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Abstract. Axisymmetric systems, having differing amounts of initial angular momentum and con-
taining 2000 stars (mass points) each, are allowed to collapse under their own gravitational attraction.
Collapse and violent relaxation are found to lead to the formation of equilibrium structures after only
a few free-fall times. The systems contain a sufficient number of mass points so as to be effectively
collisionless and the equilibrium structures are consistent with accurate satisfaction of the stationary
collisionless Boltzmann equation. Rotating equilibrium models produced in this way resemble
elliptical galaxies, with elliptical isophotes. With cosmologically reasonable amounts of initial angular
momentum, EO to E4.5 galaxies can be produced. The equilibrium models show rotation curves in
general agreement with that expected from violent relaxation theory. In particular the models show a
central region with solid-body rotation. Further out, the systems become differentially rotating. When
infall effects are included one can produce models with extended envelopes in good agreement with
observed elliptical galaxies. It is suggested that the crucial factor in determining whether an elliptical
or a spiral galaxy is formed is whether or not star formation is complete by the time the proto-galaxy
reaches its point of maximum collapse.

I shall discuss several dynamical models I have made for the formation of elliptical

galaxies, models which cover the collapse and violent relaxation phase leading to the

formation of the equilibrium galaxy. The approximation of an axisymmetric gravita-

tional field is utilized to simplify the N-body calculation and thus allow treatment of
many more stars than would otherwise be possible. In particular, sufficient stars may

be treated to achieve a system which is effectively collisionless.

The procedure can be outlined as follows. Our rotating systems are axisymmetric
and contain 2000 mass points (henceforth called stars) of equal mass. To derive the
gravitational potential @ due to these stars, we divide space into a network of toroidal
cells centred on the rotation axis of the system and having approximately square
cross-sections. The mass within each cell is assumed to be concentrated on the central
ring of the cell and the values of the potential are then calculated on a series of rings
forming the corners of the toroidal cells. The potential within each cell is found by
linear interpolation from the values at the cell’s four corner rings. At the end of each
time step, this approximate gravitational potential is used to find the force on each
star, the stellar trajectories are then advanced and the process is repeated. The network
of toroidal cells is set up by constructing a spherical coordinate system (r, 8, ¢)
centred on the galaxy and whose axis =0 is the rotation axis of the galaxy. At the
origin we establish a small reflecting sphere of radius R,. Let a==/18 or an angle of
10°. Then the cell C;; contains all points with coordinates in the ranges:

(=1 a<In(r/R)<ia, (j—1)a<8<ju, 0< ¢ <2m. (1
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Each cell has an angular diameter of 10° in 6 and an outside radius approximately 19%;
larger than the inside radius. This gives each cell an approximately square cross sec-
tion. In our calculations we use 24 layers of 18 cells each: C;;(i=1, 24; j=1, 18). These
cells cover a spherical volume of radius exp (24«) R,~ 64 R,. Stars passing beyond this
outer radius are assumed to escape; stars hitting the inner reflecting sphere are reflected
elastically from its surface. Calculation of the potentials and advance of the trajectories
of the 2000 stars requires approximately 79000 operations per elementary time step
compared with 3N?=12x10® operations per time step required for an N-body
calculation with N=2000.

Our models are started at the cosmological epoch of maximum expansion of the
protogalaxy. We then follow the collapse and violent relaxation for four models, I,
IL, III, IV with increasing amounts of initial angular momentum. Each of the models
begins as a system of 2000 stars distributed randomly so as to produce a uniformly
dense sphere of stars of total mass M, and radius R,. R, thus represents the maximum
radius of expansion of the protogalaxy. If such a uniform sphere of stars were set in
uniform (solid-body) rotation with angular rate Q,=(GM,,/R3)"/?, then instan-
taneously it would be holding itself up against gravity in its equatorial plane. The stars
in each galaxy are given systematic velocities ¥, so that the initial state is one of
uniform rotation with angular rate Q,, where for Model I, Q;=0 (no rotation); for
Model II, Q;=(})"/? Q,; for Model III, Q;=(})? Q,; and for Model IV, Q,=
=(3)'/? Q,. Superimposed upon this systematic rotation, the stars are given small
random velocities with a Maxwellian distribution so that (V2)!/2=(V3y1/2=
={(Vy—<{V4>)*>/2. Initially <¥V,»=(V,>=0. In Models I, II, and III the random
velocities were chosen so that the initial virial coefficient for the random kinetic energy,
12T andom/ W1, Was equal to one half, where W= —(3GM,/5R,). In Model IV the
energy in the random velocities was reduced from that above by a factor of 2.

Let us now also define some useful quantities. Let g,=(3M,,,/4nR3) be the stan-
dard density and V,=(3GM,,,/5R,)"/* be the standard virial velocity. Let E,=
=—(T+ W) be the binding energy for each model. Define for each model the
energy radius RE=(3GM82,,/ 10E,) which is the characteristic radius of a system in
virial equilibrium with binding energy E,. Define a characteristic oscillation time
T,=2n(R}/GM,,,)". T, is twice the free-fall time of a galaxy of mass M,,,, binding
energy E,, and initial radius r,,,, =2R (see Spitzer, 1968). The age of the Universe
when r=r,,, is thus (3) T,; the age of the Universe at the end of the collapse is
T.. The times in each model are measured in terms of 7, for that model.

Models I-1V possess reasonable amounts of cosmological rotation such as might be
obtained through tidal interactions with neighbouring protogalaxies (cf. Peebles, 1971).
These rotating spheres of stars are then allowed to collapse under their own gravita-
tional force. During the collapse phase the potential oscillates violently, producing the
Lynden-Bell violent relaxation, and one finds for these rotating systems, just as for
spherical systems, that they reach relaxed equilibrium configurations after only a
couple of free-fall times.

Let us examine our expectations for the equilibrium models. Consider a non-rotat-
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ing sphere of stars with no initial kinetic energy and a radius of Ry. Then —E =T+ W
with W= —(3GM2,/5R,)= —E, and T=0. Let it collapse and undergo violent re-
laxation. When virial equilibrium is reached, 2T+ W=0 and —E,=T+ W so
W= —2E,, or twice its original value, and the equilibrium system will be spherical
with a characteristic radius of ~(3) R,. Now consider a rotating galaxy of radius
R, and Q= so that it is initially holding itself up against gravity in the equatorial
plane. This is surely an upper limit on the amount of rotation we would expect
cosmologically. Let this galaxy collapse. It continues holding itself up in the equatorial
plane, leaving r ~ R, in that direction. Rotation does not inhibit collapse perpendicular
to the plane, so to first approximation the collapse proceeds perpendicularly as in the

Model I Model II
PR
1
Model I Model IV
—| Q . '—
R
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Fig. 1. Isophotes for the equilibrium galaxies. The diagram represents the appearance of these
galaxies to a distant observer whose line of sight lies in their equatorial plane. The rotation axis of
each galaxy is vertical and the equatorial plane is horizontal. The innermost isophote represents a
projected surface density of Jo =0.8 Mga1/Ro2. The next two isophotes represent intensities of 0.1 o
and 0.01 Io, while the tick marks indicate the extent of the 0.001 Io isophote. The isophotes are
computed from a grid in one quadrant only, thereby giving the diagrams a four-fold symmetry. The
scale is given at the bottom: all four galaxies were initially spheres of radius Ro before undergoing
collapse and violent relaxation. Model I had no initial rotation and is therefore spherical (EO).
Models 1I-IV had progressively larger amounts of initial rotation, and have produced progressively
more elliptical equilibrium galaxies (E1.5, E2.5, E4.5).
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spherical case to give 7~ (%) Ro. These approximations indicate an equilibrium galaxy
with a 2 to 1 axial ratio (i.e., an E5 galaxy). Thus, with the maximum reasonable
amount of initial rotation, we get an equilibrium galaxy with a flattening of at most
ES. Only in dissipative systems with gas present can we produce flat systems such as

spiral galaxies.

In Figure 1 are shown the isophotes for the equilibrium galaxies. They represent (as
do later data) time averages over the period (3) 7. <t<(%)T.. The equilibrium
models are indeed elliptical galaxies, with isophotes that are elliptical in shape, and
Models I-IV correspond approximately to EO, E1.5, E2.5, E4.5 galaxies, respectively.
Our general expectations are confirmed: Model I, with no rotation, is quite spherical
and the models with greater initial angular momentum are more flattened but not
flatter than ES5. Peebles’ (1971) favoured value for angular momentum gained by
gravitational interactions would give nearly spherical galaxies (Model II), but his
upper bound would allow production of E3 and E4 galaxies. Earlier in this conference
Dr de Vaucouleurs summarized (p. 1) the observational data on the intrinsic flat-
tening 1n elliptical galaxies. The results show elliptical galaxies to have an intrinsic
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Fig. 2. Stellar density in the galactic plane as a function of radius for the equilibrium models. The
open circles represent the actual runs of density with radius while the solid line represents that expected
from satisfaction of the stationary collisionless Boltzmann equation. go=3Mga1/4nRo3 is a standard

pre-collapse density which is the same for all four models.
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flattening between EQ and E5 with only a few E6’s and no E7 galaxies, in qualitative
agreement with what we predict for dissipationless collapse models.

In Figure 2 the stellar density in the galactic plane as a function of distance from the
centre is plotted for each model. The data points are densities from successive cells
lying on the galactic plane. The solid line shows the density expected from satisfaction
of the stationary, collisionless Boltzmann equation:

0P (Vy? , [@lne  oIn(¥?) 1< _<_Vi>_
—6_r_—»_7_+<1/'>[6r * or +r ! V2 *
1 _<(V4,—<V¢>)2>
r<1 7 ) ' @

To compute the solid lines in Figure 2 we use our approximate potential and evaluate
all velocities and velocity dispersions (within cells) as a function of radius with deriva-
tives replaced by differences. We solve for Ing as a function of r, and normalize. Very
good agreement is found between the actual runs of density and those predicted from
satisfaction of the collisionless Boltzmann equation. This demonstrates that the equi-
librium models are stationary and essentially collisionless.

Rotation curves for the equilibrium models are presented in Figure 3. Significantly,
all three rotating models show a central region of solid-body rotation. Lynden-Bell
(1967) has shown that the statistically most probable distribution function for a
rotating system is one of solid-body rotation with isothermal Maxwellian residual
velocities. Thus our models show that the violent relaxation is efficient enough to .
produce this ‘most probable’ solid-body rotation at least in a central region. Also
plotted in Figure 3 are rotation curves calculated by Lynden-Bell (1967), taking into
account partial relaxation effects. Our models show very good general agreement with
Lynden-Bell’s theoretical prediction. Also presented for comparison are rotation
curves from a self-consistent model by Prendergast and Tomer (1970) which assumes a
distribution function with Maxwellian residual velocities and a tidal energy cut-off.
The model’s behaviour is not in agreement with that predicted by Prendergast and
Tomer (1970) whose sharp tidal cut-off artificially drags their rotation curves down to
zero at a certain radius. ‘

Figure 4 shows the velocity dispersions for Models I, II, and IV. In Model I which
is non-rotating we see a core region where the velocity distribution is isotropic and
isothermal. This is to be expected due to the violent relaxation. Outside the core we
find a halo where the velocity dispersion is largest in the radial direction. In the rotat-
ing models, isotropy of the random velocities in the centre is not achieved nearly as
well as in the spherical system, particularly in the equatorial plane where the velocity
dispersion perpendicular to the plane is the largest component. This is not unreasonable
physically for a system which has collapsed primarily in the direction perpendicular
to the plane. The departures from isotropy in the centre become progressively larger
as we go toward more rapidly rotating systems. A more detailed presentation of these
model results appears in Gott (1973).
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Fig. 3. Rotation curves. § =90° is in the equatorial plane, § =45° is along a line halfway between
the equatorial plane and the axis of rotation. Results from the three rotating models are presented.
They show approximate solid-body rotation in the centre and differential rotation further out. For
comparison are two normalized theoretical curves: Lynden-Bell (violent relaxation and estimates of
partial relaxation effects) and Prendergast and Tomer (self-consistent equilibrium models with
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Maxwellian random velocities and a tidal energy cut-off).
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The models we have been considering are quite simple ones. They are produced by
the collapse of an isolated sphere of stars. A truly realistic model should include not
only the protogalaxy itself, but should consider the protogalaxy in a complete cos-
mological setting. In addition to the protogalaxy itself, there will be outlying, still
expanding material which is cosmologically bound to it and which will suffer infall into
the protogalaxy after the protogalaxy has completed its collapse (cf. Gott and Gunn,
1971). This infall material will give the galaxy a less tightly bound, extended envelope.
I have recently completed a series of models which take into account these infall
effects and for which the angular momentum of the protogalaxy is derived directly
from a tidal interaction with a neighbouring protogalaxy. The results of these calcula-
tions are, I think, quite promising. They show that with infall one can produce ex-
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Fig. 4. Velocity dispersion as a function of radius from the centre. §=90° is in the galactic
plane, 0 =25° is along a line making an angle of 25° with the rotation axis. A spherical coordinate
system (r, 6, ¢) is used. '

@ = (V12

X =< Ve2)1r2,

O =L(Vp — Vo)2H1/2,
Vo=(3GMga1/5R0)'/? is a standard velocity which is the same for all systems. Since Model I is
spherical, its curves for 8 =90° and 6 = 25° are similar. It has a very isotropic velocity distribution
near the centre; far from the centre the halo stars dominate with their preferentially radial dispersions.
A similar but smaller halo effect can be seen in Model II (§=25°). The more rapid the rotation, the
less isotropic the velocity distributions become. Better isotropy is achieved near the rotation axis than
in the galactic plane. For the two rotating models, the solid curve represents the expected value of -
(Ve — {Vp>)2>1/2 (given <{F;2>1/2 and the rotation curve) under the assumption of a Schwarzschild
velocity distribution everywhere and satisfaction of the stationary collisionless Boltzmann equation.
In Model II, (V) falls off slightly faster than r—! for a short stretch so the solid curve drops to zero

there. Results for Model 111 are intermediate between Models II and IV and are not presented.
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tended envelopes like those observed in actual elliptical galaxies. Also it seems possible
to produce model galaxies with isophotal eccentricities in their envelopes similar to
those observed in real galaxies.

It should be emphasized that all of these models have no gaseous dissipation in them.
That is, they represent models in which star formation is essentially completed by the
time the galaxy reaches its point of maximum collapse. Such early star formation
might take place in the primeval globular clusters, as suggested by Peebles and Dicke
(1968).

There are several reasons to think that elliptical galaxies might be formed in just
this manner. First, as I have mentioned, the observed eccentricities of elliptical galaxies
are in good qualitative agreement with those predicted from a dissipationless collapse.
Second, in elliptical galaxies there is an observed tendency for the isophotes to become
rounder as one approaches the centre of the galaxy. (Note, for example, behaviour of
this sort in Models II and IV.) If gaseous dissipation were important, we would expect
the inner isophotes of the galaxy always to be flatter than the outer ones, which is not
the case. Finally, the Lynden-Bell violent relaxation operating in a free-fall collapse
without dissipation offers an attractive way to produce the relaxed, ellipsoidal con-
figurations of stars we observe in elliptical galaxies.

I have made other models of collapsing protogalaxies which include both gas and
stars. These give the expected results. A rotating sphere composed of stars and gas
clouds (having inelastic collisions) was allowed to collapse, with the gas clouds slowly
being turned into stars as the collapse proceeded. During the collapse phase, the stars
and gas moved together as a unit and the sphere proceeded through a series of flattened
ellipsoids until it became a flat pancake as the material reached the plane.

Lynden-Bell (1967) has shown that a uniformly rotating, uniform density fluid sphere
collapses homologously through a series of uniformly rotating MacLaurin ellipsoid
configurations. The gas clouds do not dissipate any significant amount of energy
during the homologous collapse, because each cloud sees clouds in its neighbourhood
moving with similar velocity to itself. When the material reaches the plane, this
situation changes: the stars pass through the plane on their free trajectories, undergo
violent relaxation, and form a relaxed spheroidal component similar to that seen
in the elliptical galaxy models we have discussed. The gas, however, dissipates its
energy quickly in the vertical direction to form a thin disk. The critical factor is the
amount of gas left at the time of maximum collapse. Whatever gas is left at this time
will dissipate its energy and form a disk. If some of this gas subsequently turns into
stars, the new stars will also be confined to the disk.

Thus, we have a reasonable scenario for the formation of elliptical and spiral
galaxies. In elliptical galaxies the star formation is essentially complete by the time of
maximum collapse and a spheroidal galaxy is produced. If star formation is not com-
pleted by the time of maximum collapse and substantial amounts of gas are left over,
then gaseous dissipation is important and a flat, disk-like spiral galaxy is produced. In
this conference (e.g. p. 130) it has been emphasized that spiral galaxies show both
disk and spheroidal components. We can find a continuous sequence from ellipticals
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with no disk, to spirals with a spheroidal nuclear bulge, to spirals with no observable
spheroidal component. The value of My /M heroiqar Varies smoothly along the
sequence. With the present model it is easy to see how such a sequence would originate :
by varying the initial star formation rate we could have any desired fraction of left-
over gas at the time of maximum collapse and therefore produce any given ratio of

Mdlsk/ spheroidal*
In summary then, we have presented dynamical models for the formation of ellip-

tical galaxies. The equilibrium elliptical galaxy is produced by a simple free-fall col-

‘lapse and violent relaxation process. The present picture offers a natural mechanism
for forming elliptical and spiral galaxies. The early star formation rate is seen as the
key factor in determining which type of galaxy is produced.
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DISCUSSION

Contopoulos: Did you take into account encounters between neighbouring stars?

Gort: Calculations show that placing the stars in these toroidal cells has the effect of making the
stars gravitate as if they were rings, with a cut-off in their gravitational attraction if they approach
closer than half the cell-width. In other words, once two stars are within the same toroidal cell they
exert no more gravitational attraction on each other. The toroidal cells each have-a nearly square
cross-section with a cross-sectional width and breadth approximately 19 %; as large as their radius. The
volume of space into which the galaxy is placed is divided into 432 such toroidal cells. Encounters
between stars (i.e. encounters between rings) are thus handled in a natural fashion. The systems con-
tain a sufficient number of stars so that the effects of two-body encounters are insignificant and the
systems can be regarded as effectively collisionless.

Miller: Similar calculations have been run by plasma physicists for studies of plasma confinement,
using about 120 000 pseudo-particles in the form of rings in cylindrical coordinates. These calculations
have been done by Morse ez al. at Los Alamos (in B. Alder er al., Methods in Computational Physics,
Academic Press, N.Y., 9, 213), by Killeen et al. at Livermore (J. Comput. Phys. 11, 360, 1973), and
by the group at Culham For ellipticals, such ring models should be satisfactory.

Mark: Can you please repeat again your evidence that the evolution is collisionless? You do not
have very many rings.

Gott: First, theoretical estimates were made of the effective two-body relaxation time for this
particular numerical scheme with N = 2000. These results indicated that Tr ~ 120 Tc, where T¢ is the
characteristic orbital time of the systems. We study the models only out to a time ¢ =5.5 T, so the
systems are effectively collisionless over this time-scale. After the systems reached their equilibrium
configurations, the individual stellar energies were plotted to watch the random walk in individual
stellar energy due to two-body encounters. Values of {(4E)2/E?) for stars over the observed period
yielded values of Tr ~ 60 T¢, consistent with the theoretical estimates and indicating an effectively
collisionless system. Additional checks included the fact that no deepening of the central potential
well (or change in any of the equilibrium model parameters) was observed between ¢ = (3/2) T and
t = (11/2) Te. Finally, there is the check that the equilibrium models accurately satisfy the stationary
collisionless Boltzmann equation as indicated in Figure 2.
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Carrick: The rotating models of Prendergast and Tomer (Astron. J. 75, 674, 1970) have velocity

- dispersions in each of three dimensions equal near the centre, since this region is nearly isothermal. In

your models, for stronger rotation, the three are significantly different, even close to the centre. Is this
a statistical effect?

Gort: No. The predominance of the velocity dispersion perpendicular to the galactic plane for
locations in the plane is shown consistently for a range of radii in each of the three rotating models.
The effect seems physically reasonable for systems that have suffered their main collapse perpendicular
to the plane. It becomes progressively more pronounced as one goes toward the more rapidly rotating
models for which the violent relaxation is simply not effective enough to produce isotropic velocity
dispersions.

Tifft: Some galaxies in the Coma cluster (see Rood, H. J. and Baum, W. A.: 1962, Astron. J. 73,
442) show a variation of ellipticity with radius having no obvious systematic pattern; some elliptical
galaxies are also known to show rotated axes of isophotes. Could you comment on this?

Gott: In the outer envelopes of elliptical galaxies, violent relaxation is not so effective and it takes
longer for the outer envelopes to reach equilibrium. Presumably, differences in initial conditions may
manifest themselves as irregularities in individual cases.

Photometry of a number of elliptical galaxies by van Houten indicates that the majority of ellipticals
have envelopes in which the isophotal eccentricity remains nearly constant with increasing radius.
Some ellipticals, e.g. NGC 205, show rotated axes of isophotes in their outer parts which are probably
due to tidal distortion (by M31 in the case of NGC 205).

G. de Vaucouleurs: Two comments: (i) the Coma cluster objects are not good tests because many
are not E, but L galaxies, often barred, and the high space density causes much tidal interaction.
(ii) Among the best observed large E galaxies that are comparatively isolated, the ellipticity of the
isophotes is never constant; it increases from the nucleus to a maximum which agrees roughly with
the Hubble n index (En), then decreases slowly in the corona (see Hubble, Astrophys. J. T1, 231, 1930;
Oort, Astrophys. J. 91, 273, 1940; de Vaucouleurs, Ann. Astrophys. 11, 287, 1948; Hdb. der Phys.
53, 322, 1959; Liller, Astrophys. J. 132, 306, 1960; van Houten, Bull. Astron. Inst. Neth. 16, 1, 1961).
Homothetic ellipsoids are nor satisfactory models of E galaxies. Are these effects observed in your
models?

Gort: It’s hard to tell for the outermost isophotes because these regions take a long while to relax.
It’s not difficult to get different ellipticities. If one takes a spherical non-rotating cloud which col-
lapses, then one expects the final galaxy to have a radius, in virial equilibrium, about half that of the
initial cloud. Now by postulating differing amounts of angular momentum, the maximum being such
that there is no collapse in the plane of rotation, one can get ellipticities between EO and ES, but not
significantly flatter.

G. de Vaucouleurs: 1 think observers would say that they’ve found a few E6 galaxies, such as
NGC 670, 1209, 4386, 4564, 4660, 4697, 4865, 5028, 6877 and 6909.
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