss ∈ E and � cos(α) =
s+ s

2
∈ E. (7.2)
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Below, we will show that the numbers in (7.1) all belong to E. Since E is
quadratic, any three (not necessarily distinct) numbers in E must be linearly
dependent. This contradicts the linear independence of the three numbers (7.1).

Indeed, write s1 =
∑
i∈I ais

i and s2 =
∑
j∈J bjs

j , where I, J are some finite
subsets of N and ai, bj ∈ N for i ∈ I, j ∈ J . Note that

�(s1s2) =
∑

i∈I, j∈J
aibj�

i+j sin((i− j)α).

The terms with i = j are all equal to zero. So the first number on the list (7.1) is
the sum of several terms of the form

ci,j�
i+j−1 sin((i− j)α)

sin(α)
,

where i > j and ci,j ∈ Z. It is well known that the quotient sin((i− j)α)/sin(α) is
Ui−j−1(cos(α)), where U0(x) = 1 and

Un(x) =
[n/2]∑
k=0

= (−1)k
(
n− k

k

)
(2x)n−2k

is the Chebyshev polynomial of the second kind for n ∈ N. Therefore,
�(s1s2)/� sin(α) is the sum of integral multiples of several terms of the form

�i+j−1 cos(α)i−j−2k+1,

where i, j, k are positive integers satisfying i− j − 2k + 1 � 0. Note that

�i+j−1 cos(α)i−j−2k+1 = �2j+2k−2 · (� cos(α))i−j−2k+1,

where the factors �2j+2k−2 and (� cos(α))i−j−2k+1 are both in E by (7.2). Conse-
quently, the first number in (7.1) belongs to E. By exactly the same argument, the
second and the third numbers in (7.1) are also in E. This completes the proof of
the second part of theorem 1.5.

In all that follows we will prove that for a quartic exceptional number s ∈ C \ R,
whose minimal polynomial (6.1) has two nonreal roots s, s, and two other roots
s′, s′′, there exist t1, t2, t3, t4 ∈ N[s] such that the sumset (1.7) is everywhere dense
in C. We remark that the density of N[s] in C for some quartic numbers s with
minimal polynomial (6.1) can be established by corollary 2.2. Indeed, for a quartic
s with minimal polynomial (6.1), corollary 2.2 implies the density of N[s] in C in
the case when s has no real positive conjugates over Q. However, the result that
we are going to prove is stronger, since in (1.7) we only use the sumset of four sets.

Firstly, by lemma 4.2, we can replace s by ms+ s2 with appropriate sufficiently
large m ∈ N such that the argument β of ms+ s2 satisfies β/π /∈ Q. Then, ms+
s2 �= ms+ s2, so ms+ s2 is a quartic exceptional number by (1.5). Since N[ms+
s2] ⊆ N[s], we can further argue with the number ms+ s2, which we denote by
s. Its conjugates are s, s′, s′′, its minimal polynomial is (6.1), and its argument β
satisfies β/π /∈ Q.

https://doi.org/10.1017/prm.2024.22 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2024.22
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Assume first λ = ss is a rational number. Since the argument β of s satisfies
β/π /∈ Q, as in lemma 4.3 (see (4.9)), we can select l ∈ N such that

1
2
<

{
lβ

2π

}
<

2
3
. (7.3)

Then, for some k ∈ Z we get 1/2 < lβ/2π − k < 2/3. Hence, π < lβ − 2πk < 4π/3,
which implies

cos(lβ) < −1
2
. (7.4)

Note that sl �= sl by the above-mentioned property of β, so sl is exceptional.
Since N[sl] ⊆ N[s], it suffices to prove the density of (1.7) in C for s replaced by sl.
We will write s for sl. For this s, we have λ ∈ Q, λ > 0 and ψ = 2|s|l cos(lβ) < 0
by (7.4). From s2 − ψs+ λ = 0 we thus obtain ψ = s2 + λ/s. Choosing L ∈ N for
which Lλ ∈ N we deduce that the negative irrational number ψ is a quotient of
s1 = Ls3 + Lλs ∈ N[s] and s2 = Ls2 ∈ N[s]. By lemma 4.5, this proves (1.7) with
the choice t1 = s1, t2 = s2, t3 = s1s and t4 = s2s.

Assume now that λ = ss > 0 is irrational. Then, λ �= λ′ = s′s′′. We now reduce
the problem to the case when the minimal polynomial Q of s (as in (6.1)) has two
nonreal roots s, s and two other roots s′, s′′ satisfying

ψ = s+ s < 0, ψ < ψ′ = s′ + s′ and λ = ss > λ′ = s′s′ > 0. (7.5)

Consider the number s2, which we denote by s. It is exceptional, with conjugates
s, s′, s′′. Note that for this number we have λ′ = s′s′′ > 0 (which was possibly neg-
ative in case the original s had a positive and a negative conjugate). Since λ �= λ′,
the third inequality in (7.5) is either true, or we have λ < λ′. But in that case we
can replace s by s−1 (which is also exceptional). Then, the third inequality in (7.5)
becomes true. Furthermore, if a real negative number ω is expressible by a quotient
of two polynomials in the variable s−1 with coefficients in N, then, by multiplying
these two polynomials by an appropriate power of s, we see that the same number
ω is also a quotient of two polynomials in s with coefficients in N. So, we can always
assume that the third inequality in (7.5) is true.

Now, we will show that without the restriction of generality we may also assume
the first two inequalities in (7.5). Indeed, if the conjugates s′, s′′ of s are both real,
then we can choose an even integer l for which (7.3) holds. Then, (7.4) is also true,
and we can replace s by sl. Thus, replacing s by sl, which is exceptional, we find
that the new ψ and ψ′ satisfy

ψ = sl + sl = 2|s|l cos(lβ) < 0 < (s′)l + (s′′)l = ψ′.

The new λ, namely λl, is still a positive rational number, satisfying λl > (λ′)l. So
all three inequalities in (7.5) hold.

Alternatively, if s′ and s′′ are both nonreal, then they are complex conjugate
numbers. Thus, they have the same modulus, say �′, satisfying �′ < |s| in view of
the third inequality in (7.5). In that case we choose l ∈ N satisfying (7.3) (and so
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(7.4)) and in addition so large that(
|s|
�′

)l
> 3.

Now, replacing s by sl, we find that

ψ = sl + sl = 2|s|l cos(lβ) < 2(�′)l cos(l arg s′) = (s′)l + (s′′)l = ψ′,

where the (only) inequality above holds due to(
|s|
�′

)l
cos(lβ) < −1

2

(
|s|
�′

)l
< −3

2
< −1 � cos(l arg s′).

This proves the second inequality in (7.5). The first inequality there, i.e. ψ < 0, is
also true, since cos(lβ) < 0. This, replacing s by sl, reduces the problem to the case
of exceptional numbers satisfying (7.5).

In order to apply lemma 4.5 we will show that there is a negative real irrational
number expressible by two nonzero elements s1, s2 of N[s] for s with its conjugates
s and s′, s′′ satisfying (7.5). Of course, then lemma 4.5 implies the density of the
sumset (1.7) in C with

t1 = s1, t2 = s2, t3 = s1s and t4 = s2s. (7.6)

By (1.5), we have ψ, λ ∈ E and so their conjugates ψ′, λ′ are also in the same real
quadratic field E. Take a square-free integer D > 1 for which E = Q(

√
D). Then,

there are some rational numbers ψ1, ψ2, λ1, λ2 such that

ψ = ψ1 − ψ2

√
D and λ = λ1 + λ2

√
D. (7.7)

This implies

ψ′ = ψ1 + ψ2

√
D and λ′ = λ1 − λ2

√
D.

From the second inequality in (7.5), namely ψ < ψ′, we obtain ψ2 > 0. Likewise,
from the third inequality in (7.5), λ > λ′, it follows that λ2 > 0. Now, from λ′ > 0
we obtain λ1 > λ2

√
D > 0. Consequently,

λ1 > 0, λ2 > 0, ψ2 > 0. (7.8)

Let L be the least positive integer for which

Lψ1, Lψ2, Lλ1, Lλ2 ∈ Z. (7.9)

Consider two cases, ψ1 � 0 and ψ1 > 0. In the first case, ψ1 � 0, from

s2 − ψs+ λ = s2 − (ψ1 − ψ2

√
D)s+ λ1 + λ2

√
D = 0

it follows that

−
√
D =

s2 − ψ1s+ λ1

ψ2s+ λ2
=
Ls3 + L(−ψ1)s2 + Lλ1s

Lψ2s2 + Lλ2s
.

Hence, by (7.8), (7.9) and −ψ1 � 0, the negative irrational number −√
D

is a quotient of two elements of N[s], i.e. s1 = Ls3 + L(−ψ1)s2 + Lλ1s and
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s2 = Lψ2s
2 + Lλ2s. Now, lemma 4.5 implies that the corresponding sumset of four

sets (1.7) with the choice (7.6) is everywhere dense in C.
In the second case, ψ1 > 0, a key observation is the following identity:

ψ =
s2 + λ

s
=
s2 + λ1 + ψ1λ2

ψ2

s+ λ2
ψ2

.

Here, the second equality can be verified directly using s2 + λ = ψs and (7.7):

(s2 + λ)

(
s+

λ2

ψ2

)
= s3 +

λ2

ψ2
s2 + λs+

λλ2

ψ2
= s3 + λs+

λ2

ψ2
(s2 + λ)

= s3 + λs+
λ2

ψ2
ψs = s3 +

(
λ+

λ2ψ

ψ2

)
s

= s3 +

(
λ1 + λ2

√
D +

λ2(ψ1 − ψ2

√
D)

ψ2

)
s

= s3 +

(
λ1 +

ψ1λ2

ψ2

)
s = s

(
s2 + λ1 +

ψ1λ2

ψ2

)
.

Now, multiplying numerator and denominator by the factor L2ψ2s, we derive that

ψ =
L2ψ2s

3 + (L2ψ2λ1 + L2ψ1λ2)s
L2ψ2s2 + L2λ2s

.

By (7.8), (7.9) and ψ1 > 0, we conclude that ψ is a quotient of two nonzero elements
of N[s]. Note that, by the first inequality in (7.5), ψ is negative, whereas, by ψ2 > 0,
it is irrational. Therefore, lemma 4.5 again implies that the sumset of four sets (1.7)
with the choice (7.6) is everywhere dense in C. This completes the proof of the last
part of theorem 1.5.

References

1 G. Aggarwal and J. Singh. Division algorithm and Kronecker’s approximation theorem.
J. Anal. 29 (2021), 207–216.

2 K. Ajran, J. Bringas, B. Li, E. Singer and M. Tirador. Factorization in additive monoids of
evaluation polynomial semirings. Comm. Algebra 51 (2023), 4347–4362.

3 S. Akiyama, Positive finiteness of number systems, in: Number theory, Dev. Math. Vol. 15
(Springer, New York, 2006), pp. 1–10.

4 H. Brunotte. A remark on roots of polynomials with positive coefficients. Manuscripta
Math. 129 (2009), 523–524.

5 K. Conrad, Density for the ring of integers, Handouts, available at https://virtualmath1.
stanford.edu/∼conrad/154Page/handouts.html.

6 J. Correa-Morris and F. Gotti. On the additive structure of algebraic valuations of
polynomial semirings. J. Pure Appl. Algebra 226 (2022), 107104.

7 D. R. Curtiss. Recent extensions of Descartes’ rule of signs. Ann. Math. (2) 19 (1918),
251–278.

8 V. Drobot and S. McDonald. Approximation properties of polynomials with bounded integer
coefficients. Pacific J. Math. 86 (1980), 447–450.

https://doi.org/10.1017/prm.2024.22 Published online by Cambridge University Press

https://virtualmath1.stanford.edu/~conrad/154Page/handouts.html
https://virtualmath1.stanford.edu/~conrad/154Page/handouts.html
https://doi.org/10.1017/prm.2024.22


Invariant set generated by a nonreal number 21

9 A. Dubickas. On roots of polynomials with positive coefficients. Manuscripta Math. 123
(2007), 353–356.

10 A. Dubickas. Invariant sets in real number fields. Res. Math. 78 (2023), 206.

11 A. Dubickas. Sumset of three arithmetic progressions in the complex plane. Lith. Math. J.
63 (2023), 161–165.

12 M. Elekes and T. Keleti. Decomposing the real line into Borel sets closed under addition.
MLQ Math. Log. Q 61 (2015), 466–473.

13 D.-J. Feng. On the topology of polynomials with bounded integer coefficients. J. Eur. Math.
Soc. (JEMS) 18 (2016), 181–193.

14 S. M. Gonek and H. L. Montgomery. Kronecker’s approximation theorem. Indag. Math.
27 (2016), 506–523.

15 D. Handelman. Positive polynomials and product type actions of compact groups. Mem.
Amer. Math. Soc 54 (1985), xi+79 pp.

16 G. Kiss, G. Somlai and T. Terpai, Decomposition of the positive real numbers into disjoint
sets closed under addition and multiplication, Preprint at arXiv:2303.16579 (2023), p. 20.

17 S. V. Konyagin, M. Sha, I. E. Shparlinski and C. L. Stewart. On the distribution of
multiplicatively dependent vectors. Math. Res. Lett. 30 (2023), 509–540.

18 K. L. Kueh. A note on Kronecker’s approximation theorem. Amer. Math. Monthly
93 (1986), 555–556.
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