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Abstract

For a Weyl group W of rank r, the W-Catalan number is the number of antichains of the poset of positive roots, and

the W-Narayana numbers refine the W-Catalan number by keeping track of the cardinalities of these antichains.

The W-Narayana numbers are symmetric – that is, the number of antichains of cardinality k is the same as the

number of cardinality A − : . However, this symmetry is far from obvious. Panyushev posed the problem of defining

an involution on root poset antichains that exhibits the symmetry of the W-Narayana numbers.

Rowmotion and rowvacuation are two related operators, defined as compositions of toggles, that give a dihedral

action on the set of antichains of any ranked poset. Rowmotion acting on root posets has been the subject of a

significant amount of research in the recent past. We prove that for the root posets of classical types, rowvacuation

is Panyushev’s desired involution.

1. Introduction and statements of results

Let Φ be a crystallographic root system in an r-dimensional Euclidean space V, and , ⊆ GL(+) be its

corresponding Weyl group. Coxeter–Catalan combinatorics is the study of the W-Catalan number

Cat(,) :=

A∏
8=1

38 + ℎ

38
, (1.1)

where 31 ≤ · · · ≤ 3A are the degrees of W and ℎ = 3A is its Coxeter number. Although not obvious, it

is true that Cat(,) is an integer. It counts several collections of objects associated to Φ, including the

following:

◦ W-nonnesting partitions (i.e., antichains of the poset Φ+ of positive roots)

◦ W-noncrossing partitions (i.e., elements of W between the identity e and a fixed Coxeter element c
in absolute order)

We let NN(,) and NC(,) denote the sets of W-nonnesting and W-noncrossing partitions, respectively

(see, e.g., [1, Chapter 1] for a general introduction to Coxeter–Catalan combinatorics).

Although there has been a tremendous amount of work done in Coxeter–Catalan combinatorics in

the past 20-plus years, the connection between the nonnesting and noncrossing worlds remains deeply

mysterious. As an example of the divide between nonnesting and noncrossing, we note that there is a

uniform proof of the product formula (1.1) for nonnesting objects [12, 15], but the only known proof of
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this formula for noncrossing objects is case by case [4]. On the other hand, the noncrossing definition

of the W-Catalan number extends directly to all finite Coxeter groups, whereas the naive generalisation

of the nonnesting definition fails to work properly in noncrystallographic types.

The present work focuses on another difference between the nonnesting and noncrossing worlds, this

one concerning a refinement of the W-Catalan number. Namely, for 0 ≤ : ≤ A , the kth W-Narayana
number Nar(,, :) can be defined as either:

◦ the number of nonnesting partitions in NN(,) of cardinality k or

◦ the number of noncrossing partitions in NC(,) of rank k.

Evidently, the Narayana numbers refine the Catalan numbers in the sense that Cat(,) =
∑A
:=0 Nar(,, :).

The property of the Narayana numbers that will most concern us here is their symmetry:

Nar(,, :) = Nar(,, A − :), (1.2)

for all 0 ≤ : ≤ A . This symmetry is easily seen using the noncrossing definition of the Narayana

numbers: it follows from the fact that the lattice of noncrossing partitions is self-dual. (A particular

duality of NC(,), the Kreweras complement, will feature prominently in what follows.) However, this

symmetry is far from obvious using the nonnesting definition of the Narayana numbers.

In this paper, we take up the following problem:

Problem 1.1. Explain the symmetry (1.2) of the nonnesting W-Narayana numbers.

This problem was mentioned, for instance, in [14, Remark 5.10]. Our approach to it will build upon

a program of Panyushev [21, 22]. In particular, we will study the following conjecture of Panyushev:

Conjecture 1.2 (Panyushev [21, Conjecture 6.1]). There is a ‘natural’ involution P : NN(,) →

NN(,) for which #� + #P(�) = A for all � ∈ NN(,).

Remark 1.3. Let g be the complex semisimple Lie algebra corresponding to the root system Φ, and

let b be the Borel subalgebra of g corresponding to the choice of positive roots Φ+. The nonnesting

partitions NN(,) are in bijection with the ad-nilpotent ideals in b; under this bijection, the cardinality

of the antichain becomes the minimal number of generators of the ideal. Hence, Panyushev described

his conjectural P as a duality for ad-nilpotent ideals of b, which sends an ideal with k generators to one

with A − : generators.

It is immediate from equation (1.2) that there is some involution satisfying the condition in Conjecture

1.2, so the word ‘natural’ is doing all the work in this conjecture. Actually, Panyushev listed some specific

desiderata for P that we will review later (see Conjecture 2.11). But, for instance, one thing we could

want is that P(�) be easily computable from A. Another thing we could want is that the definition of P

be purely ‘poset-theoretic’ (using only the poset structure of Φ+), since the definition of the Narayana

numbers in terms of NN(,) is poset-theoretic in this sense.

Panyushev was unable to define P in general, but in [21] he was able to come up with a definition in

type A. In fact, Panyushev’s involution P in type A is equivalent to the Lalanne–Kreweras involution
on Dyck paths [18]. A simple ‘folding’ argument allows one to obtain the appropriate involution P in

types B/C from the one in type A, so Panyushev was also able to treat types B/C.

What’s more, in a follow-up paper Panyushev [22] conjectured a way to do something ‘close’ to

definingP for all root systems. He considered the rowmotion operator Row: NN(,) → NN(,) acting

on nonnesting partitions, and conjectured that it has very good behavior. Specifically, he conjectured

that:

◦ Rowℎ is the involutive poset automorphism −F0 : Φ+ → Φ+, where F0 ∈ , is the longest element

(hence, Row2ℎ is the identity), and

◦ the average cardinality of the antichains in any Row-orbit is A
2
.

This rowmotion conjecture is ‘close’ to Conjecture 1.2 because it says that NN(,) can be partitioned

into blocks of sizes dividing 2ℎ such that the average cardinality in each block is A
2
, whereas Conjecture
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1.2 says that NN(,) can be partitioned into blocks of sizes dividing 2 such that the average cardinality in

each block is A
2
. Panyushev’s rowmotion conjecture was proved by Armstrong, Stump and Thomas [2].

Although Panyushev was not the first to consider rowmotion (which is defined more generally as

acting on the antichains of any poset), his investigation of rowmotion on root posets rekindled interest

in this operator. Indeed, the past 10 or so years have seen the emergence of the subfield of dynamical
algebraic combinatorics [27, 31], in which rowmotion features prominently. Furthermore, Panyushev’s

observation of ‘constant average cardinality along orbits’ was one of the first instances of homomesy
[23], a phenomenon that again is at the heart of dynamical algebraic combinatorics.

In the present paper, we demonstrate how ideas from dynamical algebraic combinatorics can be used

to address (more of) Conjecture 1.2.

As shown by Cameron and Fon-der-Flaass [10] (see also [19]), rowmotion acting on the antichains

of any poset can be written as a composition of toggles, which are certain simple involutions that add

elements to or remove elements from subsets. For any ranked poset, there is another canonical composi-

tion of toggles that gives a related involutive operator called rowvacuation. The names ‘rowmotion’ and

‘rowvacuation’ come from Schützenberger’s promotion and evacuation operators on linear extensions.

Rowmotion and rowvacuation share many properties with promotion and evacuation: for instance, they

generate a dihedral group action.

Rowvacuation is easy to compute (because it is a composition of toggles), and its definition is

inherently poset-theoretic. Our main result is the following:

Theorem 1.4. If Φ is one of the classical types A, B, C or D, then the rowvacuation operator
Rvac: NN(,) → NN(,) is Panyushev’s conjectured involution P from Conjecture 1.2.

For Φ = �2, it is easy to see there is a unique choice of P which in fact agrees with rowvacuation.

Unfortunately, for the other exceptional types �6, �7, �8 and �4, there exist � ∈ NN(,) with #� +

# Rvac(�) ≠ A (see Remark 2.12), so we are unable to resolve Conjecture 1.2 in these exceptional types.

It was recently shown by the second author and Joseph [18] that the Lalanne–Kreweras involution is

rowvacuation for the root posets of type A. Together with Panyushev’s prior work from [21], this proves

Theorem 1.4 for types A, B and C. So the only case we have to address here is type D.1 However, along

the way we prove results concerning rowvacuation of NN(,) for arbitrary Φ.

More precisely, we extend some results of Armstrong, Stump and Thomas [2]. In order to resolve

Panyushev’s rowmotion conjecture, as well as a related conjecture of Bessis and Reiner [5], they

constructed a bijection Θ, : NN(,) → NC(,) between the nonnesting and noncrossing partitions

that is uniquely specified by a handful of properties (see Theorem 3.1). The most important of these

properties is that

Θ, · Row = Krew ·Θ, ,

where Krew: NC(,) → NC(,) denotes the Kreweras complement defined by Krew(F) := 2F−1. We

show the following:

Theorem 1.5. For the bijection Θ, : NN(,) → NC(,) from [2], we have

Θ, ·
(
Row−1 ·Rvac

)
= Flip ·Θ, ,

where Flip : NC(,) → NC(,) is the involutive poset automorphism defined by Flip(F) := 6F−16−1

(for the appropriate involution 6 ∈ , depending on c).

Note that we prove Theorem 1.5 just by appealing to the general properties satisfied by Θ, , not via

any case-by-case reasoning. Nevertheless, a lot of intricate combinatorial reasoning particular to the

classical types does go into our proof of Theorem 1.4. For example, in these classical types, there are

1But note that type D is usually the hardest: for instance, the original definition of noncrossing partitions in type D was
‘incorrect’ [3, 4, 25].
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models of noncrossing partitions where Krew corresponds to rotation; we show that Flip corresponds

to reflection across a diameter in these models (hence the name).

Remark 1.6. Before we end this introduction, let us briefly discuss an alternate approach to Problem

1.1 that we will not pursue. This alternate approach concerns an even further refinement of the Catalan

numbers. Let Π(Φ) denote the lattice of flats of the Coxeter arrangement of Φ. There are natural

embeddings

]NN : NN(,) ↩→ Π(Φ)

]NC : NC(,) ↩→ Π(Φ).

Define the type2 of � ∈ NN(,) to be the W-orbit of ]NN (�), and define the type of F ∈ NC(,) sim-

ilarly. It is known [3, Theorem 6.3] that for any - ∈ Π(Φ)/, , the number of nonnesting partitions of

type X is the same as the number of noncrossing partitions of type X. These numbers are called the

W-Kreweras numbers.3 Moreover, the codimension of ]NN(�) is the same as the cardinality of

� ∈ NN(,), and the codimension of ]NC (F) is the same as the rank of F ∈ NC(,). Since, as

already mentioned, the symmetry of the Narayana numbers is easy to see in the noncrossing world,

a type-preserving bijection between nonnesting and noncrossing partitions would therefore constitute

a solution to Problem 1.1. There are a handful of type-preserving bijections between the nonnesting

and noncrossing partitions in the literature [13, 20]; but these constructions are all ad hoc and thus

unsatisfactory in some sense. No uniform type-preserving bijection is known.

The rest of the paper is structured as follows. In Section 2, we review necessary background concerning

root posets, rowmotion and rowvacuation, and Panyushev’s Conjecture 1.2. In Section 3, we review

noncrossing partitions, the Kreweras complement and the Armstrong–Stump–Thomas bijection. We

also introduce the Flip operator and prove Theorem 1.5 there. Armstrong, Stump and Thomas gave

explicit combinatorial descriptions of their bijections in classical types. We review their description in

type A in Section 4 and parts of their description in type D in Section 5. These sections also establish

some lemmas, concerning how rowvacuation interacts with these combinatorial constructions, that will

be needed in the proof of Theorem 1.4. In Section 6, we tie up the remaining loose ends and prove that

rowvacuation serves as Panyushev’s P in type D, thus completing the proof of Theorem 1.4.

2. Posets

2.1. Root posets

We assume the reader is familiar with the basics concerning posets as laid out, for instance, in [28,

Chapter 3]. All posets we consider in this paper are finite, and we drop this adjective from now on. We

say a poset P is ranked if there exists a rank function rk : % → N for which

◦ rk(?) = 0 for all minimal elements of P and

◦ rk(H) = rk(G) + 1 if G, H ∈ % are such that G ⋖ H.

A rank function is unique if it exists. The rank rk(%) of a ranked poset P is the maximum value of its

rank function. From now on, all posets we consider will be ranked. For 8 ∈ N, we use the notation

%8 := {? ∈ % : rk(?) = 8}.

Note that %8 is empty unless 0 ≤ 8 ≤ rk(%). The nonempty %8 are called the ranks of P. We use A(%)

to denote the set of antichains of P. Evidently, %8 ∈ A(%) for all 8 ∈ N.

2This notion of type is unrelated to the Cartan–Killing type of the root system Φ. This clash in terminology is unfortunate but
standard.

3We apologise for the number of different (and often unrelated) mathematical concepts in our paper named after Kreweras –
although to be fair, it is mostly he who is to blame.
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As in Section 1, let Φ be a crystallographic root system in an r-dimensional vector space V with Weyl

group , ⊆ GL(+). For basic background on root systems, see, for example, [6]. We assume we have

chosen a system of simple roots {U1, . . . , UA } and hence a corresponding set Φ+ of positive roots (those

that are nonnegative linear combinations of the simple roots). The root poset of Φ is the partial order on

Φ+ whereby U ≤ V if V − U is a nonnegative sum of simple roots. By abuse of notation, we use Φ+ to

denote the root poset; if Φ has type X, we also use Φ+(-) to denote this poset. The root poset is ranked,

with the rank function being rk(U) = ht(U) − 1, where the height of a positive root U =
∑
8 08U8 ∈ Φ+

is ht(U) :=
∑
8 08 . The minimal elements of Φ+ are the simple roots. If Φ is irreducible, then it has

a unique maximal element called the highest root. Again, if Φ is irreducible, then the rank of Φ+ is

rk(Φ+) = ℎ − 2, where we recall that h denotes the Coxeter number of W. (In fact, all the degrees of

W can similarly be read off from the sizes of ranks of Φ+.) The poset Φ+ has a canonical involutive

automorphism U ↦→ −F0 (U), where F0 ∈ , is the longest element.
As discussed in Section 1, we call the antichains of Φ+ the W-nonnesting partitions. This name is due

to Postnikov, who first suggested studying them as Catalan objects (see [25, Remark 2]). In Section 1

we denoted this set of antichains by NN(,), but from now on we will use the notation A(Φ+).

We now describe specific realisations of the root posets of classical-type root systems. In anticipation

of our detailed analysis of these posets, we will also highlight connections between them and define

some subsets L,S ⊆ Φ+ of particular interest. We use the standard notation [8, 9] := {8, 8 + 1, . . . , 9}

for intervals, and we also use [=] := [1, =] and −[=] := [−=,−1]. For 1 ≤ 8 ≤ =, let 48 denote the ith
standard basis vector in R=.

The elements of the root poset Φ+(�=−1) are 48−4 9 for 1 ≤ 8 < 9 ≤ =. The simple roots U1, . . . , U=−1

are U8 = 48 − 48+1. We identify Φ+(�=−1) with the set of intervals {[8, 9] ⊆ [=] : 1 ≤ 8 < 9 ≤ =} ordered

by containment, where the root 48 − 4 9 corresponds to the interval [8, 9]. Figure 1 presents the Hasse

diagram of Φ+(�9). The poset Φ+(�=−1) has an involutive automorphism [ : Φ+(�=−1) → Φ+(�=−1)

given by [([8, 9]) = [= + 1 − 9 , = + 1 − 8], which, simply put, is reflection of the Hasse diagram across

the central vertical axis. In fact, [ = −F0. We denote the set of elements of Φ+(�=−1) that are fixed by

[ by L�=−1
:= {[8, = + 1 − 8] : 1 ≤ 8 ≤ ⌊=/2⌋}.

The root posets of types B and C are isomorphic, so we will focus our attention on type C. The

elements of Φ+(�=) are 48 ± 4 9 for 1 ≤ 8 < 9 ≤ =, together with 248 for 1 ≤ 8 ≤ =. The simple roots

U1, . . . , U= are

U8 =

{
48 − 48+1 if 1 ≤ 8 ≤ = − 1,

24= if 8 = =.

The poset Φ+(�=) can be realised as the quotient of Φ+(�2=−1) by the action of [. In other words, the

Hasse diagram of Φ+(�=) is obtained by ‘folding’ Φ+(�2=−1) along its central vertical axis. Figure 2

Figure 1. The root poset Φ+(�9). The minimal elements are the simple roots, which can be identified
with the intervals [1, 2], [2, 3], . . . , [9, 10] (ordered as they appear from left to right in the Hasse
diagram). The set L�9

consists of the five elements circled in blue. The set S�9
consists of the nine

elements circled in red.
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Figure 2. The root poset Φ+(�5). The set L�5
consists of the five elements circled in blue. The set S�5

consists of the five elements circled in red.

Figure 3. The root poset Φ+(�6). The set L�6
consists of the six elements circled in blue. The set S�6

consists of the 10 elements circled in red.

presents the Hasse diagram of Φ+(�5). There is a natural injection ] : P(Φ+(�=)) → P(Φ+(�2=−1))

obtained by ‘unfolding,’ where P(-) denotes the power set of X. Thus, the image of ] is the collection

of subsets of Φ+(�2=−1) that are symmetric about the central vertical axis. We denote by L�=
the set of

long roots in Φ+(�=), which correspond to the singleton [-orbits in Φ+(�2=−1) (i.e., the elements lying

on the ‘crease of the fold’). Equivalently, we have L�=
= ]−1

(
L�2=−1

)
.

The elements of the root poset Φ+(�=) are 48 ±4 9 for 1 ≤ 8 < 9 ≤ =. The simple roots U1, . . . , U= are

U8 =

{
48 − 48+1 if 1 ≤ 8 ≤ = − 1,

4=−1 + 4= if 8 = =.

See Figure 3 for a depiction ofΦ+(�6). There is an involutive automorphism X of the Dynkin diagram of

Φ(�=) that swaps the nodes =−1 and n. This induces an automorphism of the poset Φ+(�=) that swaps

every occurrence of U=−1 appearing in an expansion of a root with U= and vice versa; we also denote

this automorphism by X : Φ+(�=) → Φ+(�=). We have X(48 − 4=) = 48 + 4= and X(48 + 4=) = 48 − 4=
for each 1 ≤ 8 ≤ = − 1; all of the other positive roots are fixed by X. (Note that X = −F0 when n
is odd; but −F0, unlike X, is trivial when n is even.) In Figure 3, the roots of the form 48 + 46 are

coloured white. Furthermore, for each 1 ≤ 8 ≤ 5, we draw the root 48 − 46 immediately to the right of

48 + 46 in the figure. There is a natural bijection between the X-orbits in Φ+(�=) and the elements of

Φ+(�=−1), yielding the quotient map W : Φ+(�=) → Φ+(�=−1). Referring to Figure 3 again, we see

that W essentially ‘glues’ each white element to the black element drawn immediately to the right of it.

Let us define L�=
:= W−1

(
L�=−1

)
.

We define S�=
⊆ Φ+(�=) to be the set of elements U ∈ Φ+(�=) for which W−1 (U) consists of

two elements; all other U ∈ Φ+(�=) have #W−1 (U) = 1. (Under the isomorphism Φ+(�=) ≃ Φ+(�=),

S�=
consists of the short roots in Φ+(�=).) We also define S�2=−1

⊆ Φ+(�2=−1) to be ]
(
S�=

)
, and

S�=
⊆ Φ+(�=) to be W−1

(
S�=−1

)
. Equivalently, S�2=−1

consists of those [8, 9] ∈ Φ+(�2=−1) for which

either 8 = = or 9 = = + 1. These subsets S are also depicted in Figures 1 to 3.
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Remark 2.1. The processes of obtaining Φ+(�=) ( ≃ Φ+(�=)) as a quotient of Φ+(�=) and of obtaining

Φ+(�=) as a quotient of Φ+(�=) are special cases of a more general procedure from the theory of

root systems referred to as folding. Given a simply laced root system Φ and an automorphism f of the

Dynkin diagram of Φ (subject to a certain technical condition), folding produces a new root system Φf

whose roots correspond to f-orbits. Since we only need the cases of folding we have already described

explicitly, we will not give a precise account of folding here; see [29] for such an account. We also warn

that while the symbolsL and Swere chosen to evoke the words ‘long’ and ‘short,’ the simply laced types

A and D of course do not have roots of different lengths, so this notation is just meant to be suggestive.

2.2. Rowmotion and rowvacuation

Now we review the rowmotion and rowvacuation operators acting on the antichains of a ranked poset P.4

Rowmotion, Row: A(%) → A(%), is given by

Row(�) := min ({G ∈ % : G � H for all H ∈ �})

for all � ∈ A(%), where min(-) means the set of minimal elements of a subset - ⊆ %. Rowmotion is

a bijection. Before Panyushev [21], rowmotion was studied by Brouwer and Schrijver [9] and Cameron

and Fon-der-Flaass [10], among others.

Example 2.2. The two orbits of rowmotion on A(Φ+(�2)) are as follows:

The elements of each antichain are depicted with red squares. Observe that Row3 = [, and the average

of #� along any Row-orbit is 1.

As discussed in Section 1, Armstrong, Stump and Thomas [2] proved the following conjecture of

Panyushev concerning rowmotion of nonnesting partitions:

Theorem 2.3 (Armstrong–Stump–Thomas [2, Theorem 1.2]). For rowmotion of nonnesting partitions
Row: A(Φ+) → A(Φ+), we have the following:

◦ Row2ℎ is the identity (and Rowℎ = −F0 if Φ is irreducible) and
◦ 1

#$

∑
�∈$ #� = A

2
for any Row-orbit $ ⊆ A(Φ+).

As shown by Cameron and Fon-der-Flaass [10], and further emphasised by Striker and Williams

[32], there is an alternate way to describe rowmotion as a composition of certain local involutions

called toggles. However, in [10, 32], the order ideal variant of rowmotion and toggles are considered.

We prefer to stick to antichains, and hence will focus on a description due to Joseph [19] of rowmotion

as a composition of antichain toggles. For ? ∈ %, define the toggle at p, g? : A(%) → A(%), to be the

involution

g? (�) :=



� \ {?} if ? ∈ �,

� ∪ {?} if ? ∉ � and � ∪ {?} ∈ A(%),

� otherwise.

Let us emphasise that these antichain toggles are not the same as order ideal toggles. Also, if ?, ?′ ∈ %

are incomparable, then the toggles g? and g?′ commute.

4In [17, 18], rowvacuation was defined for graded posets. The hypothesis that P is graded is slightly stronger than the hypothesis
that it is ranked: it requires additionally that rk(?) = rk(%) for all maximal elements p of P. However, none of the proofs of the
basic properties of rowvacuation require this stronger assumption.
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Proposition 2.4. (Joseph [19, Proposition 2.24]). Row = g?=g?=−1
· · · g?1

for any linear extension
?1, ?2, . . . , ?= of P.

Next we define rowvacuation, which, unlike rowmotion, requires our poset to be ranked. For

8 = 0, 1, . . . , rk(%), we define the rank toggle 38 : A(%) → A(%) to be 38 :=
∏
?∈%8 g? . All the toggles

g? for ? ∈ %8 commute, so this product makes sense. Evidently,

Row = 3rk(%)3rk(%)−1 · · · 30.

Rowvacuation, Rvac : A(%) → A(%), is a different product of these rank toggles:

Rvac :=
(
3rk(%)

) (
3rk(%)3rk(%)−1

)
· · ·

(
3rk(%)3rk(%)−1 · · · 31

) (
3rk(%)3rk(%)−1 · · · 30

)
.

We write Row% and Rvac% when we wish to emphasise the underlying poset P; this will be useful when

we consider multiple posets at once.

Example 2.5. We show how to compute Rvac(�) for one particular antichain � ∈ A(Φ+(�4)):

τ4τ3τ2τ1τ0 τ4τ3τ2τ1

τ4τ3τ2 τ4τ3 τ4

.

Observe that #� + # Rvac(�) = 2 + 2 = 4.

Rowvacuation was first formally defined, briefly, in [17, §5.1] and was further studied in [18]. As

mentioned in Section 1, rowmotion and rowvacuation are ‘partner’ operators in exactly the same way that

Schützenberger’s promotion and evacuation operators are. For instance, together they always generate a

dihedral group action:

Proposition 2.6 ([17, Proposition 5.1], [18, Proposition 2.18]). For any P:

◦ Rvac is an involution and
◦ Rvac ·Row = Row−1 ·Rvac.

In general, it seems hard to ‘describe’ the rowvacuation of an antichain. But in [18], the second author

and Joseph showed that rowvacuation acting on a root poset of type A can be computed as follows:

Theorem 2.7 (Hopkins–Joseph [18, Theorem 3.5]). Set � ∈ A(Φ+(�=−1)). Note that A is of the form
� = {[81, 91], . . . , [8: , 9: ]} with 81 < 82 < · · · < 8: and 91 < 92 < · · · < 9: . Then

Rvac(�) =
{[
8′1, 9

′
1

]
, . . . ,

[
8′=−1−: , 9

′
=−1−:

]}
,

where {
8′1 < 8′2 < · · · < 8′=−1−:

}
:= {1, 2, . . . , = − 1} \ { 91 − 1, 92 − 1, . . . , 9: − 1},

{
9 ′1 < 9 ′2 < · · · < 9 ′=−1−:

}
:= {2, 3, . . . , =} \ {81 + 1, 82 + 1, . . . , 8: + 1}.
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The formula in Theorem 2.7 immediately gives #�+# Rvac(�) = =−1. As explained in [18, §1], this

formula is equivalent to the Lalanne–Kreweras involution on Dyck paths via a simple bijection between

the antichains in A(Φ+(�=−1)) and the Dyck paths of length 2=. Rowvacuation clearly commutes with

any poset automorphism. Therefore, by embedding A(Φ+(�=)) into A(Φ+(�2=−1)) via ], Theorem 2.7

also yields a simple description of rowvacuation acting on A(Φ+(�=)).

Example 2.8. If � = {[1, 3]} ∈ A(Φ+(�3)), then Rvac(�) = {[1, 3], [3, 4]}:

The reader may check that this agrees with Theorem 2.7.

Before we move on to discuss Panyushev’s conjectured duality for root poset antichains, let us prove

a few more general properties of rowvacuation that will show that it is a good candidate for this duality.

Proposition 2.9. We have Rvac(%8) = %rk(%)+1−8 for any 8 = 0, 1, . . . , rk(%) + 1.

Proof. Define 3: :=
(
3rk(%)3rk(%)−1 · · · 3:

)
for : = 0, . . . , rk(%), so that

Rvac = 3rk(%)3rk(%)−1 · · · 3130.

It is easy to see that for 8 = 0, . . . , rk(%) + 1,

3: (%8) =



%: if 8 = rk(%) + 1,

%8+1 if : ≤ 8 ≤ rk(%),

%8 otherwise.

Therefore,

Rvac(%8) = 3rk(%)3rk(%)−1 · · · 3130(%8)

= 3rk(%)3rk(%)−1 · · · 3rk(%)+1−8

(
%rk(%)+1

)
= 3rk(%)3rk(%)−1 · · · 3rk(%)+2−8

(
%rk(%)+1−8

)
= %rk(%)+1−8 ,

as claimed. �

Proposition 2.10. Let ? ∈ %0 be a minimal element. Set %′ := {@ ∈ % : @ � ?}. Then for any � ∈ A(%),
we have the following:

◦ if � ⊆ %′, then Rvac(�) = {?} ∪ Rvac%′ (�);
◦ if ? ∈ �, then Rvac(�) = Rvac%′ (� \ {?}).

Proof. Let us prove the first bulleted item. If � ⊆ %′, then ? ∉ �. Hence, when we carry out the rank

toggles (
3rk(%)

) (
3rk(%)3rk(%)−1

)
· · ·

(
3rk(%)3rk(%)−1 · · · 31

) (
3rk(%)3rk(%)−1 · · · 30

)
,

the application of 30 will add p to A. From then on, no @ ≥ ? can be added to A. Therefore, the effect of

carrying out this sequence of rank toggles will be the same as if we carried them out just on %′, except

that we also have to add p. This is exactly what the equality Rvac(�) = {?} ∪ Rvac%′ (�) asserts.

For the second item: if ? ∈ �, then A is of the form � = {?} ∪ �′ for some antichain �′ ⊆ %′. So this

item actually follows from the first item and the fact that Rvac is an involution (see Proposition 2.6). �
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2.3. Panyushev’s nonnesting-partition duality conjecture

We now give a more precise version of Conjecture 1.2:

Conjecture 2.11 (Panyushev [21, Conjecture 6.1]). There is an involution on the set of nonnesting
partitions P : A(Φ+) → A(Φ+) which satisfies the following properties. First of all, if Φ = Φ′ ⊔Φ′′ is
reducible, then

P(�) = PΦ′ (� ∩ (Φ′)+) ∪PΦ′′ (� ∩ (Φ′′)+)

for all � ∈ A(Φ+). And if Φ is irreducible, then for all � ∈ A(Φ+) we have the following:

(i) #� + #P(�) = A .
(ii) The distribution of long and short roots in the multiset union � ∪P(�) is the same as in the set of

simple roots {U1, . . . , UA }.
(iii) If � = Φ+

8 , then P(�) = Φ+
ℎ−1−8

for all 8 = 0, . . . , ℎ − 1.
(iv) If U ∈ � for a simple root U, then P(�) = PΦ′ (� \ {U}), where Φ′ ⊆ Φ is the maximal parabolic

subroot system of Φ obtained by removing U from the system of simple roots.
(v) If � ⊆ (Φ′)+, where Φ′ ⊆ Φ is the maximal parabolic subroot system of Φ obtained by removing

some simple root U, then P(�) = {U} ∪PΦ′ (�).

Remember that we are trying to show that rowvacuation is Panyushev’s P: Theorem 1.4 asserts that

P = Rvac for the classical types. So let us check which of the properties in Conjecture 2.11 rowvacuation

satisfies. Rvac evidently respects the decomposition of a root system into its irreducible components,

which at the level of root posets corresponds to the decomposition into connected posets. Furthermore,

property (iii) for Rvac is Proposition 2.9, and properties (iv) and (v) are Proposition 2.10. So the only

properties that we do not yet know Rvac satisfies are (i) and (ii). Of course, (i) is the property we really

care about: it says that P combinatorially exhibits the symmetry of the W-Narayana numbers.

In [21, §4], Panyushev showed that defining P in type �=−1 using the formula in Theorem 2.7 gives

an involution satisfying the conditions of Conjecture 2.11. Hence, P = Rvac for type A. He also showed

[21, §5.1] that definingP for type C by embedding it into the type A root poset via ] and using the type A

definition of P also gives an involution satisfying Conjecture 2.11; so P = Rvac for type C as well. And

he showed the same for type B [21, §5.2]; thus P = Rvac again for type B. Hence, the only remaining

case of Theorem 1.4 is type D. As mentioned, only properties (i) and (ii) of Conjecture 2.11 for Rvac are

in doubt. In fact, since type D is simply laced, (ii) is vacuous because all roots in the root system have the

same length. Consequently, all we have left to show is that #� + # Rvac(�) = = for all � ∈ A(Φ+(�=)).

Showing that #� + # Rvac(�) = = for all � ∈ A(Φ+(�=)) will take up the remainder of the paper

and require quite a lot of work. In particular, we will have to use the bijection of Armstrong, Stump and

Thomas [2] between nonnesting and noncrossing partitions, which we discuss in the next section.

Remark 2.12. As mentioned in Section 1, the identity #� + # Rvac(�) = A fails to hold when Φ is one

of the exceptional types other than �2. Figure 4 gives an example of such a failure for �4; there are

similar examples for �6, �7 and �8. It would be interesting to try to modify rowvacuation somehow to

obtain Panyushev’s desired involution P in the exceptional types.

Remark 2.13. In [18, §2.8] it is explained that if there is a constant 2 ∈ N for which #�+# Rvac(�) = 2

for every antichain � ∈ A(%) of a ranked poset P, then necessarily 1
#$

∑
�∈$ #� = 2

2
for every Row-

orbit $ ⊆ A(%) as well. Hence, Theorem 1.4 implies the second item in Theorem 2.3 for the classical

types. However, since we use a lot of the machinery of [2] to prove Theorem 1.4, this does not really

qualify as a new proof of this homomesy result.

3. Noncrossing partitions and the AST bijection

In this section, we review the W-noncrossing partitions and then describe the Armstrong–Stump–

Thomas (AST) [2] bijection between nonnesting and noncrossing partitions, which interacts very nicely

with both rowmotion and rowvacuation.
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Figure 4. An antichain � ∈ A(Φ+(�4)) (left) and its rowvacuation (right). In this example, #� +

# Rvac(�) ≠ 4.

(1, 2, 3)

(1, 2) (1, 3) (2, 3)

e

Figure 5. The lattice of noncrossing partitions NC(S3).

3.1. Noncrossing partitions

We continue to fix a root system Φ in V with Weyl group , ⊆ GL(+). We use B8 ∈ GL(+) to denote

the simple reflection corresponding to a simple root U8 . Recall that W is generated by {B1, . . . , BA }. A

Coxeter element 2 ∈ , is a product of all the simple reflections B1, . . . , BA in some order. From now on,

fix a choice of a Coxeter element c. The order of c is, by definition, the Coxeter number h.

We use ) ⊆ , to denote the set of reflections – that is, all W-conjugates of B1, . . . , BA . The absolute
length of an element F ∈ , , denoted ℓ) (F), is the minimum length of an expression for w as a

product of elements of T. The absolute order on W is the partial order where D ≤ F if and only if

ℓ) (F) = ℓ) (D) +ℓ)
(
D−1F

)
. The identity element e is the minimal element of absolute order; the Coxeter

elements form a subset of the maximal elements. The poset of W-noncrossing partitions NC(,, 2) is

defined to be the interval [4, F] ⊆ , in absolute order between the identity element e and the Coxeter

element c. For fixed W and varying c, the posets NC(,, 2) are isomorphic, since all Coxeter elements

are conjugate; this is why we just used the notation NC(,) for this poset in Section 1. But from now

on, we use the notation NC(,, 2) to emphasise the choice of c.

The W-noncrossing partitions were first introduced by Brady and Watt [7] and independently by

Bessis [4], following work of Reiner [25] in the classical types (see also [3]). The poset NC(,, 2)

is ranked with rank function ℓ) , and its rank is rk(NC(,, 2)) = ℓ) (2) = A . It is known [8] that

NC(,, 2) is always a lattice. Furthermore, NC(,, 2) is self-dual. In fact, the Kreweras complement
Krew: NC(,, 2) → NC(,, 2) defined by Krew(F) := 2F−1 is an antiautomorphism of NC(,, 2).

Since we will work mostly with the classical types, let us review (some of) their Weyl groups and

noncrossing partitions. The Weyl group , (�=−1) of type �=−1 is isomorphic to the symmetric group

S=. When we view , (�=−1) as S=, the simple reflection B8 is the simple transposition (8, 8 + 1). A

standard choice of Coxeter element is 2 = B1B2 · · · B=−1 = (1, 2, 3, . . . , =) (in cycle notation). Figure 5

depicts the lattice of noncrossing partitions in S3 for the standard choice of Coxeter element. Note that

NC(S=) is isomorphic to the classical lattice of noncrossing set partitions of [=], with the Kreweras

complement being the classical Kreweras complement of noncrossing set partitions. Meanwhile, the

Weyl group , (�=) of type �= can be viewed as the group of permutations w of the set (−[=]) ∪ [=]
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such that F(−8) = −F(8) for all 8 ∈ [=] and for which the quantity #{8 ∈ [=] : F(8) < 0} is even.

Viewing , (�=) as a group of permutations of (−[=]) ∪ [=], we have

B8 =

{
(8, 8 + 1) (−8,−8 − 1) if 1 ≤ 8 ≤ = − 1,

(=,−= + 1) (= − 1,−=) if 8 = =.

3.2. The AST bijection

The Kreweras complement is usually not an involution: it has order h or 2ℎ. For instance, in type

A, Krew2 corresponds to rotation of noncrossing set partitions. Hence, one might wonder about the

orbit structure of Krew. This is where the connection to Panyushev’s work arises. After Panyushev

had experimentally exhibited the remarkable properties of rowmotion acting on the root poset in [22],

Bessis and Reiner [5] conjectured that the orbit structure of Row acting on A(Φ+) is the same as the

orbit structure of Krew acting on NC(,, 2). Armstrong, Stump and Thomas [2] proved this conjecture

of Bessis and Reiner by defining an explicit bijection between A(Φ+) and NC(,, 2) that equivariantly

maps rowmotion to Kreweras complement.

In order to describe their bijection, we need to assume that our Coxeter element is bipartite – that

is, that 2 = 2!2', where ! ⊔ ' = [A] is a bipartition of the nodes of the Dynkin diagram of Φ and

2- :=
∏
8∈- B8 (the products 2! and 2' are well defined, since the bipartite assumption guarantees that

these simple reflections commute). Since the Dynkin diagram of Φ is always a tree, a bipartite Coxeter

element exists. Because all Coxeter elements are conjugate, there is no loss of generality in assuming

bipartiteness.

For � ⊆ [A], the parabolic subgroup ,� is the subgroup of W generated by the simple reflec-

tions B8 for 8 ∈ �. If 2!2' is a bipartite Coxeter element of W, then 2!′2'′ is a bipartite Coxeter

element of ,� , where ! ′ := ! ∩ � and '′ := ' ∩ �; we have a natural inclusion NC (,� , 2!′2'′) ⊆

NC(,, 2!2'). Meanwhile, we use Φ+
�

to denote the corresponding parabolic root poset, which is

Φ+
�

:= {U ∈ Φ+ : U � U8 for all 8 ∈ [A] \ �}.5 For an antichain � ∈ A(Φ+), we define its support to be

supp(�) := {8 ∈ [A] : U8 ≤ U for some U ∈ �}.

We can view any antichain � ∈ A(Φ+) as also an antichain in A

(
Φ+

supp(�)

)
.

With all this notation in hand, we can now describe the Armstrong–Stump–Thomas nonnesting-

to-noncrossing bijection that sends rowmotion to Kreweras complement. As we will see, it is defined

inductively, so it is important that we allow the possibility that Φ+ is reducible, as we have been doing

throughout.

Theorem 3.1 (Armstrong–Stump–Thomas [2]). Fix a bipartition ! ⊔ ' = [A] of the Dynkin diagram
of Φ. Then there is a unique bijection Θ, : A(Φ+)

∼
−→ NC(,, 2!2') for which:

◦ (base case) Θ, ({U8 : 8 ∈ !}) = 4;
◦ (equivariance) Θ, · Row = Krew ·Θ, ;
◦ (parabolic induction) Θ, (�) =

∏
8∈!\supp(�) B8 · Θ,supp(�)

(�) for � ∈ A(Φ+), where
Θ,supp(�)

(�) ∈ NC
(
,supp(�) , 2!∩supp(�)2'∩supp(�)

)
⊆ NC(,, 2!2').

Remark 3.2. Armstrong, Stump and Thomas [2] used Theorem 3.1 to prove Theorem 2.3. But also,

affirming a conjecture of Bessis and Reiner [5], they used Theorem 3.1 to show that Row acting on

A(Φ+) satisfies a cyclic sieving phenomenon [26], where the sieving polynomial is a natural q-analogue

of Cat(,). Recently there has been interest in extending sieving phenomena to dihedral group actions

as well [16, 24, 30]. Hence, it might be interesting to explore sieving phenomenona for 〈Row,Rvac〉

acting on A(Φ+).

5We hope the reader can distinguish our notation for the parabolic root poset Φ+
�

from our notation for the ranks Φ+
8

of the root

poset Φ+ via context.
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3.3. Flip

Now that we have stated the Armstrong–Stump–Thomas bijection, we want to bring rowvacuation into

the story. In other words, we need an involution on the set of noncrossing partitions of Φ that plays the

role that rowvacuation plays for the nonnesting partitions. Since the Kreweras complement is a kind of

‘rotation’, and this hypothetical involution on noncrossing partitions ought to generate a dihedral action

with the Kreweras complement, we will refer to it as flip. As before, we use the bipartite Coxeter element

2 = 2!2'. We define Flip : NC(,, 2!2') → NC(,, 2!2') by Flip(F) := 2!F
−12−1

!
. Note that since

2! is an involution, Flip is also an involution. It fixes c and permutes the set of reflections, so it is an

automorphism of NC(,, 2!2'). It is also easily seen that

Flip ·Krew = Krew−1 · Flip . (3.1)

Remark 3.3. For nonbipartite c, we can define Flip : NC(,, 2) → NC(,, 2) by conjugating to a

bipartite c. In fact, it is not hard to show that the 6 ∈ , that conjugate c to 2−1 form a (left and right)

〈2〉-coset and that they are all necessarily involutions. (The one thing needed to prove this is the well-

known fact that the centraliser of c in W is 〈2〉.) When h is odd, this 〈2〉-coset is a single 〈2〉-conjugacy

class; when h is even, it consists of two 〈2〉-conjugacy classes.

Remark 3.4. Extending the previous remark, we note there are other involutive automorphisms

of NC(,, 2!2') such as the map Flip′ : NC(,, 2!2') → NC(,, 2!2') defined by Flip′(F) :=

2'F
−12−1

'
, and others obtained by conjugating Flip or Flip′ by powers of c. These various involutive

automorphisms of NC(,, 2!2') were previously considered, for instance, by Armstrong in [1, §4.3.4].

Our focus on Flip is ultimately a matter of convention.

Remark 3.5. That c is conjugate by an involution to its inverse is not a special property of Coxeter

elements; Carter [11, Theorem C(iii)] proved that every element of a Weyl group is conjugate by an

involution to its inverse.

With this definition of Flip, we can upgrade the equivalence of cyclic actions in Theorem 3.1 to an

equivalence of dihedral actions essentially ‘for free’, using just the general properties of the bijection

listed in that theorem. This is what we asserted in Theorem 1.5:

Θ, ·
(
Row−1 ·Rvac

)
= Flip ·Θ, .

The reason that we need to use Row−1 ·Rvac instead of just Rvac in Theorem 1.5 is that sometimes there

are no � ∈ A(Φ+) fixed by Rvac, whereas there will always be some fixed points of Flip (e.g., e and c).

In order to prove Theorem 1.5, we need to show that Row−1 ·Rvac behaves well with respect to

parabolic induction. In fact, this is true for any poset P. Namely, for an antichain � ∈ A(%), slightly

abusing notation, let us define its support to be supp(�) := {? ∈ %0 : ? ≤ @ for some @ ∈ �}.

For a subset - ⊆ %0, define %- := {@ ∈ % : @ � ? for all ? ∈ %0 \ -}. We can view any antichain

� ∈ A(%) as an antichain in A
(
%supp(�)

)
. We let

(
Row−1 ·Rvac

)
supp(�)

(�) denote the image of A

under Row−1 ·Rvac: A
(
%supp(�)

)
→ A

(
%supp(�)

)
.

Lemma 3.6. For any P and � ∈ A(%), we have the following:

◦ supp
( (

Row−1 ·Rvac
)
(�)

)
= supp(�) and

◦ Row−1 ·Rvac(�) =
(
Row−1 ·Rvac

)
supp(�)

(�).

Proof. The argument is very similar to the proof of Proposition 2.10. Let us prove the second bulleted

item first. We write Row−1 ·Rvac as(
30 · 31 · · · 3rk(%)−1 · 3rk(%)

)
·
(
3rk(%)

)
·
(
3rk(%) · 3rk(%)−1

)
· · ·

(
3rk(%) · 3rk(%)−1 · · · 31 · 30

)
.

When we apply the first 30 to A, it will add to our antichain all of %0 \ supp(�), and until those elements

are removed by the 30 at the end of this sequence of toggles (which they will be), no element of
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% \%supp(�) can be toggled into our antichain. Meanwhile, the status of elements of %0 \ supp(�) has no

effect on the toggles g? for ? ∈ %supp(�) . So indeed, applying this sequence of toggles to A will have the

same effect as if we applied only the toggles g? for ? ∈ %supp(�) . This proves the second bulleted item.

From the previous paragraph we have supp
( (

Row−1 ·Rvac
)
(�)

)
⊆ supp(�). But since(

Row−1 ·Rvac
)2

is the identity, this also implies that we have the reverse containment supp(�) ⊆

supp
( (

Row−1 ·Rvac
)
(�)

)
, thus proving the first bulleted item as well. �

Proof of Theorem 1.5. In showing that the bijection Θ, : A(Φ+)
∼
−→ NC(,, 2!2') is uniquely de-

fined by the listed properties, Armstrong, Stump and Thomas [2] explained that for every � ∈ A(Φ+),

there is a : ≥ 0 such that supp
(
Row: (�)

)
≠ [A]. Hence, the bijection can be computed induc-

tively as follows: we let �′ := Row: (�), where : ≥ 0 is minimal so that supp(�′) ≠ [A]; we

then compute F′ := Θ,supp(�′)
(�′) on the smaller Weyl group ,supp(�′) ; finally, we set Θ, (�) :=

Krew−:
(∏

8∈!\supp(�′) B8 · F
′
)
. The base case of this induction is where we use the condition

Θ, ({U8 : 8 ∈ !}) = 4.6

Thus, to prove this theorem, it suffices to show the following:

◦ As a base case, Θ,
( (

Row−1 ·Rvac
)
({U8 : 8 ∈ !})

)
= Flip(4).

◦ If Θ,
( (

Row−1 ·Rvac
)
(�)

)
= Flip(Θ, (�)), then

Θ,

((
Row−1 ·Rvac

) (
Row−1(�)

))
= Flip

(
Krew−1(Θ, (�))

)
.

◦ If Θ,supp(�)

( (
Row−1 ·Rvac

)
supp(�)

(�)
)
= Flip,supp(�)

(
Θ,supp(�)

(�)
)
, then

Θ,

((
Row−1 ·Rvac

)
(�)

)
= Flip

(∏
8∈!\supp(�) B8 · Θ,supp(�)

(�)
)
= Flip(Θ, (�)).

The first bulleted item is clear, since(
Row−1 ·Rvac

)
({U8 : 8 ∈ !}) = Row−1({U8 : 8 ∈ '}) = {U8 : 8 ∈ !}

and Flip(4) = 4.

For the second bulleted item, we use Proposition 2.6 and equation (3.1) to see that

Θ,

((
Row−1 ·Rvac

) (
Row−1(�)

))
= Θ,

((
Row ·Row−1 Rvac

)
(�)

)
= Krew

(
Θ,

((
Row−1 ·Rvac

)
(�)

))
= Krew(Flip(Θ, (�))) = Flip

(
Krew−1(Θ, (�))

)
.

For the third bulleted item, we use Lemma 3.6 and the fact that, by definition, Θ,supp(�)
(�) =∏

8∈!\supp(�) B8 · Θ, (�) to see that

Θ,

((
Row−1 ·Rvac

)
(�)

)
= Θ,

((
Row−1 ·Rvac

)
supp(�)

(�)

)

=
∏

8∈!\supp(�)

B8 · Θ,supp(�)

((
Row−1 ·Rvac

)
supp(�)

(�)

)

6Actually, we could take as our base case the unique bijection Θ, : A(Φ+)
∼
−→ NC(, , 2) for W the trivial group, which

shows that the first item in Theorem 3.1 is not really needed.
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=
∏

8∈!\supp(�)

B8 · Flip,supp(�)

(
Θ,supp(�)

(�)
)

=
∏

8∈!\supp(�)

B8 · Flip,supp(�)

©­«
∏

8∈!\supp(�)

B8 · Θ, (�)
ª®¬

=
∏

8∈!\supp(�)

B8 · 2!∩supp(�) · Θ, (�)−1 ·
∏

8∈!\supp(�)

B8 · 2!∩supp(�)

= 2!

(
Θ, (�)−1

)
2!

= Flip(Θ, (�)).

�

Armstrong, Stump and Thomas proved Theorem 3.1 by explicitly constructing the map Θ, in each

of the classical types. In the next two sections, we review their constructions in types A and D. Thanks

to Theorem 1.5, these explicit constructions will help us understand the effect that Rvac has on an

antichain � ∈ A(Φ+(�=)).

4. The AST bijection in type A

In this section, we review the construction of the Armstong–Stump–Thomas bijection in type A. It uses

noncrossing matchings.

Let � = {[81, 91], . . . , [8<, 9<]} ∈ A(Φ+(�=−1)), with 81 < · · · < 8<. Place 2= vertices labelled

1(0) , 2(0) , . . . , =(0) , =(1) , . . . , 2(1) , 1(1) in clockwise order at evenly-spaced positions around a circle. For

1 ≤ ℓ ≤ <, add a marker on the vertex 9
(0)

ℓ
with marking 8ℓ . Then for each 8 ∈ [=] \ {81, . . . , 8<}, add a

marker on 8 (1) with marking i. We now add n (straight) edges to the configuration, one at a time. The ith
edge that we add connects the vertex with marking i to the closest unmarked vertex that is not already

connected to an edge. Here, ‘closest’ is determined by moving counterclockwise from the vertex with

marking i if that vertex has a (0) superscript and clockwise from that vertex if it has a (1) superscript.

The resulting diagram is denoted by k�=−1
(�). The markings are only used to help with the construction

of k�=−1
(�); we do not consider them to be part of the diagram.

Example 4.1. If A is the antichain {[1, 3], [2, 6], [3, 7], [4, 8], [5, 9], [8, 10]} in Φ+(�9) shown on

the top of Figure 6, then k�9
(�) is the diagram shown on the bottom. The markings (which are not

considered to be part of the diagram k�9
(�)) are represented by purple numbers. For example, the fact

that [1, 3] ∈ � tells us that the vertex 3(0) should be given the marking 1. Once the markings are placed,

the edges are drawn as prescribed.

The next step is to relabel the vertices ink�=−1
(�) according to a bipartite Coxeter element 2 = 2!2' ∈

, (�=−1). We choose ! ⊔ ' to be the unique bipartition of the Dynkin diagram of Φ(�=−1) such that

1 ∈ !. This means that 2! = B1B3 · · · B=−2 if n is odd and 2! = B1B3 · · · B=−1 if n is even. Let ?1, . . . , ?=
be the sequence obtained by listing the even elements of [=] in increasing order and then listing the

odd elements of [=] in decreasing order. The cycle decomposition of c (viewed as a permutation inS=)

is (?1, . . . , ?=). In the diagram k�=−1
(�), relabel the vertices 1(0) , 2(0) , . . . , =(0) , =(1) , . . . , 2(1) , 1(1) as

?
(0)

1
, ?

(1)

1
, ?

(0)

2
, ?

(1)

2
, . . . , ?

(0)
= , ?

(1)
= , respectively. Let us call the relabelled diagram i�=−1

(�).

In [2], it is shown that i�=−1
(�) is a noncrossing matching, meaning that each vertex is incident

to exactly one edge and that no two edges cross each other. Furthermore, each edge has one endpoint

with a (0) superscript and one endpoint with a (1) superscript. This allows us to define a permutation

F ∈ S= by declaring F(8) = 9 whenever 8 (1) is connected to 9 (0) via an edge in i�=−1
(�). Armstrong,

Stump and Thomas proved that this definition yields the bijection Θ, (�=−1) from Theorem 3.1.
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Figure 6. An antichain � ∈ A(Φ+(�9)) (top) and the corresponding diagram k�9
(�) (bottom).

Figure 7. The diagrams i�9
(�) (left) and i�9

(Row ·Rvac(�)) (right), where A is the antichain from
Example 4.1. We have also drawn the line M in each diagram. Note that i�9

(Row ·Rvac(�)) is obtained
from i�9

(�) by reflecting the edges through M.

Theorem 4.2 ([2, §3.1]). Let Θ, (�=−1) : A(Φ+(�=−1)) → NC(, (�=−1), 2) be the bijection from
Theorem 3.1, where 2 = 2!2' = (?1, . . . , ?=) is the bipartite Coxeter element already defined. Then
we have Θ, (�=−1) (�) (8) = 9 if and only if 8 (1) is connected to 9 (0) via an edge in i�=−1

(�), for every
� ∈ A(Φ+(�=−1)).

Example 4.3. Let A be as in Example 4.1. By relabelling the vertices ofk�9
(�) in the manner described,

we obtain the diagram i�9
(�) shown on the left in Figure 7. Theorem 4.2 tells us that Θ, (�9) (�) ∈

NC(, (�9), 2) is the permutation in S10 with cycle decomposition (1, 10) (2, 4, 8) (3, 9, 7) (5) (6).
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To end this section, we find a simple relationship between the diagrams i�=−1
(�) and

i�=−1
(Row ·Rvac(�)) that we will need later. By combining Proposition 2.6 with Theorem 1.5 and 3.1,

we find that

Θ, (�=−1) · Row ·Rvac = Θ, (�=−1) · Row2 ·Row−1 ·Rvac = Krew2 · Flip ·Θ, (�=−1) ,

so

Θ, (�=−1) (Row ·Rvac(�)) = Krew2 · Flip
(
Θ, (�=−1) (�)

)
= 2 Flip

(
Θ, (�=−1) (�)

)
2−1

= 2!2'2!Θ, (�=−1) (�)
−12!2'2! .

In each of the diagrams i�=−1
(�) and i�=−1

(Row ·Rvac(�)), let M be the line through the centre of the

circle that is equidistant from 2(0) and 2(1) , as shown in Figure 7. Let Ω be the reflection of the plane

through the line M. We think of Ω as acting on the diagrams i�=−1
(�) and i�=−1

(Row ·Rvac(�)). For

each 8 ∈ [=], we readily compute that Ω
(
8 (0)

)
= (2!2'2! (8))

(1) and Ω
(
8 (1)

)
= (2!2'2! (8))

(0) . With

these observations in hand, the next lemma follows immediately from Theorem 4.2. Figure 7 illustrates

this lemma.

Lemma 4.4. Let � ∈ A(Φ+(�)), and preserve the notation from before. The diagram
i�=−1

(Row ·Rvac(�)) is obtained from i�=−1
(�) by reflecting all of the edges through the line M

(and leaving the vertices unchanged).

5. The AST bijection in type D

In this section, we review the pieces of the Armstrong–Stump–Thomas bijection in type D that we will

need later. We then use those pieces to prove a lemma that will be crucial in the next section.

Recall from Section 2.1 the automorphism X : Φ+(�=) → Φ+(�=), the natural quotient map

W : Φ+(�=) → Φ+(�=−1) induced by X, and the natural inclusion ] : P(Φ+(�=−1)) → P(Φ+(�2=−3))

obtained by ‘unfolding’.

The antichains A ofΦ+(�=) with X(�) = � descend to antichains ofΦ+(�=−1) and so are easily dealt

with. Thus, in this section, we fix an � ∈ A(Φ+(�=)) for which X(�) ≠ �. Then ](W(�)) is a subset

of Φ+(�2=−3) that is symmetric about the central vertical axis. Note that ](W(�)) is not necessarily an

antichain. As before, we identify the elements of Φ+(�2=−3) with the intervals [8, 9] ⊆ [2= − 2], with

1 ≤ 8 < 9 ≤ 2= − 2. Let Q be the set of elements [8, 9] ∈ Φ+(�2=−3) such that 8 ≤ = − 1 and 9 ≥ =.

Equivalently, Q consists of the elements greater than or equal to the minimal element [= − 1, =]. Let

[81, 91], . . . , [8: , 9: ] be the elements of ](W(�)) ∩Q written in lexicographic order. (Note that X(�) ≠ �

implies : ≥ 1.) Let �̂ be the set of elements of Φ+(�2=−3) obtained from ](W(�)) by removing the

elements of ](W(�)) ∩ Q and replacing them with [81, 92], [82, 93], . . . , [8:−1, 9: ]. From [2], �̂ is an

antichain of Φ+(�2=−3) that is symmetric about the central vertical axis – that is, with [
(
�̂
)
= �̂.

Example 5.1. If A is the antichain of Φ+(�6) shown in red in the top left of Figure 8, then ](W(�)) is

the subset of Φ+(�9) shown in red in the top right. The set Q consists of the elements of Φ+(�9) lying

inside the green square in the figure. The elements of ](W(�)) ∩Q are [2, 6], [3, 6], [4, 7], [5, 8] and

[5, 9]; �̂ ∈ A(Φ+(�9)) is obtained from ](W(�)) by replacing these five elements with [2, 6], [3, 7],

[4, 8] and [5, 9]. Notice that �̂, which is depicted in red in the bottom of Figure 8, is indeed an antichain

of Φ+(�9). In fact, �̂ is the same as the antichain from Figure 6.

Since �̂ is an antichain of Φ+(�2=−3), we can consider the diagram i�2=−3

(
�̂
)

defined in Section 4.

Recall that M is the line through the centre of the circle that is equidistant from 2(0) and 2(1) . Let "⊥

denote the line through the centre of the circle that is perpendicular to M. Let H be the set of vertices in

the diagram that are on the same side of "⊥ as 2(0) , and let � be the set of vertices in the diagram that

are on the opposite side of "⊥. We say an edge in the diagram is transverse if it has one endpoint in H
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Figure 8. From the antichain � ∈ A(Φ+(�6)) (top left), we obtain the set ](W(�)) ⊆ Φ+(�9) (top
right) and the antichain �̂ ∈ A(Φ+(�9)) (bottom). Note that ](W(�)) is not an antichain.

and one endpoint in �. From [2] we have the implication that there are at least two transverse edges in

i�2=−3

(
�̂
)
; by removing the two transverse edges that are closest to the centre of the circle, we obtain

a new diagram that we denote by b�2=−3

(
�̂
)
.

We now relabel the vertices in b�2=−3

(
�̂
)

according to a bipartite Coxeter element 2 = 2!2' ∈

, (�=). We choose ! ⊔ ' to be the unique bipartition of the Dynkin diagram of Φ(�=) such that

1 ∈ !. This means that 2! = B1B3 · · · B=−4B=−2 if n is odd and 2! = B1B3 · · · B=−3B=−1B= if n is even. Let

@1, . . . , @2=−2 be the sequence of numbers obtained by listing the even elements of [=− 1] in increasing

order, then listing the odd elements of −[= − 1] in increasing order, then listing the even elements of

−[=−1] in decreasing order and finally listing the odd elements of [=−1] in decreasing order. The cycle

decomposition of c is (@1, . . . , @2=−2) (=,−=). Relabel the vertices in the diagram b�2=−3

(
�̂
)
, starting at

2(0) and moving clockwise, as

@
(0)

1
, @

(1)

1
, @

(0)

2
, @

(1)

2
, . . . , @

(0)

2=−2
, @

(1)

2=−2
.

Let us call the relabelled diagram i�=
(�).

Example 5.2. Let A and �̂ be as in Example 5.1. The diagram i�9

(
�̂
)
, which we computed in

Example 4.3, is drawn again on the left in Figure 9. We have now included the line "⊥ in the figure.

Furthermore, we have coloured the vertices in H red and the vertices in � blue. The two transverse edges

that are closest to the centre of the circle are the one connecting 1(1) to 10(0) and the one connecting

10(1) to 1(0) ; these two edges are removed to produce b�9

(
�̂
)
. After relabelling the vertices of b�9

(
�̂
)

in the manner already described, we obtain the diagram i�6
(�) shown on the right in Figure 9.

Armstrong, Stump and Thomas used the diagrams we have constructed in this section to give an

explicit description of the map Θ, (�=) . We will need only part of their description, which we state in
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Figure 9. The diagrams i�9
( �̂) (left) and i�6

(�) (right) from Example 5.2.

the following theorem. Recall that we view, (�=) as the group of permutations w of (−[=]) ∪ [=] such

that F(−8) = −F(8) for all 8 ∈ [=] and such that #{8 ∈ [=] : F(8) < 0} is even.

Theorem 5.3 ([2, §3.3]). Let Θ, (�=) : A(Φ+(�=)) → NC(, (�=), 2) be the bijection from Theorem
3.1, where 2 = 2!2' = (@1, . . . , @2=−2) (=,−=) is the bipartite Coxeter element previously defined. Let
� ∈ A(Φ+(�=)) be such that X(�) ≠ �. The diagram i�=

(�) defined previously is left unchanged if we
rotate each of the edges by 180◦ about the centre of the circle. If there is an edge in i�=

(�) with endpoints
8 (1) and 9 (0) , then Θ, (�=) (�) (8) = 9 . There exist G�, H� ∈ [=−1] such that the four vertices of i�=

(�)

not incident to any edges are G
(0)

�
,−G

(0)

�
, H

(1)

�
,−H

(1)

�
and such that Θ, (�=) (�) ({=,−=}) = {G�,−G�}

and Θ, (�=) (�) ({H�,−H�}) = {=,−=}.

Example 5.4. Let A be as in Examples 5.1and 5.2. The diagram i�6
(�) (shown on the right in Figure

9) is clearly left unchanged when its edges are rotated by 180◦ about the centre of the circle. Theorem

5.3 tells us that most of the values of Θ, (�6) (�) are determined by i�6
(�). For example, the edge

between −3(1) and 2(0) tells us that Θ, (�6) (�) (−3) = 2. In this example, G� = H� = 1, so Theorem

5.3 tells us that Θ, (�6) (�) ({1,−1}) = {6,−6} and Θ, (�6) (�) ({6,−6}) = {1,−1}.

We are now in a position to prove the main lemma of this section, which states that Row ·Rvac
(
�̂
)
=

�Row ·Rvac(�). When we compute Row ·Rvac
(
�̂
)
, we are viewing Row and Rvac as operators on

A(Φ+(�2=−3)); when we compute �Row ·Rvac(�), we are viewing them as operators on A(Φ+(�=)).

Note that for any antichain � ∈ Φ+(�=) obtained from A via a series of rowmotions and rowvacuations,

we still have X(�) ≠ �, because rowvacuation and rowmotion commute with poset automorphisms like

X. Hence, it makes sense to speak of �̂.

Lemma 5.5. If � ∈ A(Φ+(�=)) is such that X(�) ≠ �, then

Row ·Rvac
(
�̂
)
= �Row ·Rvac(�).

Proof. To ease notation, let � = Row ·Rvac(�). By combining Proposition 2.6 with Theorem 1.5 and

3.1, we find that

Θ, (�=) · Row ·Rvac = Θ, (�=) · Row2 ·Row−1 ·Rvac = Krew2 · Flip ·Θ, (�=) ,

so

Θ, (�=) (�) = Krew2 · Flip
(
Θ, (�=) (�)

)
= 2 Flip

(
Θ, (�=) (�)

)
2−1

= 2!2'2!Θ, (�=) (�)
−12!2'2! ,
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where 2 = 2!2' ∈ , (�=) is the bipartite Coxeter element previously defined. In each of the diagrams

i�=
(�) and i�=

(�), let M be the line through the centre of the circle that is equidistant from 2(0) and

2(1) (this is the same as the line M shown on the left in Figure 9). Let Ω be the reflection of the plane

through the line M. Notice that Ω(�) = � and Ω
(
�
)
= �. We think of Ω as acting on i�=

(�) and

i�=
(�). For each 8 ∈ (−[= − 1]) ∪ [= − 1], we readily compute that Ω

(
8 (0)

)
= (2!2'2! (8))

(1) and

Ω
(
8 (1)

)
= (2!2'2! (8))

(0) . Combining these observations with Theorem 5.3, we find that i�=
(�) is

obtained from i�=
(�) by reflecting all of the edges through M (and leaving the vertices unchanged).

Note that we are heavily using the fact that Ω preserves H and �; indeed, this guarantees that if E and

� ′ are the transverse edges that are removed from i�2=−3

(
�̂
)

in the construction of i�=
(�), then Ω(�)

and Ω(� ′) are still transverse. These are precisely the edges that are removed from i�2=−3

(
�̂
)

in the

construction of i�=
(�).

We now know that i�=
(�) is obtained from i�=

(�) by reflecting all of the edges through

M. It follows that i�2=−3

(
�̂
)

is obtained from i�2=−3

(
�̂
)

by reflecting all of the edges through

"
(
we are using the fact that i�2=−3

(
�̂
)

and i�2=−3

(
�̂
)

are noncrossing to see that they can

be reconstructed uniquely from b�2=−3

(
�̂
)

and b�2=−3

(
�̂
) )

. We also know by Lemma 4.4 that

i�2=−3

(
Row ·Rvac

(
�̂
))

is obtained from i�2=−3

(
�̂
)

by reflecting all of the edges through M. This

means that i�2=−3

(
�̂
)
= i�2=−3

(
Row ·Rvac

(
�̂
))

, so it follows from Theorem 4.2 thatΘ, (�2=−3)

(
�̂
)
=

Θ, (�2=−3)

(
Row ·Rvac

(
�̂
))

. Because Θ, (�2=−3) is a bijection, we must have �̂ = Row ·Rvac
(
�̂
)
, as

desired. �

Example 5.6. Let � ∈ A(Φ+(�6)) and �̂ ∈ A(Φ+(�9)) be the antichains from Example 5.1, as

depicted in Figure 8. Then Row ·Rvac(�) and Row ·Rvac
(
�̂
)

are the antichains shown in blue in

Figure 10. It is straightforward to check that Row ·Rvac
(
�̂
)

is the same as �Row ·Rvac(�) in this case,

as predicted by Lemma 5.5. Let � = Row ·Rvac(�). To help illustrate part of the proof of Lemma 5.5,

we have drawn the diagrams i�9

(
�̂
)

and i�6
(�) in Figure 11. The diagrams i�9

(
�̂
)

and i�6
(�) are

shown in Figure 9. Notice that i�9

(
�̂
)

and i�6
(�) are obtained by reflecting the edges in i�9

(
�̂
)

and

i�6
(�), respectively, through the line M.

Recall our notation U1, . . . , U= for the simple roots of Φ+(�=). We will now combine Lemma 5.5

with the following result of [2] to say that, for most A with X(�) ≠ �, we have �Rvac(�) = Rvac
(
�̂
)
:

Figure 10. The antichains Row ·Rvac(�) (left) and Row ·Rvac
(
�̂
)

(right), where A and �̂ are the

antichains from Example 5.1.
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Figure 11. The diagrams i�9

(
�̂
)

(left) and i�6
(�) (right) from Example 5.6.

Lemma 5.7. Let � ∈ A(Φ+(�=)) be such that X(�) ≠ � and {U=−1, U=} ∩ � = ∅. Then

Row
(
�̂
)
= �Row(�).

Proof. This is basically [2]. Specifically, that lemma says that if � ∈ A(Φ+(�=)) is such that X(�) ≠ �

and �̂ ∩Q ≠ ∅, then Row
(
�̂
)
= �Row(�). Hence, we must show that �̂ ∩Q ≠ ∅. Recall the definition

of S�=
from Section 2.1. Because X(�) ≠ � and {U=−1, U=} ∩ � = ∅, there must be some U ∈ �∩S�=

that is not in {U=−1, U=}. Then ](W(U)) consists of two elements belonging to Q, so #(](W(�)) ∩Q) ≥ 2.

It is then immediate from the definition of �̂ that #
(
�̂ ∩Q

)
= #(](W(�)) ∩Q) − 1 ≥ 1. �

Corollary 5.8. If � ∈ A(Φ+(�=)) is such that X(�) ≠ � and {U=−1, U=} ∩ � = ∅, then

Rvac
(
�̂
)
= �Rvac(�).

Proof. From Lemma 5.7 we have

Row
(
�̂
)
= �Row(�).

As already mentioned, rowmotion commutes with poset automorphisms, so it is still the case that

X(Row(�)) ≠ Row(�). Then we can apply Lemma 5.5 to say that

Row ·Rvac ·Row
(
�̂
)
= Row ·Rvac

(�Row(�)
)
= �Row ·Rvac ·Row(�).

The result follows from Proposition 2.6, which says that Row ·Rvac ·Row = Rvac. �

Example 5.9. Let � ∈ A(Φ+(�6)) and �̂ ∈ A(Φ+(�9)) be the antichains from Example 5.1, as

depicted in Figure 8. Then Rvac(�) and Rvac
(
�̂
)

are the antichains shown in red in Figure 12. It is

straightforward to check that Rvac
(
�̂
)

is the same as �Rvac(�) in this case, as predicted by Corollary 5.8.

Remark 5.10. The assumption {U=−1, U=} ∩ � = ∅ in Corollary 5.8 is required. For example, if

� = {U=}, then �̂ = ∅, so Rvac
(
�̂
)

consists of all minimal elements of Φ+(�2=−3); but �Rvac(�) =

�{U1, . . . , U=−1} consists of all but one of the minimal elements of Φ+(�2=−3) (it is missing the ‘middle’

simple root [= − 1, =]).
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Figure 12. The antichains Rvac(�) (left) and Rvac
(
�̂
)

(right), where A and �̂ are the antichains from

Example 5.1.

6. Proof of Panyushev’s conjecture in type D

Recall from Section 2.3 that our goal is to prove the following theorem:

Theorem 6.1. For every � ∈ A(Φ+(�=)), we have #� + # Rvac(�) = =.

In proving Theorem 6.1, we will make heavy use of Theorem 1.4 for types A and C. As a consequence,

we will need to consider the action of rowvacuation on different posets. As before, we will use subscripts

as in the notation Rvac% when referring to an operator on A(%). We will primarily be concerned with

the poset Φ+(�=), so operators without subscripts will be assumed to act on A(Φ+(�=)).

Before we start with the proof of Theorem 6.1, we need two simple propositions about rowvacuation

of [-symmetric antichains in type A. Recall the definitions of the special subsets L, S of the root posets

of classical types from Section 2.1.

Proposition 6.2. Let � ∈ A(Φ+(�2=−1)) be such that [(�) = �. Then exactly one of B or
RvacΦ+ (�2=−1) (�) contains an element of L�2=−1

.

Proposition 6.3. Let � ∈ A(Φ+(�2=−1)) be such that [(�) = �. Then exactly one of B or
RvacΦ+ (�2=−1) (�) contains an element of S�2=−1

.

Proof. Proposition 6.2 can be seen as the type C case of Conjecture 2.11(ii) – that is, the fact that

]−1 (�) ∪ RvacΦ+ (�=)

(
]−1 (�)

)
has the right distribution of long and short roots. Similarly, Proposition

6.3 can be seen as the type B case of Conjecture 2.11(ii) – that is, the fact that Rvac on the type B

root poset has the right distribution of long and short roots. So they can be thought of as consequences

of Panyushev’s work in [21, §5]. However, they are also both immediate from the formula for type A

rowvacuation in Theorem 2.7. �

Our proof of Theorem 6.1 will consist of several cases. We first dispense with the case of Theorem

6.1 in which X(�) = �:

Lemma 6.4. If � ∈ A(Φ+(�=)) is such that X(�) = �, then #� + # Rvac(�) = =.

Proof. Because S�=−1
is a chain, each antichain of Φ+(�=−1) contains at most one element of S�=−1

.

Given an antichain B of Φ+(�=−1), let Y(�) be 1 if B contains an element of S�=−1
and 0 otherwise. We

have #W−1 (�) = #� + Y(�).

Because rowvacuation commutes with the poset automorphism X, we have X(Rvac(�)) = Rvac(�).

One can easily check that W(�) is an antichain of Φ+(�=−1) for which RvacΦ+ (�=−1) (W(�)) =

W(Rvac(�)). So, using ∗ to denote the quantity #� + # Rvac(�), we have

∗ = #W−1 (W(�)) + #W−1 (W(Rvac(�)))

= #W−1 (W(�)) + #W−1
(
RvacΦ+ (�=−1) (W(�))

)
= #W(�) + Y(W(�)) + # RvacΦ+ (�=−1) (W(�)) + Y

(
RvacΦ+ (�=−1) (W(�))

)
.
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We saw in Section 2.3 that rowvacuation serves as Panyushev’s P in type C, which means that

#W(�) + # RvacΦ+ (�=−1) (W(�)) = = − 1. Hence, in order to prove #� + # Rvac(�) = =, we need to show

that

Y(W(�)) + Y
(
RvacΦ+ (�=−1) (W(�))

)
= 1.

In other words, we need to show that W(�) contains an element ofS�=−1
if and only if RvacΦ+ (�=−1) (W(�))

does not contain an element of S�=−1
. It suffices to show that ](W(�)) contains an element of S�2=−3

if

and only if ]
(
RvacΦ+ (�=−1) (W(�))

)
does not contain an element of S�2=−3

. Since

]
(
RvacΦ+ (�=−1) (W(�))

)
= RvacΦ+ (�2=−3) (](W(�))),

this follows from Proposition 6.3. �

Now we consider the case where X(�) ≠ �. Actually, we have two cases here, depending on whether

A contains an element of {U=−1, U=} or not.

Lemma 6.5. If � ∈ A(Φ+(�=)) is such that X(�) ≠ � and {U=−1, U=}∩� = ∅, then #�+# Rvac(�) = =.

Proof. Recall the antichain �̂ ∈ A(Φ+(�2=−3)) defined in terms of A in Section 5. From the definition

of �̂, it is immediate that

#�̂ =

{
2 · #� − 1 if � ∩ L�=

= ∅,

2 · #� − 2 if � ∩ L�=
≠ ∅.

Given an antichain B of Φ+(�2=−3), let Y(�) be 1 if B contains an element of L�2=−3
and 0 otherwise.

It is straightforward to check from the definition of �̂ that � ∩ L�=
= ∅ if and only if �̂ ∩ L�2=−3

≠ ∅.

Hence, #�̂ = 2 · #� − 2 + Y
(
�̂
)
. Similarly, we have # �Rvac(�) = 2 · # Rvac(�) − 2 + Y

( �Rvac(�)
)
.

From Corollary 5.8, we get

#�̂ + # RvacΦ+ (�2=−3)

(
�̂
)
= #�̂ + # �Rvac(�)

= 2(#� + # Rvac(�)) − 4 + Y
(
�̂
)
+ Y

( �Rvac(�)
)

= 2(#� + # Rvac(�)) − 4 + Y
(
�̂
)
+ Y

(
RvacΦ+ (�2=−3)

(
�̂
))

.

But Proposition 6.2 tells us that Y
(
�̂
)
+ Y

(
RvacΦ+ (�2=−3)

(
�̂
))

= 1, so

#�̂ + # RvacΦ+ (�2=−3)

(
�̂
)
= 2(#� + # Rvac(�)) − 3.

As we saw in Section 2.3, rowvacuation serves as Panyushev’sP in type A, so #�̂+# RvacΦ+ (�2=−3)

(
�̂
)
=

2= − 3. Hence, #� + # Rvac(�) = =. �

Lemma 6.6. If � ∈ A(Φ+(�=)) is such that X(�) ≠ � and {U=−1, U=}∩� ≠ ∅, then #�+# Rvac(�) = =.

Proof. Assume without loss of generality that U= ∈ �. Let Φ′ be the maximal parabolic subroot system

of Φ+(�=) obtained by removing U= from the system of simple roots. Clearly, Φ′ ≃ �=−1. From

the fact that rowvacuation respects parabolic induction – that is, from Conjecture 2.11(iv) or, more

precisely, Proposition 2.10 – we know that Rvac(�) = Rvac(Φ′)+ (� \ {U=}). But since we know that

rowvacuation is P in type A, we know that # Rvac(Φ′)+ (� \ {U=}) = (=−1) − (#�−1) = =−#�. Hence,

#� + # Rvac(�) = =. (Note that we did not need the hypothesis X(�) ≠ �.) �

All together, Lemmas 6.4 to 6.6 imply Theorem 6.1. Hence, we have completed the proof of

Theorem 1.4.
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