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The resolvent analysis reveals the worst-case disturbances and the most amplified response
in a fluid flow that can develop around a stationary base state. The recent work by Padovan
et al. (J. Fluid Mech., vol. 900, 2020, A14) extended the classical resolvent analysis
to the harmonic resolvent analysis framework by incorporating the time-varying nature
of the base flow. The harmonic resolvent analysis can capture the triadic interactions
between perturbations at two different frequencies through a base flow at a particular
frequency. The singular values of the harmonic resolvent operator act as a gain between
the spatiotemporal forcing and the response provided by the singular vectors. In the
current study, we formulate the harmonic resolvent analysis framework for compressible
flows based on the linearized Navier–Stokes equation (i.e. operator-based formulation).
We validate our approach by applying the technique to the low-Mach-number flow
past an airfoil. We further illustrate the application of this method to compressible
cavity flows at Mach numbers of 0.6 and 0.8 with a length-to-depth ratio of 2. For
the cavity flow at a Mach number of 0.6, the harmonic resolvent analysis reveals that
the nonlinear cross-frequency interactions dominate the amplification of perturbations at
frequencies that are harmonics of the leading Rossiter mode in the nonlinear flow. The
findings demonstrate a physically consistent representation of an energy transfer from
slow-evolving modes toward fast-evolving modes in the flow through cross-frequency
interactions. For the cavity flow at a Mach number of 0.8, the analysis also sheds light on
the nature of cross-frequency interaction in a cavity flow with two coexisting resonances.
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1. Introduction

Fluid flows are characterized by a wide range of spatial and temporal structures that result
in high-dimensional data and pose a significant challenge to their analysis. Fortunately,
in many fluid flows, a few structures correlated over space and time, namely the coherent
structures, drive the underlying physical processes such as mass and energy transport, and
sometimes act as a noise source. Linear analysis techniques (Schmid 2007; Taira et al.
2017, 2020) based on data-driven and operator-based methods have been successfully
shown to identify those coherent structures and provide additional insight into the nature
of the instabilities that generate those coherent structures, which might develop or already
be present in a particular flow. The identified structures, also known as the modes of the
fluid flow, can then be used to build a reduced-complexity model to describe and control
the flow dynamics (Rowley & Dawson 2017).

The operator-based linear tools are traditionally derived from the Navier–Stokes
equation (NSE) linearized about a steady solution (or temporal mean). Analysing the
stability of perturbations in viscous parallel shear flows using the eigenspectrum of
the linear operator dates back to early 1900 (Schmid, Henningson & Jankowski 2002).
With the rise in computational power, the analysis can now be performed in a global
framework considering two- and three-dimensional base flows (Theofilis 2011). The
global stability analysis using a steady solution of the NSE or a time-averaged flow
has provided insight into the intrinsic instability mechanisms (e.g. Kelvin–Helmholtz,
Tollmien–Schlichting), and the resulting coherent structures in various canonical flows
such as jet flow (Schmidt et al. 2017), cylinder flow (Noack & Eckelmann 1994; Barkley
2006) and cavity flow (Bres & Colonius 2008; Sipp et al. 2010; Sun et al. 2017). However,
for many shear flows, the linearized Navier–Stokes (LNS) operator is non-normal, which
results in non-orthogonal global modes, and their superposition can give rise to short-time
amplification of perturbations even in the absence of unstable global modes (Trefethen
et al. 1993). In such cases, the pseudospectral analysis (Reddy & Henningson 1993; Reddy,
Schmid & Henningson 1993) using the resolvent norm of the LNS operator characterizes
the nature of stability of the flow more accurately. The first instance of reformulating
the linearized Navier–Stokes equation (LNSE) in an input–output analysis framework
governed by the resolvent operator as a transfer function for laminar channel flow was done
by Jovanović & Bamieh (2005). Later, McKeon & Sharma (2010) extended the analysis
for turbulent flow where the temporal mean of the flow state is used to build the resolvent
operator. McKeon & Sharma (2010) showed that the singular value decomposition (SVD)
of the resolvent operator provides a way to identify the dominant amplification mechanism
present in the flow by studying the structures of the optimal singular vectors known as the
forcing and response modes. The connection between the global stability and resolvent
modes and the type of amplification mechanism (modal or non-modal) that both the linear
analysis can identify is detailed in the study by Symon et al. (2018). Henceforth, we will
refer to the analysis based on the original resolvent formulation of McKeon & Sharma
(2010) as the classical one to distinguish from the modified approaches to improve the
modelling.

Classical resolvent analysis has been successfully used to understand instability
mechanisms in different flow configurations, obtain design guidelines for flow control
and estimate velocity fluctuations in turbulent flows (McKeon & Sharma 2010; Lesshafft
et al. 2019; Yeh & Taira 2019; Amaral et al. 2021; Liu et al. 2021; Ribeiro, Yeh & Taira
2023). While the classical resolvent analysis can model the coherent structures well at
frequencies associated with the dominant instability mechanisms present in the nonlinear
flow, it fails to do so at frequencies that are generated through nonlinear interactions
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Identification of cross-frequency interactions

among the existing frequencies, for example, in the presence of strong oscillatory base
flow due to vortex shedding (Symon, Sipp & McKeon 2019). The reason for this is the
time-invariant nature of the base flow in the classical resolvent analysis that can not resolve
the cross-frequency interaction. A potential remedy within the classical framework is to
model the nonlinear forcing term at those frequencies by considering triadic interactions
between a few resolvent response modes and use that forcing to obtain improved response
modes that match the structures obtained from other data-driven analyses (Rosenberg,
Symon & McKeon 2019; Symon et al. 2019). Another recent approach by Rigas, Sipp &
Colonius (2021) proposed nonlinear input–output analysis using the harmonic balance
method to model triadic interactions between some finite number of frequencies. The
harmonic balance approach is a popular technique to study the input–output properties
of linear time-periodic dynamical systems (Wereley & Hall 1990). In the context of fluid
mechanics, Jovanović & Fardad (2008) applied the approach to study the input–output
nature of perturbations in the linearized oscillating channel flow through the H2 norm of
the time-periodic system. Franceschini et al. (2022) used quasi-steady resolvent analysis
to study the input–output dynamics of high-frequency perturbations developing over a
low-frequency periodic base flow. Recent work by Ballouz et al. (2024) considered the
wavelet-based resolvent analysis framework to model the time-varying nature of the base
flow and the evolution of perturbations localized in time. Analogous extensions of the
classical resolvent analysis for spatially periodic base flows are considered in Chavarin &
Luhar (2020), which was used to obtain design guidelines for optimal placement of riblets
to control flow in a turbulent channel. The comprehensive review by Jovanović (2021) is
an excellent resource to learn more about such recent extensions of the resolvent-based
modelling and control.

The time-dependent base in a highly unsteady flow allows interactions between the
perturbations at different frequencies, and the classical resolvent analysis can not resolve
the interactions. To circumvent the limitation, the harmonic resolvent analysis described in
Padovan, Otto & Rowley (2020) extends the classical resolvent analysis for a time-varying
base flow. In the harmonic resolvent analysis, the NSE is linearized around a periodically
time-varying base flow. Then, a system of coupled equations is obtained by applying
Fourier series expansions to the linearized equations together with the harmonic balance
approach. More specifically, the perturbations at different frequencies are coupled through
the base flow due to its time-varying nature. Using the approach, Padovan et al. (2020)
reformulated the incompressible NSE in an input–output form between perturbations
with a set of coupled frequencies, with their dynamics governed by the harmonic
resolvent operator in the frequency domain. The SVD of the harmonic resolvent operator
provides insight into the dominant amplification mechanism of perturbations about the
time-varying base flow. Although the harmonic resolvent formulation has been provided
for the incompressible NSE in Padovan et al. (2020), the need for analysing perturbation
dynamics about high-speed time-varying base flow involving unsteady shock and its
interactions with the shear/boundary layer warrants a compressibility consideration. Such
formalism for the compressible NSE is not available in the literature. While we note
that computing harmonic resolvent modes using the time-stepping method (Farghadan
et al. 2024) can be an alternative, formulating the harmonic resolvent framework from the
compressible linearized NSE in Fourier space as the matrix-based approach can provide
more flexibility in manipulating parametric studies.

This work derives the harmonic resolvent framework for compressible flows in the
frequency domain from the first principle. Using the developed framework, we study
the cross-frequency interactions in subsonic open-cavity flows. Flow over an open cavity
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is a canonical configuration where multiple resonances due to the Rossiter feedback
mechanism (Rossiter 1964) drive a self-sustained shear-layer oscillation at multiple
frequencies. This problem serves as a nice example of analysing the perturbation
amplification around the time-varying flow using the harmonic resolvent analysis.

The structure of the paper is as follows. In § 2 we review the classical resolvent analysis
and its extension to the harmonic resolvent analysis for a general linear dynamical system.
Then, we provide the harmonic resolvent formulation for the compressible NSE and
describe the construction of the harmonic resolvent operator. We finish § 2 by explaining
the connection between the amplification mechanism and the SVD of the harmonic
resolvent operator. We validate the formulation in § 3 using a problem of flow over
an airfoil. We compare the dominant forcing and response modes obtained using our
implemented method against the result of Padovan et al. (2020). We then apply the
technique in § 4 to study the cross-frequency interactions in cavity flows at Mach numbers
of 0.6 and 0.8. Finally, we provide concluding remarks and future considerations in
§ 5. In addition, we give supplemental discussions in the appendices to complement the
discussion of the main text.

2. Theoretical formulation

In this section we discuss the mathematical formulation of the harmonic resolvent analysis.
We briefly review the classical resolvent analysis formulation followed by its extension
to the harmonic resolvent analysis for a general nonlinear dynamical system. Then, we
provide the governing equation of perturbations in a time-varying compressible fluid flow
and derive the corresponding harmonic resolvent formulation for unsteady base flows in
the frequency domain.

2.1. Linear-time-varying dynamical system
We begin with a general dynamical system of the form

dq(t)
dt

= N (q(t)), (2.1)

where q(t) ∈ RN is the state vector and N : RN → RN is a nonlinear function that
describes the dynamics of the system. We decompose the state q(t) into a base state q̄(t)
and a perturbation q′(t) such that q(t) = q̄(t) + q′(t). We substitute the decomposition into
(2.1) and adopt the Taylor series expansion. After neglecting terms that are third order or
higher, we obtain

dq̄(t)
dt

+ dq′(t)
dt

= N (q̄(t)) + ∂N
∂q

∣∣∣∣
q̄(t)

q′(t) + O2(q′(t)), (2.2)

which can be cast as
dq′(t)

dt
= A(t)q′(t) + f ′(t), (2.3)

where A(t) = ∂N /∂q|q̄(t) ∈ RN×N is the Jacobian operator, and

f ′(t) = N (q̄(t)) − dq̄(t)
dt

+ O2(q′(t)), (2.4)

which contains the residual terms arising from (2.1) when q̄(t) is not an exact solution
and the second-order terms that are nonlinear in q′(t). From the general expression of
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the linearized perturbation dynamics governed by (2.3), we will derive the classical and
harmonic resolvent analysis frameworks in §§ 2.2 and 2.3, respectively, depending on the
nature of the base state (i.e. stationary or time varying).

2.2. Classical resolvent analysis framework
In the classical resolvent analysis we consider the base state to be a steady solution of (2.1)
or a statistically stationary time-averaged mean of the solution. Then (2.3) becomes

dq′(t)
dt

= A q′(t) + f ′(t), (2.5)

where A ∈ RN×N is the time-invariant Jacobian operator that governs the dynamics of the
unsteady perturbations q′(t) with an unsteady forcing f ′(t). The forcing f ′(t) has different
interpretations in the classical resolvent analysis that are worth discussing. If q̄ is an exact
solution of (2.1) such that N (q̄) = 0, and the perturbations q′(t) are small enough to
discard O2(q′(t)) terms, we can treat f ′(t) solely as an exogenous forcing such as a control
input or free-stream disturbance (Jovanović & Bamieh 2005). Such a scenario can arise
for fluid flows at low Reynolds numbers. On the other hand, if the perturbations q′(t)
around the base state are large enough (e.g. in turbulent flows), we retain the O2(q′(t))
terms and f ′(t) has a nonlinear dependence on q′(t). Then f ′(t) becomes a combination
of endogenous forcing originating from the nonlinear interactions of the perturbations
and any other presence of external influence in the system (McKeon & Sharma 2010).
Following previous studies (McKeon & Sharma 2010; Towne, Schmidt & Colonius 2018;
Liu et al. 2021), we disregard the dependence of f ′(t) on the state perturbation q′(t) and
consider f ′(t) as an unknown forcing term in the subsequent analysis. Substituting the
Fourier transform of the perturbation q′(t) and the forcing f ′(t),

q′(t) =
∫ ∞

−∞
q̂′
ω eiωt dω, f ′(t) =

∫ ∞

−∞
f̂ ′

ω eiωt dω, (2.6a,b)

into (2.5) yields

q̂′
ω = Rω f̂ ′

ω, (2.7)

where Rω := (iωI − A)−1 ∈ CN×N is the classical resolvent operator (Jovanović &
Bamieh 2005; McKeon & Sharma 2010), where I is a identity matrix. The operator Rω

acts as an open-loop transfer function from the input forcing f̂ ′
ω to the output response q̂′

ω

at the frequency ω.

2.3. Harmonic resolvent analysis framework
The harmonic resolvent analysis (Padovan et al. 2020) extends the classical resolvent
analysis for a time-varying system. In the harmonic resolvent analysis, we consider the
base state q̄(t) to be time periodic with a fundamental period T and a fundamental
frequency ωp = 2π/T . Since the Jacobian matrix A(t) is evaluated about the base state
q̄(t), it inherits the time periodicity with the same period T of the base state. In the present
work we are interested in understanding the dynamics of a T-periodic perturbation q′(t)
developing around the periodic base state. The perturbation dynamics need not be exactly
T periodic, and the analysis can be generalized for any nT-periodic perturbation, for an
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integer n (Padovan & Rowley 2022). We expand A(t), q′(t) and f ′(t) in terms of the Fourier
series as

A(t) =
k=∞∑

k=−∞
Âk eikωpt, q′(t) =

k=∞∑
k=−∞

q̂′
k eikωpt, f ′(t) =

k=∞∑
k=−∞

f̂ ′
k eikωpt. (2.8a–c)

Substituting the Fourier series expansions into (2.3) yields

[T q̂′]k := ikωpq̂′
k −

j=∞∑
j=−∞

Âk−jq̂′
j = f̂ ′

k, ∀ k, j ∈ Z, (2.9)

which represents a system of infinitely coupled equations, where perturbation q̂′
k at the

frequency kωp is coupled with the perturbation q̂′
j at frequency jωp through the base state

at frequency (k − j)ωp. In a matrix form, we can express the coupled system of equations
as

TQ̂ = F̂ , (2.10)

where T is an infinite-dimensional Toeplitz matrix of the form

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
...

...
... . .

.

. . . R−1
−2 −Â−1 −Â−2 −Â−3 −Â−4 . . .

. . . −Â1 R−1
−1 −Â−1 −Â−2 −Â−3 . . .

. . . −Â2 −Â1 R−1
0 −Â−1 −Â−2 . . .

. . . −Â3 −Â2 −Â1 R−1
1 −Â−1 . . .

. . . −Â4 −Â3 −Â2 −Â1 R−1
2 . . .

. .
. ...

...
...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (2.11)

with the infinite-dimensional state perturbation vector and the forcing vector of

Q̂ = [ . . . q̂′
−2 q̂′

−1 q̂′
0 q̂′

1 q̂′
2 . . . ]T , (2.12a)

F̂ = [ . . . f̂ ′
−2 f̂ ′

−1 f̂ ′
0 f̂ ′

1 f̂ ′
2 . . . ]T , (2.12b)

respectively. The diagonal of the matrix T contains the block matrices of the form R−1
k :=

(ikωpI − Â0) ∈ CN×N . The off-diagonal blocks of T are the Fourier components of the
Jacobian matrix Âj ∈ CN×N at the frequency jωp with j ∈ Z\{0}. Since the matrix A(t) is
real valued, the Fourier component Âk is the complex conjugate of the component Â−k and
vice versa. If the base state is steady then Âj = 0, ∀ j ∈ Z\{0}, and the off-diagonal blocks
of the matrix T become zero. In the resulting system, the state perturbations at different
frequencies are decoupled, and the non-zero diagonal elements of T are the inverse of the
classical resolvent operators at frequencies kωp.

Next, we need to define an input–output relation between the forcing F̂ and state
perturbation Q̂ in the frequency domain using the inverse of the operator T in (2.10).
However, if q̄(t) satisfies (2.1) exactly, the operator T is singular and contains a non-zero
vector in the right null space (see Appendix A). If, however, the dynamics develop due to
external forcing, then the null space becomes trivial. The existence of a singularity when
the null space is non-trivial prevents an inversion of the operator T . Following the work
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Identification of cross-frequency interactions

by Padovan et al. (2020), we can restrict the domain and range of the operator T to remove
the singularity. By defining ŵ as a unit norm vector in the right null space, we can use the
elementary orthogonal projector PX = I − ŵŵ∗ to project vectors on the subspace X that
is an orthogonal complement to the right null space of T . Here, (·)∗ denotes the complex
conjugate transpose of a variable. Similarly, we can restrict the range of T to a subspace
W , which is an orthogonal complement of the left null space of T using the elementary
projector PW = I − ûû∗, where û is a unit norm vector in the left null space of T . The
computation of the unit norm vectors and the associated projection operators in practical
applications are detailed in the study by Padovan et al. (2020). The restricted operator
T w : X → W is invertible and the input–output relation from (2.10) is obtained as

Q̂ = HF̂ , (2.13)

where H := T−1
w is the harmonic resolvent operator. The operator H maps the Fourier

coefficients of the T-periodic forcing F̂ to the Fourier coefficients of the output state
perturbation Q̂ of the same period T .

2.4. Harmonic resolvent formulation for compressible flow

2.4.1. Navier–Stokes equation
In this section we derive the harmonic resolvent formulation for the fluid flow governing
equations. We consider the compressible NSE in the conservative formulation. The
Cartesian coordinate system xi(i = 1, 2, 3), time t, density ρ, three components of velocity
ui, pressure p, temperature T and total energy E are non-dimensionalized as

xi = x̃i

L
, t = t̃

L/ũ∞
, ρ = ρ̃

ρ̃∞
, ui = ũi

ũ∞
, p = p̃

ρ̃∞ũ2∞
, T = T̃

T̃∞
, E = Ẽ

ρ̃∞ũ2∞
,

(2.14)

where the variables denoted with the symbol (̃·) are the dimensional quantities, the
variables with the subscript ∞ denote free-stream values and L is a dimensional reference
length. We introduce three dimensionless numbers, namely the Reynolds number Re,
Prandtl number Pr and Mach number Ma,

Re = ρ̃∞ũ∞L
μ̃∞

, Pr = μ̃∞c̃p

κ̃
, Ma = ũ∞

ã∞
, (2.15a–c)

where μ̃∞ is the free-stream dynamic viscosity, ã∞ is the speed of sound in the free
stream, c̃p is the specific heat at constant pressure and κ̃ is the thermal conductivity of the
fluid. Then we can compactly write the NSE in a non-dimensional form as

∂q
∂t

+
∂F e

j

∂xj
+

∂F v
j

∂xj
= 0, (2.16)

where q = [ρ, mi, ρE]T ∈ R5 is the vector of the conservative state variables with mi :=
ρui being the three components of the momentum, F e

j and F v
j represents the Euler flux and

viscous flux vector, respectively. For a thermally and calorically perfect gas, total energy
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E is given by

E = p
ρ(γs − 1)

+ 1
2

ukuk, (2.17)

where γs is the ratio of specific heat. The Euler flux F e
j and the viscous flux F v

j (Bugeat
et al. 2019) are given by

F e
j =

⎡⎣ mj
miuj + pδij
(ρE + p)uj

⎤⎦ , F v
j =

⎡⎢⎢⎢⎢⎣
0

− 1
Re

τij

− 1
Re

uiτij − κ

(γs − 1)Re Pr Ma2
∂T
∂xj

⎤⎥⎥⎥⎥⎦ , (2.18a,b)

where

τij = μ

(
∂ui

∂xj
+ ∂uj

∂xi
− 2

3
∂uk

∂xk
δij

)
(2.19)

is the viscous stress tensor for a Newtonian fluid. Note that the coefficients of the
viscous stress term and the temperature gradient term in (2.18b) depend on the reference
variables used to non-dimensionalize the governing equations. The dynamic viscosity μ is
a function of the temperature, which is calculated using a power law as μ(T) = (T/T∞)0.76

(Garnier, Adams & Sagaut 2009). We use the equation of state to relate the pressure,
density and temperature as

p = 1
γs Ma2 ρT. (2.20)

We take the value of the Prandtl number Pr = 0.7 and the specific heat ratio γs = 1.4,
which are the standard values for air.

2.4.2. Linearized NSE
We decompose the state variables q(t) into a periodic base state q̄(t) and an unsteady
perturbation q′(t) as q(t) = q̄(t) + q′(t). Substituting the decomposition into (2.16) and
linearizing around the base state, we obtain

∂q′(t)
dt

+ ∂

∂xj
Fe

j (q̄(t), q′(t)) + ∂

∂xj
Fv

j (q̄(t), q′(t)) = f ′(t), (2.21)

where q′(t) = [ρ′, m′
i, ρE′] is the vector of conservative variable perturbations, and f ′(t)

contains the terms that are nonlinear in q′(t) and the residual terms if q̄(t) is not an exact
solution of (2.16) as

f ′(t) = −∂ q̄(t)
dt

− ∂

∂xj
Fe

j (q̄(t)) − ∂

∂xj
Fv

j (q̄(t)) − O2(q′(t)). (2.22)

The linearized Euler flux Fe
j (q̄(t), q′(t)) reads

Fe
j (q̄(t), q′(t)) =

⎡⎢⎢⎢⎢⎢⎣
m′

j

m̄i

ρ̄
m′

j + m̄j

ρ̄
m′

i − m̄im̄j

ρ̄2 ρ′ + p′δij(
γsρ̄E − γs − 1

2
m̄km̄k

ρ̄

)
u′

j + m̄j

ρ̄
(ρE)′ + m̄j

ρ̄
p′

⎤⎥⎥⎥⎥⎥⎦ , (2.23)
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Identification of cross-frequency interactions

and Fv
j (q̄(t), q′(t)) is the linearized viscous flux vector with

Fv
j (q̄(t), q′(t)) =

⎡⎢⎢⎢⎢⎣
0

− 1
Re

τ ′
ij

− 1
Re

u′
iτ̄ij − 1

Re
ūiτ

′
ij − μ̄

(γs − 1)Re Pr Ma2
∂T ′

∂xj

⎤⎥⎥⎥⎥⎦ , (2.24)

where

τ̄ij = μ̄

(
∂ ūi

∂xj
+ ∂ ūj

∂xi
− 2

3
∂ ūk

∂xk
δij

)
, τ ′

ij = μ̄

(
∂u′

i
∂xj

+
∂u′

j

∂xi
− 2

3
∂u′

k
∂xk

δij

)
(2.25a,b)

and ūi := m̄i/ρ̄ denotes the velocity components of the base state. We neglect the terms
with viscosity perturbation μ′ by assuming its negligible variation with temperature. The
perturbations of primitive variable velocity u′

i, pressure p′ and temperature T ′ is calculated
respectively as

u′
i = 1

ρ̄
m′

i − m̄i

ρ̄2 ρ′, (2.26a)

p′ = (γs − 1)

[
(ρE)′ − m̄k

ρ̄
m′

k + 1
2

m̄km̄k

ρ̄2 ρ′
]

, (2.26b)

T ′ = γs(γs − 1)Ma2
[
(ρE)′

ρ̄
− ρ̄E

ρ̄2 ρ′ − m̄k

ρ̄2 m′
k + m̄km̄k

ρ̄3 ρ′
]

. (2.26c)

After substituting all the expressions into (2.21), we obtain the governing equation of
unsteady perturbations developing over a time-varying compressible fluid flow in the time
domain.

2.4.3. Construction of operator T
To facilitate the conversion of the LNSE from the time domain to the frequency domain,
we rewrite (2.21) as

dq′(t)
dt

+ Lq′(t) + ∂

∂xj
[Ge

j (q̄(t), q′(t)) + Fv
j (q̄(t), q′(t))] = f ′(t), (2.27)

where we have grouped the terms of the linearized Euler flux that contain the product
between the base state and perturbation state variables in Ge

j (q̄(t), q′(t)) and the rest of the
terms containing only the perturbation state variables in Lq′(t) (expressions are given in
Appendix B). Then, we expand the periodic base state and perturbation using the Fourier
series as

q̄(t) =
∑
k∈Ω

ˆ̄qk eikωpt, q′(t) =
∑
k∈Ω̃

q̂′
k eikωpt, (2.28a,b)

where both Ω, Ω̃ ⊆ {kωp} ∀ k ∈ Z, are sets of integer multiples of the fundamental
frequency ωp = 2π/T with T being the fundamental period of the base flow. While one
can consider an infinite number of frequencies for the base state and the perturbation,
in practical computations, we truncate the number of frequencies in the sets Ω and Ω̃

to a finite extent. Usually, Ω = {−m, . . . , −1, 0, 1, . . . , m}ωp contains a small number
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of frequencies associated with the dominant frequency ωp and its harmonics present in
the base flow. These frequencies approximate the dominant dynamics of the large-scale
coherent structures in the fluid flows. Then we seek to study the dynamics of perturbations
with frequencies in the set of Ω̃ = {−n, . . . , −1, 0, 1, . . . , n}ωp, where n is chosen by the
maximum frequency of perturbation that one wishes to resolve and n ≥ m. Substituting
the Fourier expansions into (2.27), we obtain the following system of a finite number of
coupled equations:

[T q̂′]k = f̂ ′
k (2.29)

with

[T q̂′]k = ikωpq̂′
k + Lq̂′

k + ∂

∂xj

∑
l∈Ω̃

(k−l)∈Ω

[Ĝe
j (

ˆ̄qk−l, q̂′
l) + F̂v

j ( ˆ̄qk−l, q̂′
l)]. (2.30)

Here the number of equations is linked to the number of perturbation frequencies in
the set Ω̃ . To assemble the matrix T , we need to find the expressions for the equations
corresponding to the frequencies in Ω̃ one at a time. For simplicity, we consider a set
of base flow frequencies Ω = {−1, 0, 1}ωp along with a set of perturbation frequencies
Ω̃ = {−2, −1, 0, 1, 2}ωp to demonstrate the construction of the operator T . The equation
corresponding to the perturbation frequency −2ωp can be obtained as

[T q̂′]−2 = −i2ωpq̂′
−2 + Lq̂′

−2 + ∂

∂xj
[Ĝe

j (
ˆ̄q0, q̂′−2) + F̂v

j ( ˆ̄q0, q̂′−2)]

+ ∂

∂xj
[Ĝe

j (
ˆ̄q−1, q̂′−1) + F̂v

j ( ˆ̄q−1, q̂′−1)], (2.31)

where we have neglected the terms containing ˆ̄qk−l with (k − l) 
∈ Ω in the expansion
of the sum. For brevity, we show how to perform the Fourier expansion of the terms
in Ĝe

j (
ˆ̄qk−l, q̂′

l) for the linearized compressible NSE in Appendix B. Similarly, for other
frequencies kωp in the set Ω̃ , we can obtain the expression for [T q̂′]k using (2.30). Then
the system of equations in a matrix form is

T =

⎡⎢⎢⎢⎢⎢⎣
R−1

−2 Ĝ−1 0 0 0
Ĝ1 R−1

−1 Ĝ−1 0 0
0 Ĝ1 R−1

0 Ĝ−1 0
0 0 Ĝ1 R−1

1 Ĝ−1
0 0 0 Ĝ1 R−1

2

⎤⎥⎥⎥⎥⎥⎦ , (2.32)

where

Ĝkq̂′ := ∂

∂xj
[Ĝe

j (
ˆ̄qk, q̂′) + F̂v

j ( ˆ̄qk, q̂′)], (2.33a)

R−1
k := (ikωpI + L + Ĝ0). (2.33b)

The operator T has dimension C5Nf ×5Nf , where Nf is the number of frequencies in the set
Ω̃ . The number of non-zero blocks in each row of the operator T depends on the number
of base flow frequencies in the set Ω . To numerically solve the system of equations, we
discretize (2.30) using a finite volume scheme in the present work and obtain the discrete
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Identification of cross-frequency interactions

matrices L ∈ R5Ng×5Ng and Ĝk ∈ C5Ng×5Ng that constitutes the blocks of the operator T ,
with Ng being the number of discrete grid points. We note that only the matrices Ĝk need
to be constructed, and Ĝ−k can be obtained by taking the complex conjugate of Ĝk. After
assembling the discrete operator T , we can remove its singularity, if necessary, using the
method outlined in § 2.3. Then the input–output perturbation dynamics of a time-periodic
fluid flow in the frequency space are represented by

Q̂ = HF̂ , (2.34)

where, H ∈ C(5Ng)Nf ×(5Ng)Nf is the discrete harmonic resolvent operator, Q̂ ∈ C(5Ng)Nf ×1

contains the collection of Fourier coefficients of the discrete state variable perturbations
and F̂ ∈ C(5Ng)Nf ×1 represents the Fourier coefficients of the discrete forcing variables.

2.5. Modal decomposition of the harmonic resolvent operator
We seek to obtain a reduced-order representation of the input–output dynamics using
the modal decomposition of the harmonic resolvent operator. In particular, we need to
identify the most amplified output perturbation and the corresponding input perturbation
characterized by a gain describing the amplification level. We can define the gain as a
ratio of the output to input perturbation energy. To measure the perturbation energy, we

introduce the discrete inner products 〈q̂′, q̂′〉q = q̂
′∗W q q̂′ and 〈 f̂

′
, f̂

′〉f = f̂
′∗

W f f̂
′

in the
output and input space, respectively. Then using the inner product, we can define a norm to
measure the perturbation energy in both spaces. The positive definite weight matrices W q
and W f depend on the choice of energy norm one wishes to optimize. For compressible
flows, a widely used measure of the perturbation energy is given by Chu’s norm (Chu
1965; Hanifi, Schmid & Henningson 1996), which in the non-dimensional form is

‖q̂′
p‖2

E = q̂
′∗
p W Cq̂′

p = EChu = 1
2

∫
V

q̂
′∗
p diag

(
T̄0

γsMa2ρ̄0
, ρ̄0,

ρ̄0

γs(γs − 1)Ma2T̄0

)
q̂′

p dV,

(2.35)

where qp = [ρ′, u′
i, T ′]T is the vector of primitive variable perturbation and q̂′

p are the
Fourier coefficients. The variables denoted with (·)0 represent the time-averaged quantity.
Since the harmonic resolvent formulation is derived using the conservative state variable,
we need to modify (2.34) to accommodate the primitive variable perturbations before
applying Chu’s norm. The transformed equation in the primitive state variable reads

Q̂p = M−1HM︸ ︷︷ ︸
Hp

F̂p, (2.36)

where Q̂p is the vector of Fourier coefficients of the output perturbation q′
p(t), F̂p contains

the Fourier coefficients of f ′
p(t). The operator Hp governs the input–output dynamics of

the primitive state variable perturbations and the details of the matrix M are given in
Appendix C. We seek to maximize the gain

Γ 2 = max
F̂p

‖Q̂p‖2
E

‖F̂p‖2
E

= max
F̂p

〈Q̂p, Q̂p〉q

〈F̂p, F̂p〉f
= max

F̂p

Q̂∗
pW C Q̂p

F̂∗
p W C F̂p

, (2.37)

where we use the same measure of perturbation energy using Chu’s norm (i.e. W c contain
the Chu’s norm weights along with the discrete integration weights) in both input and
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output spaces leading to W q = W f = W c. It is not necessary to use the same energy
norm in both spaces. Since W c is a symmetric positive definite matrix, we can perform a
Cholesky factorization as W c = N∗N . Using the factorization in (2.37), we can transform
Chu’s energy norm to a discrete L2 norm as

Γ 2 = max
F̂p

F̂∗
p H∗

pN∗NHpF̂p

F̂∗
p N∗NF̂p

= max
Ûp

Û∗
p N−1,∗H∗

pN∗NHpN−1Ûp

Û∗
p Ûp

(with Ûp = NF̂p)

= max
Ûp

‖NHpN−1Ûp‖2
2

‖Ûp‖2
2

= ‖NHpN−1‖2
2 = σ 2

1 . (2.38)

So the solution to the optimization problem can be obtained by the SVD of the weighted
harmonic resolvent operator

NHpN−1 = ŨΣ Ṽ∗, (2.39)

where Σ = diag(σ1, σ2, . . .) contains the ranked singular values of the operator NHpN−1

in descending order and the maximum energy gain Γ 2 is given by the leading singular
value σ 2

1 . The response modes are the columns of the matrix U = N−1Ũ and the forcing
modes are the columns of the matrix V = N−1Ṽ . The optimal forcing and response
modes are given by the first column of the matrix V and U , respectively. The forcing and
response modes are orthonormal in their respective inner products, that is, V∗W cV = I
and U∗W cU = I . Next, we recover the complete decomposition of the operator as

Hp = UΣV∗W c, (2.40)

allowing the output response to be expanded as

Q̂p =
∑

k

Ukσkλk with λk = V ∗
kW cF̂p. (2.41)

If the operator Hp is low rank and σ1 � σ2, then we can use a rank-1 approximation to get
a reduced-order representation of the dynamics

Q̂p = U1σ1λ1 with λ1 = V ∗
1W cF̂p. (2.42)

If the projection λ1 of the input on the forcing mode V 1 is maximal, the output response
will have structures similar to the response mode U1 scaled by the singular value σ1. In
other words, if we want to excite the optimal response, our input to the system needs
to be aligned as closely as possible to the optimal forcing mode. The reduced-order
representation has profound significance in understanding the physics of the time-periodic
fluid flows and developing inputs for flow control.

We have seen till now that the SVD of the weighted harmonic resolvent operator
sheds light on the global energy amplification mechanism in the time-periodic flow.
However, since the time-periodic base flow admits cross-frequency interaction between
perturbations, it is possible to study the energy amplification between a pair of input and
output perturbations at different frequencies (Padovan et al. 2020). In particular, we want
to maximize the gain between the input energy perturbation f̂ ′

j at the frequency jωp ∈ Ω̃ to
the output response q̂′

k at the frequency kωp ∈ Ω̃ . As shown before in (2.38), the solution
to the optimization leads to the SVD of the weighted operator Hw

j,k ∈ C5Ng×5Ng , which is
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Identification of cross-frequency interactions

the corresponding block of the operator NHpN−1 that couples the input f̂ ′
j to the output q̂′

k
as

q̂′
k = Hw

j,k f̂ ′
j. (2.43)

The optimal singular value σ1,( j,k) provides a measure of how effectively the forcing f̂ ′
j

can excite the response at q̂′
k.

2.6. Harmonic resolvent analysis of nT-periodic perturbations
The harmonic resolvent analysis framework we have discussed till now considers the set
perturbation frequencies with the same period as the fundamental base flow frequency.
However, Padovan & Rowley (2022) showed that it is possible to analyse the dynamics
of a nT-periodic perturbation developing over a T-periodic base flow using a modified
harmonic resolvent operator H(iγ ) = (iγ I + T )−1 parameterized by γ ∈ [−ωp/2, ωp/2],
with ωp = 2π/T . The operator H(iγ ) describes the input–output perturbation dynamics
of the set of perturbation frequencies Ω̃γ = γ + {−n, . . . , −1, 0, 1, . . . , n}ωp. For γ = 0,
we obtain the harmonic resolvent operator defined in (2.34). Note that the operator T
only depends on the set of base flow frequencies and remains the same for any set of
perturbation frequencies defined by γ . In defining H(iγ ), Padovan & Rowley (2022) has
used a slightly different projection operator than the one described in § 2.3. We use the
projection operator defined at the end of § 2.3 to reduce the computational cost in this
work. The modal decomposition of the modified harmonic resolvent operator H(iγ ) is
performed in the same way as described in § 2.5 to analyse the dynamics of the nT-periodic
perturbations.

3. Validation of airfoil flow

In this section we apply the harmonic resolvent analysis to a flow over a NACA0012
airfoil at an angle of attack of α = 20◦ and Reynolds number of Re = 200 based on the
chord of the airfoil. We set the free-stream Mach number at Ma∞ = 0.05, representing
an incompressible flow regime, to validate our in-house code for compressible flow
with the incompressible flow result of Padovan et al. (2020) at the same airfoil flow
condition. We perform a direct numerical simulation (DNS) to calculate the base flow
using a high-fidelity compressible flow solver CharLES (Brès et al. 2017), which solves
the compressible NSEs using a second-order finite volume method and the third-order
Runge–Kutta scheme through an explicit time-stepping method. The free-stream speed of
sound ã∞ is taken as the reference velocity to non-dimensionalize the variables in (2.14).

The computational domain is shown in figure 1(a). We take the chord of the
airfoil c as a reference length to non-dimensionalize the variables. The origin of the
Cartesian coordinate (x/c = 0, y/c = 0) is located at the leading edge of the airfoil. The
computational domain has a streamwise extent of x/c ∈ [−12, 15] and the extent in the
cross-stream direction is y/c ∈ [−12, 12]. We have used a C-shaped mesh with 88 000 grid
points to discretize the computational domain. At the surface of the airfoil, we impose an
adiabatic wall boundary condition. We prescribe a characteristic boundary condition with
[ρ, u, v, w, p] = [ρ∞, u∞, 0, 0, p∞] at the far field of the domain. Along the domain’s
outlet, we apply a sponge zone spanning 3c in the streamwise direction over the region
x/c ∈ [12, 15] to prevent any reflection of the outgoing waves back into the wake of
the airfoil. A constant time step tU∞/c = 2.0 × 10−5 is used to advance the simulation
in time.
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Figure 1. (a) Computational set-up for the DNS of the flow over a NACA0012 airfoil, (b) Normalized
frequency spectrum of the streamwise momentum and the corresponding Fourier base modes.

The simulation ran for a sufficient time so that the flow transients diminished before
data collection for analysis. We have gathered data for 45 convective time (tU∞/c) units
and performed the discrete Fourier transform (DFT) to obtain the Fourier coefficients of
the base flow states ˆ̄q(x, y). The base flow is dominated by a periodic vortex shedding
in the wake of the airfoil. The norm of the leading streamwise-momentum DFT modes
is shown in figure 1(b). The base flow is periodic with the fundamental frequency (ωp)
corresponding to the vortex shedding mechanism in the wake at the Strouhal number St =
ωpc/2πu∞ = 0.36. Also, the presence of energetic components at higher harmonics of
the fundamental frequency and the stationary component at the zero frequency is evident
in figure 1(b).

To perform the harmonic resolvent analysis, we consider a truncated set of base
flow frequencies with Ω = {−3, −2, −1, 0, 1, 2, 3}ωp. Consequently, the operator Ĝ in
(2.33a) will have the Fourier coefficients at the same frequencies present in the base
flow set Ω . We generate the discrete operators L and Ĝk on a smaller domain with
extent x/c ∈ [−4, 13] and y/c ∈ [−4, 4], and approximately Ng = 38 000 grid points.
At the far field and the surface of the airfoil, we specify the velocity perturbation and
the wall-normal gradient of pressure perturbation to zero with an adiabatic condition for
the temperature perturbation. We apply a sponge zone over the extent x/c ∈ [12, 13] near
the outlet to prevent the outgoing perturbations from reflecting inside the domain. After
building the operators L and Ĝk we assemble them to form the operator T . The overall
size of the operator T ∈ C(5Ng)Nf ×(5Ng)Nf depends on the number of frequencies of the
perturbations (Nf ) and the grid points (Ng) used for discretization. Similar to the study
of Padovan et al. (2020), we consider the set of frequencies for the perturbation Ω̃ =
{−7, . . . , −1, 0, 1, . . . , 7}ωp with Nf = 15 Fourier coefficients. The assembled operator
T has a size of order O(106), but the structure of T is highly sparse with the number of
non-zero off-diagonal blocks being the same as the number of elements in the set Ω . In
contrast, the harmonic resolvent operator H (i.e. the inverse of T ), which has the same size
of order O(106), is dense and its explicit computation is expensive in terms of both CPU
hours and storage. Therefore, in practical computation, we use a randomized algorithm
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Figure 2. (a) Comparison between the singular values scaled by the free-stream velocity from the current
study and those from Padovan et al. (2020). (b) Fractional variance Ej,k corresponding to blocks of Hp.

(Ribeiro, Yeh & Taira 2020) to perform the SVD of the operator H efficiently. In the
randomized algorithm, the action of H and H∗ can be performed using the sparse operator
T and T ∗, respectively, thus saving the storage and reducing the computation time. We
modify the algorithm in the current study to accommodate the additional matrices needed
(i.e. matrices M and N) to perform the SVD of the weighted harmonic resolvent operator
NHpN−1. Also, the projection operators discussed at the end of § 2.3 are implemented in
the randomized SVD algorithm to remove the phase shift direction of the operator T (see
Appendix A). We have used 10 random test vectors to build the low-rank approximation of
the operator T (Ribeiro et al. 2020). To improve the accuracy of the subdominant singular
values (σj, where j > 1), power iterations are used with a relative convergence tolerance
between successive iterations to be 10−2 for the first five singular values. The singular
values converged after four iterations using the criterion for the airfoil flow.

The first five singular values of the weighted harmonic resolvent operator scaled by the
free-stream velocity (U∞) are shown in figure 2(a). The order of magnitude significantly
drops between the optimal singular value (σ1) and the rest, indicating a low-rank behaviour
of the harmonic resolvent operator, which agrees with the observation in Padovan et al.
(2020). Although the exact singular values differ due to the difference in problem set-up,
the overall trend compares well with the corresponding results of Padovan et al. (2020).
The cross-frequency amplification through different blocks of the operator H is shown in
figure 2(b). The colour of the blocks represents the quantity E defined as

Ej,k =

8∑
i=1

σ 2
i,( j,k)

8∑
i=1

σ 2
i

, (3.1)

where σi,(k,j) is the ith singular value of the block matrix Hk,j and σi are the singular
values of the complete operator H . The darker colour in the plot denotes a significant
excitation of the output response at a frequency jωp by the input at frequency kωp.
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Figure 3. Comparison of the optimal forcing and response modes (vorticity) at frequencies 0 and 2ωp
between the current result and the incompressible flow results by Padovan et al. (2020).

In figure 2(b) we observe that the flow is responsive to the input at lower frequencies
(< 3ωp). In particular, forcing at frequency ωp can excite an energetic response in the
output at frequencies up to 3ωp. The cross-frequency interaction between perturbations
through the base flow manifests in generating the response at frequencies other than
the input frequency. The input at higher frequencies (≥ 3ωp) is ineffective in exciting
an energetic response, as evident in figure 2(b), indicating a weaker cross-frequency
interaction. Such information can not be revealed in the classical resolvent analysis. We
note that in the classical resolvent analysis, the time-invariant nature of the base flow
does not allow cross-frequency interaction, so the input at a particular frequency will only
indicate a response at the same frequency.

The comparison between the optimal forcing and response modes at frequencies ωp
and 2ωp reported in Padovan et al. (2020), and the corresponding forcing and response
modes obtained in the present work are shown in figure 3. We have normalized the mode
amplitudes by a constant factor to keep the contour levels consistent with those reported
in Padovan et al. (2020). The sensitive regions for introducing perturbations are localized
around the airfoil as evident in the forcing modes in figure 3. The spatial structure of the
response modes is located in the wake of the airfoil. Despite the difference in the numerical
discretization scheme, the forcing and response mode shapes at both frequencies agree
remarkably well with the result of Padovan et al. (2020).
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Figure 4. (a) Computational set-up for the DNS of a flow over a rectangular cavity. (b) Normalized frequency
spectrum of the streamwise momentum and the corresponding Fourier base modes of the cavity flow with
Ma∞ = 0.6. Here, (- - -, red) indicates the Rossiter mode frequency prediction using (4.1).

4. Application to flow over open cavity

In this section we consider flow over an open cavity with Mach numbers of Ma∞ = 0.6
and 0.8 to reveal the cross-frequency interactions in high-speed compressible flows. To
compute the base flows, we perform DNS of the flow over a rectangular cavity with a
length-to-depth ratio of L/D = 2. Throughout the analysis, we take the depth of the cavity
D as a reference length to non-dimensionalize the variables. For both flow configurations,
we fix the initial boundary layer momentum thickness (θ0) at the leading edge of the
cavity at D/θ0 = 26.4. The corresponding Reynolds number for both flows at Mach 0.6
and 0.8 based on θ0 is Re = 56.8. The computational domain is shown in figure 4(a).
We place the origin (x/D = 0, y/D = 0) at the leading edge of the cavity. The domain
extends 5D upstream of the cavity leading edge and the outlet is placed at a distance of
7D from the cavity trailing edge. The domain extends a distance of 9D in the wall-normal
(y) direction. We discretize the computational domain with 1.14 × 105 grid points with
local mesh refinement near the walls and shear-layer region. At the surface of the
cavity and the upstream and downstream walls, we prescribe adiabatic no-slip boundary
conditions. A sponge zone is applied near the outlet and the top boundary with an extent
of 1D measured from the boundary. At the inlet a characteristic boundary condition with
[ρ, u, v, w, p] = [ρ∞, u∞, 0, 0, p∞] is specified.

A series of post-transient data are collected over a convective time of tu∞/D = 75 to
compute the base flow. The unstable shear-layer oscillation due to the Rossiter feedback
mechanism (Rossiter 1964; Sun et al. 2017) is present in the cavity flow considered.
We perform the DFT to get the Fourier coefficients of the base flow states ˆ̄q(x, y).
The normalized spectrum and corresponding DFT modes of the streamwise-momentum
component for the cavity flow at Mach 0.6 reveal the presence of the dominant resonance
and its harmonics as shown in figure 4(b). The dominant frequency at the Strouhal
number of St = ωpL/2πu∞ = 0.743 is associated with the Rossiter mode II based on the
semi-empirical formula of oscillatory frequency (Rossiter 1964)

St = n − α

M∞ + 1/β
, (4.1)

where n is the index of the Rossiter mode, the phase lag α is 0.25 and β is 0.57 (Heller,
Holmes & Covert 1971).
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4.1. Cavity flow at Ma∞ = 0.6
We discuss the classical and harmonic resolvent analyses of the cavity flow at Mach
0.6 due to its simplicity of containing only one fundamental frequency. In the classical
resolvent analysis we use the time-averaged mean flow state as the base flow to linearize the
governing equations, equivalent to linearizing the equations about the base flow frequency
set Ω = {0}. In the harmonic resolvent analysis we consider a set of truncated base
flow frequencies of Ω = {−1, 0, 1}ωp leading to the number of base flow frequencies
Nb = 3. We vary the set of perturbation frequencies Ω̃ = {−m, . . . , −1, 0, 1 . . . , m}ωp
with m = 1, 3, 5, resulting in the number of perturbation frequencies Nf = 3, 7 and 11,
respectively. We build the linear operators for both analyses using a smaller domain with
extent x/D ∈ [−3, 8] and y/D ∈ [−1, 7]. Approximately 48 000 grid points are used to
discretize the domain. At the cavity surface and the upstream and downstream wall,
the velocity perturbations and the wall-normal gradient of the pressure perturbation are
specified to be zero. The velocity and density perturbations and gradient of pressure
perturbations are specified as zero at the inlet. Sponge layers with an extent of 1D are
applied near the top and outflow boundaries to dampen the perturbations and prevent any
reflection back into the domain. We use 10 random test vectors to compute the SVD of the
harmonic resolvent operator using the randomized algorithm (Ribeiro et al. 2020) along
with three power iterations. For the classical resolvent operator, we compute the SVD
using the Krylov-based Arnoldi-iteration method with the number of singular values of 4,
Krylov space of 128 vectors and a residual tolerance of 10−10.

Variation of the first two singular values of the classical resolvent operator as a function
of frequency is shown in figure 5(a). The flow is most responsive to perturbation at the
frequency ωp where the large separation between the optimal (σ1) and sub-optimal (σ2)
singular values indicates a rank-1 behaviour. Since the leading two singular values overlap
at higher frequencies (ω ≥ ωp), the rank-1 feature is no longer valid. In figure 5(b) we plot
the first 10 singular values of the harmonic resolvent operator constructed by considering
three different numbers of perturbation frequencies (Nf ) with the same number of base
frequencies Nb = 3. Solving for an increasing number of perturbation frequencies stacked
in one singular vector leads to a reduction in the optimal singular value (σ1) when Nf
increases from 3 to 7, but a further increase of Nf from 7 to 11 implies a minimal effect
on capturing the dominant dynamics of the flow as shown in figure 5(b). The effect of
increasing the perturbation frequencies in the set Ω̃ on the remaining sub-optimal singular
values is trivial. Compared with the singular values of the classical resolvent operator at
the dominant frequency (ωp), the separation between the optimal (k = 1) and sub-optimal
(k = 2) singular values of the harmonic resolvent operator is smaller. Unlike the classical
resolvent operator, the singular values of the harmonic resolvent operator do not reveal
the energy amplification of an individual frequency but rather a combined effect of all the
coupled frequencies in a set. However, since we solve for cross-frequency modes in one
stacked vector, the relative amplitude of each perturbation in the harmonic resolvent mode
will reveal their relative dominance, which we will see shortly.

To get insight into the coherent structures that get preferentially amplified through
linear mechanisms selected by the two transfer functions (i.e. the classical and harmonic
resolvent operators), we look into the real component of the streamwise velocity response
modes in figure 6 along with the forcing mode that generates those responses. The
forcing and response modes for the classical resolvent analysis correspond to the optimal
singular values (σ1) at different frequencies. These frequencies, and hence the modes, are
decoupled, and each mode oscillates individually in time at the corresponding frequency.
Moreover, since the modes are decoupled and follow a unit normalization, the amplitude
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Figure 5. (a) The first and second singular values of the classical resolvent operator at the fundamental
frequency and its harmonics. (b) The singular values of the harmonic resolvent operator constructed using
Nb = 3 and Nf = 3, 7, 11 for the cavity flow at Ma∞ = 0.6.

of each mode can be arbitrary compared with each other. The response mode at frequency
zero is mostly located inside the cavity, which resembles the centrifugal mode observed
at low frequencies in the cavity flow (Bres & Colonius 2008). The spatial structure of the
corresponding forcing mode inside the cavity overlaps with the spatial structures of the
response mode indicating the presence of the so-called wavemaker region (Symon et al.
2018). At frequency ωp, the modal structure represents the unstable Rossiter mode II,
with the Kelvin–Helmholtz (KH) instabilities mainly localized in the shear-layer region
over the cavity. The forcing mode structures at frequency ωp are mostly concentrated
near and upstream of the cavity leading edge revealing the convective nature of the
KH instabilities. The optimal classical resolvent forcing and response modes at higher
frequencies (≥2ωp) are unphysical and provide no meaningful information. The inability
to obtain a meaningful mode using the classical resolvent analysis at frequencies where
the resolvent operator is not low rank as shown in figure 5(a) is a limitation that has
been observed in other flows (Symon et al. 2019) before. For an oscillatory flow, which
is the case here, Symon et al. (2019) found the high-rank behaviour (i.e. lack of linear
amplification mechanism) of the resolvent operator at harmonics of the fundamental
frequency of an airfoil flow. After approximating the nonlinear forcing using the triadic
interactions of a few highly amplified resolvent response modes, they obtained meaningful
structures at those higher harmonics that agreed with the spectral proper orthogonal
decomposition modes. In the context of a mode’s interaction, we speculate that the
unphysical classical resolvent modes obtained at the higher harmonics in figure 6 are
due to the absence of modelling interactions among the modes at different frequencies
in the classical resolvent formulation. To resolve the physical modes at those frequencies
in the classical resolvent analysis framework, one might need to model the forcing, which
includes nonlinear perturbation terms, using a few energetic response modes such as those
at frequencies 0 and ωp. However, in the harmonic resolvent analysis, the cross-frequency
interaction is embedded in the modelling framework. Indeed, we see next that it is possible
to circumvent the limitation very well within the linear framework using the harmonic
resolvent analysis without resorting to modelling the nonlinear forcing.
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Figure 6. Real component of the streamwise velocity forcing (blue-green-yellow) and response modes
(blue-red) for the cavity flow at Ma∞ = 0.6 associated with σ1 at each frequency in figure 5(a) for the classical
resolvent analysis, and corresponding to σ1 in figure 5(b) for the harmonic resolvent analysis with Nb = 3 and
Nf = 11. The contours of the optimal forcing modes of the harmonic resolvent at frequencies 0, ωp, 2ωp, 3ωp
and 4ωp are plotted within the values ±0.26, ±2.44, ±0.76, ±0.24 and ±0.07, respectively.

The streamwise velocity component of the harmonic resolvent forcing and response
modes corresponding to the optimal singular value is shown in figure 6. We found
that the qualitative structure of the forcing and response modes are almost identical
regardless of the number of perturbation frequencies (Nf ). Hence, we only show the modes
corresponding to Nf = 11 for brevity. Since the modes are stacked in one singular vector
and orthonormal in their respective inner products, the relative amplitude of the modes
at each frequency within one vector varies with the number of perturbation frequencies
Nf . As the modes are temporally coupled, the mode amplitudes at different frequencies
reveal their relative weights of being preferentially excited by an input. At frequency zero,
the organization of the response mode structures is identical to the zero frequency DFT
mode inside the cavity shown in figure 4(b) with a tail extending over the downstream
wall. Unlike the classical resolvent mode, the optimal harmonic resolvent forcing and
response mode at frequency zero do not overlap inside the cavity implying a difference
in the instability mechanism revealed by both analyses. At frequency ωp, we observe
similar KH mode shapes in the shear-layer region with some qualitative difference near
the trailing edge and inside the cavity, compared with the classical resolvent mode, in
which the instability also propagates into the cavity following the recirculation contour
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inside the rear cavity region. Due to the convective nature of the instability at frequency
ωp, the optimal forcing is mostly located upstream of the response mode structures.

The most significant difference between the classical and harmonic resolvent response
modes emerges at the higher harmonics of ωp, as evident in figure 6. The response modes
at these higher frequencies resemble the compact KH wavepacket structures with smaller
spatial wavelengths along the cavity shear layer, and their concentration shifts toward
the trailing edge with increasing frequency. Meanwhile, the relative amplitude of each
mode decreases as frequency increases. Since these instability modes at high frequencies
(≥2ωp) are also convective, the forcing structures are mainly concentrated upstream of
the response. With an increase in frequency, the most responsive region to introduce
forcing shifts towards the shear-layer region after the cavity leading edge. Generation of
harmonics is a nonlinear process, and by incorporating the base flow at frequency ωp
into the set about which the linearization is done, we successfully recover physical modes
at those higher frequencies from the harmonic resolvent analysis. Again we stress that
the cross-frequency interaction between perturbations at different frequencies through the
base flow is the underlying mechanism for this outcome.

To understand the effect of the base flow frequency truncation on the cross-frequency
interaction, we perform the harmonic resolvent analysis by increasing the number of base
frequencies in the set Ω from Nb = 3 to Nb = 7, i.e. considering the base flow frequency
set Ω = {−3, −2, −1, 0, 1, 2, 3}ωp. We keep the number of perturbation frequencies to
Nf = 11 as a constant. The optimal singular value decreases slightly with the increase in
Nb from 3 to 5; however, it remains unchanged with a further increase of Nb to 7. The
sub-optimal singular values remain the same for all values of Nb. We found the effect of
increasing Nb on modal structures minimal except at high frequencies (>3ωp) that exhibit
more small-scale structures near the cavity trailing edge as discussed in Appendix D. To
examine the input–output amplifications from different frequency pairs, we look into the
cross-frequency interaction in the set Ω̃ through the block singular values of the harmonic
resolvent operator (see § 2.5). We reconstruct a low-rank approximation of the harmonic
resolvent operator using the singular values and the corresponding singular vectors from
k = 1 to k = 8. Then, by performing the SVD of individual blocks of the harmonic
resolvent operator, we compute the quantity Ej,k following (3.1). The result is shown in
figure 7(b), where we have used Nb = 5 and Nf = 11 to construct the harmonic resolvent
operator. The darker colour in figure 7(b) represents the significant coupling between
the pair of frequencies ( jωp, kωp). The diagonal blocks reveal strong self-interaction at
frequencies 0 and ωp. The off-diagonal blocks show the extent of the cross-frequency
interactions. The higher harmonics (>3ωp) mostly interact with the frequency ωp. From
the input–output perspective, the input at frequency ωp can generate output at frequencies
up to 5ωp, as revealed by the column corresponding to ωp.

The analysis that was performed until now reveals the effect of truncation of
both base flow and the perturbation frequencies on capturing the dominant dynamics
of perturbations. The truncation of perturbation frequencies (Nf ) affects the relative
amplitude of the modes to some extent but minimally affects the spatial structures of
the modes. The truncation of the frequencies in the base flow set about which linearization
is performed influences the modal structures at relatively high frequencies. Consequently,
the choice of truncation of base flow frequency depends on the analysis objective. If one
wishes to model the structures accurately at high frequencies, including more frequencies
in the base flow set will enhance the accuracy. Otherwise, if the objective is to get
insight into the dominant amplified structures in the flow, linearizing about a few energetic
frequencies should suffice.
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Figure 7. (a) The singular values of the harmonic resolvent operator constructed using Nb = 3, 5, 7 and Nf =
11 for the cavity flow at Ma∞ = 0.6. (b) Fractional variance Ej,k of block singular values of the harmonic
resolvent operator obtained using Nb = 5 and Nf = 11.

Next, we analyse the dynamics of perturbations that are not harmonic to the fundamental
base flow frequency. We construct the modified harmonic resolvent operator H(iγ ) for
values of γ in the range (0, ωp/2] to identify the amplification of perturbations over the
set of frequencies Ω̃γ = γ + {−5, . . . , −1, 0, 1, . . . , 5}ωp. The variation of the optimal
singular value as a function of γ is shown in figure 8(a). The optimal singular value peaks
for γ = 0.45ωp, indicating that significant amplification to perturbation for frequencies in
the set Ω̃0.45ωp can happen. To identify the dominant frequency in the set that causes
the amplification, we look into the cross-frequency amplification map quantified by
Ej,k following (3.1) in figure 8(b). We observe dominant self-interactions and strong
cross-frequency interaction by the input at frequency −0.55ωp. This frequency is likely
to be associated with Rossiter mode I, although it shows deviation from the theoretical
prediction of frequency using (4.1). We plot the modal structures at two representative
frequencies −1.55ωp and −0.55ωp in figure 9(a). At both frequencies, upstream-located
forcing generates a response along the cavity shear layer and downstream with an
overlapping region near the leading edge. It is instructive to examine the time-dependent
evolution of the perturbation from the set Ω̃0.45ωp by converting the modes into the time
domain according to (2.28b). The spatiotemporal modes at four instants within one base
flow period are shown in figure 9(b). The figures exhibit the temporal growth of the modal
structures in the shear layer, which convects downstream and hits the trailing edge. Then
perturbations travel upstream following the recirculation inside the cavity, and the cycle
repeats.

4.2. Cavity flow at M∞ = 0.8
We also apply the harmonic resolvent analysis to understand the cross-frequency
interaction in the cavity flow at Mach 0.8, which contains more than one resonance. We
collect post-transient data and perform DFT to obtain the base flow ˆ̄q(x, y) as before. The
frequency spectrum of the streamwise-momentum component of the base flow is shown in
figure 10(a). Two coexisting Rossiter mechanisms drive the base flow oscillation where the
frequency of Rossiter mode I is St1 = ω1L/2πu∞ = 0.345 and the frequency of Rossiter
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Figure 8. (a) Variation of the optimal singular value of the harmonic resolvent operator constructed using
Nb = 5 and Nf = 11 as a function of γ . (b) Fractional variance Ej,k of block singular values of the harmonic
resolvent operator for the set of frequencies corresponding to γ = 0.45ωp.
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Figure 9. (a) Real component of the streamwise velocity mode at frequencies −1.55ωp and −0.55ωp from the
set of perturbation frequencies Ω̃0.45ωp , and (b) temporal evolution of the streamwise velocity perturbations at
four instants within one base flow period.

mode II corresponds to St2 = ω2L/2πu∞ = 0.689, which agrees well with oscillatory
frequency based on the semi-empirical formula of Rossiter (Rossiter 1964). In addition,
we observe the presence of the harmonics of St1 and St2 in the spectrum. Unlike the
cavity flow at Mach 0.6, the spectrum of the base flow at Mach 0.8 is not monochromatic
and, thus, poses several ways to construct the set of the base flow frequency Ω . Here we
consider three sets of base flow frequency, ΩI = {−ω1, 0, ω1}, ΩII = {−ω2, 0, ω2} and
ΩIII = {−ω2, −ω1, 0, ω1, ω2}, to approximate the time-varying base flow and linearize
the dynamics about those frequency sets. We remark here that in this particular flow
the frequency of Rossiter mode II (ω2) is approximately two times the frequency of
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Figure 10. (a) Frequency spectrum of the streamwise momentum of cavity flow at Mach 0.8. Here, (- - -,
red) indicates the Rossiter mode frequency prediction using (4.1). (b–d) The leading 10 singular values of the
harmonic resolvent operator constructed using the sets of base flow frequencies ΩI = {−ω1, 0, ω1}, ΩII =
{−ω2, 0, ω2}, ΩIII = {−ω2, −ω1, 0, ω1, ω2}.

Rossiter mode I (ω1). Thus, we can combine them in the set ΩIII without modifying the
theoretical formulation. To perform the harmonic resolvent analysis, we choose the set
of perturbation frequencies to be Ω̃ = {−5, . . . , 1, 0, 1, . . . , 5}ωp, where ωp = ω1 for the
base flow frequency sets ΩI and ΩIII, and ωp = ω2 for the set ΩII. We follow the same
steps used for the cavity flow at Mach 0.6 to construct the linear operators L and Ĝk and to
perform the SVD of the harmonic resolvent operator.

The first 10 singular values of the harmonic resolvent operator obtained by linearizing
about the three base flow frequency sets are shown in figure 10(b–d). For set ΩIII, the
singular values are computed without removing the singularity and the first two modes are
associated with phase shift directions. The optimal singular values (σ1) in all three cases
are greater than the singular value σ10 by approximately an order of magnitude. To analyse
the cross-frequency interactions, we reconstruct the harmonic resolvent operator using
singular values (and associated singular vectors) from k = 1 to k = 8 in figure 10(b,c),
and from k = 3 to k = 10 in figure 10(d). The fractional variance of the block singular
values Ej,k of the harmonic resolvent operators calculated according to (3.1) is plotted
in figure 11. In figure 11(a) the map shows that the self-interactions at frequencies zero
and ω2 dominate the flow by amplification through the diagonal blocks whereas the
cross-frequency interactions are weak. Linearizing about the base flow frequency set ΩI
does not model the cross-frequency interactions effectively as Rossiter mode I is not
dominant in the nonlinear flow. When we linearize about the set ΩII to perform the
harmonic resolvent analysis, the frequency interaction map exhibits a progressive pattern
with an increase in off-diagonal blocks in figure 11(b). The map shows the amplification
of perturbations at harmonics of Rossiter mode II through the cascaded cross-frequency
interactions. The base flow frequency set ΩIII contains both Rossiter mechanisms present
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Figure 11. Fractional variance Ej,k of block singular values of the harmonic resolvent operator constructed
using the sets of base flow frequencies (a) ΩI = {−ω1, 0, ω1}, (b) ΩII = {−ω2, 0, ω2} and (c) ΩIII =
{−ω2, −ω1, 0, ω1, ω2}.

in the nonlinear flow, and the frequency interaction map is shown in figure 11(c). The
input–output pair of frequencies (ω1, ω1), (ω1, 3ω1) and (ω1, 5ω1) are strongly coupled
such that the interactions affect the perturbation amplification at odd harmonics of Rossiter
mode I. Whereas the interactions between the frequency pairs (ω1, ω2) and (ω1, 2ω2) are
negligible indicating that perturbation at the Rossiter mode I frequency does not interact
significantly with perturbation at the Rossiter mode II frequency. A similar conclusion
can be drawn by observing the frequency ω2 and 2ω2 rows of the map. The perturbations
at the harmonics of both Rossiter modes are amplified through the interactions among
corresponding Rossiter modes and the mean. Alternatively, based on the feature of the
column of frequency ω1, we can also find that the input perturbation at the Rossiter mode
I frequency ω1 will generate a significant response at frequencies ω1, 3ω1 and 5ω1 but no
response at the Rossiter mode II frequency ω2, and vice versa.

5. Conclusion

This paper presents the harmonic resolvent analysis framework for compressible flows.
We linearized the compressible NSE around a time-varying base flow and used Fourier
expansions to obtain the frequency domain input–output relation of the perturbations
in the compressible flow governed by the harmonic resolvent operator. Due to the
higher-order nonlinearity in the compressible NSE compared with the incompressible
form, the linearized equation contains nonlinear products among the base state variables.
As a result, the product between base variables in the time domain leads to the evaluation
of multiple convolutions in the frequency domain representation adding complexity to
the modelling framework of the compressible version compared with its incompressible
counterpart. We discussed the Fourier expansions of different terms of the linearized
equation and detailed the process of constructing the harmonic resolvent operator.

The SVD of the harmonic resolvent operator provides a way to measure the amplification
of perturbations in the flow considering frequency interactions. Both classical and
harmonic resolvent analysis identify the instability mechanisms at the dominant frequency
observed in the nonlinear flow as the convective KH nature. However, the absence of
cross-frequency interaction modelling in the classical resolvent formulation leads to the
identification of spurious modal structures at the harmonics of the dominant frequency.
The limitation was overcome in the harmonic resolvent analysis and the physically
meaningful structures at those frequencies are recovered. The SVD of the individual
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block matrices within the harmonic resolvent operator provides additional information
about the extent of the cross-frequency interactions among the perturbation through the
base flow. Using the singular values of each block, we generated the cross-frequency
interaction map that revealed the cascaded path of frequency interaction and energy
transfer from the fundamental toward the higher harmonics for cavity flow with one
resonance mechanism. Utilizing the same method allowed us to investigate the nature
of cross-frequency interaction in cavity flow with two different resonant mechanisms.
Although we used both resonant frequencies simultaneously to model the base flow, the
harmonic resolvent analysis correctly identified the frequencies as two distinct physical
mechanisms and not the harmonics of one another.
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Appendix A. Singularity of the operator T

If the base state q̄(t) is an exact solution of (2.1) then operator T becomes singular. Since
q̄(t + τ) is also an exact solution for any particular time shift τ , the time derivative of the
base state dq̄/dt satisfies the unforced dynamics in (2.3). We can verify the statement by
expanding q̄(t + τ) using the Taylor series approximation for a small shift τ as

q̄(t + τ) = q̄(t) + dq̄(t)
dt

τ, (A1)

and substituting the expression in (2.1) gives

dq̄(t)
dt

+ τ
d
dt

(
dq̄(t)

dt

)
= N (q̄(t)) + ∂N

∂q

∣∣∣∣
q̄(t)

dq̄(t)
dt

τ, (A2)

which after rearranging gives

d
dt

(
dq̄(t)

dt

)
= A(t)

dq̄(t)
dt

. (A3)

By expanding dq̄(t)/dt and A(t) in their respective Fourier series and substituting in
(A3) we get

T
d̂q̄(t)

dt
= 0, (A4)

where d̂q̄/dt is the vector containing the Fourier coefficients of dq̄(t)/dt. Thus, the
vector d̂q̄/dt is in the right null space of the operator T , which makes T singular and
non-invertible.
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Appendix B. Frequency domain representation of the linearized flux terms

We have split the terms of the linearized Euler flux vector into two parts, Ge
j (q̄(t), q′(t))

and Lq′(t), in (2.27) to make the transformation from the time domain to the frequency
domain more tractable. The terms in Ge

j (q̄(t), q′(t)) read

Ge
j =

⎡⎢⎢⎢⎢⎢⎣
0

m̄i

ρ̄
m′

j + m̄j

ρ̄
m′

i − m̄im̄j

ρ̄2 ρ′ + α

2
m̄km̄k

ρ̄2 ρ′δij − α
m̄k

ρ̄
m′

kδij

γs
ρ̄E
ρ̄

m′
j − α

2
m̄km̄k

ρ̄2 m′
j − γs

ρ̄E m̄j

ρ̄2 ρ′ + α
m̄km̄km̄j

ρ̄3 ρ′ + γs
m̄j

ρ̄
(ρE)′ − α

m̄jm̄k

ρ̄2 m′
k

⎤⎥⎥⎥⎥⎥⎦ ,

(B1)

where α = γs − 1. The operator L is given by

L = ∂

∂xj

⎡⎣0 δij 0
0 0 (γs − 1)δij
0 0 0

⎤⎦ . (B2)

Now let us show the Fourier expansion of the linearized Euler flux terms in Ge
j (q̄(t), q′(t)).

We detail the conversion of the terms in the second and third row of (B1) from the time
domain to the frequency domain. Substituting the Fourier series expansion of (2.28a,b) in
(B1) we get

∑
l∈Ω̃

( p−l)∈Ω

(̂
m̄i

ρ̄

)
p−l

m′
j,l +

(̂
m̄j

ρ̄

)
p−l

m′
i,l −

̂( m̄im̄j

ρ̄2

)
p−l

ρ′
l + α

2

̂( m̄km̄k

ρ̄2

)
p−l

ρ′
lδij

− α

(̂
m̄k

ρ̄

)
p−l

m′
k,lδij, (B3)

∑
l∈Ω̃

( p−l)∈Ω

γs

(̂
ρE
ρ̄

)
p−l

m′
j,l − α

2

̂( m̄km̄k

ρ̄2

)
p−l

m′
j,l − γs

̂(
ρE m̄j

ρ̄2

)
p−l

ρ′
l + α

̂(
m̄km̄km̄j

ρ̄3

)
p−l

ρ′
l

+ γs

(̂
m̄j

ρ̄

)
p−l

(ρE)′l − α
̂( m̄jm̄k

ρ̄2

)
p−l

m′
k,l, (B4)

with the frequency of the base flow terms being calculated as

(̂
m̄i

ρ̄

)
p−l

=
∑
a∈Ω

ˆ̄rp−l−a ˆ̄mi,a, (B5)

̂( m̄im̄j

ρ̄2

)
p−l

=
∑
a∈Ω

∑
o∈Ω

∑
q∈Ω

ˆ̄rp−l−a−o−q ˆ̄ra ˆ̄mi,o ˆ̄mj,q, (B6)
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ρE
ρ̄

)
p−l

=
∑
a∈Ω

ˆ̄rp−l−a ρ̂Ea, (B7)

̂(
ρ̄Em̄j

ρ̄2

)
p−l

=
∑
a∈Ω

∑
o∈Ω

∑
q∈Ω

ˆ̄rp−l−a−o−q ˆ̄ra ρ̂Eo ˆ̄mj,q, (B8)

̂(
m̄km̄km̄j

ρ̄3

)
p−l

=
∑
a∈Ω

∑
b∈Ω

∑
o∈Ω

∑
s∈Ω

∑
q∈Ω

ˆ̄rp−l−a−b−o−s−q ˆ̄ra ˆ̄rb ˆ̄mk,o ˆ̄mk,s ˆ̄mj,q, (B9)

where we define ˆ̄r as the Fourier coefficients of the term 1/ρ̄(t). Following the same
procedure we perform Fourier expansion of the linearized viscous flux terms in (2.30).

Appendix C. Details of the primitive to conservative variable transformation matrix

The primitive perturbation variables q′
p(t) = [ρ′, u′

i, T ′] can be transformed into the
conservative perturbation variables q′(t) = [ρ′, m′

i, (ρE)′] as

⎡⎣ ρ′

m′
i

(ρE)′

⎤⎦ =

⎡⎢⎢⎢⎢⎣
1 0 0
m̄i

ρ̄
ρ̄ 0

ρ̄E
ρ̄

m̄i
ρ̄

γs(γs − 1)Ma2

⎤⎥⎥⎥⎥⎦
︸ ︷︷ ︸

S

⎡⎣ρ′

u′
i

T ′

⎤⎦ . (C1)

In the frequency domain, the transformation can be represented as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

q̂′−1

q̂′
0

q̂′
1
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

. . .
...

...
... . .

.

. . . Ŝ0 Ŝ−1 Ŝ−2 . . .

. . . S1 S0 S−1 . . .

. . . S2 S1 S0 . . .

. .
. ...

...
...

. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

M

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

...

q̂′
p,−1

q̂′
p,0

q̂′
p,1
...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (C2)

where Ŝk denotes the Fourier coefficients of the matrix S. The number of non-zero
off-diagonal blocks in M corresponds to the number of base flow frequencies in the set Ω .

Appendix D. Effect of base flow frequency truncation on modal structures

The increase of base flow frequencies in the modelling affects the modal structures at
frequencies above 3ωp. In particular, a closer inspection of the modal structures near
the trailing edge of the cavity in figure 12 for Nb = 7 shows an increase in small-scale
structures at frequency 5ωp compared with the corresponding modes obtained using
Nb = 3. The increase in the base frequencies in the set Ω extends the cross-frequency
coupling between the perturbations through Ĝk according to (2.31). Consequently, it adds
more paths to the cascaded energy transfer process from the low frequency towards the
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Figure 12. Real component of the optimal streamwise velocity harmonic resolvent response mode at the
frequency 5ωp obtained using Nb = 3, 7 and Nf = 11 for the cavity flow at Ma∞ = 0.6.

higher frequency modes and, hence, a more accurate representation of the modal structures
at those frequencies (i.e. 4ωp and 5ωp) can be obtained.
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