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1. Introduction

The standard methods of constructing generalized free products of groups
(with a single amalgamated subgroup) and permutational products of groups are
to consider groups of permutations on sets. Although there is an apparent simil-
arity between these two constructions, the exact nature of the relationship is not
clear. The following addendum to [4] grew out of an attempt to determine this
relationship. By noting that the original construction of permutational products
(B. H. Neumann [7]) deals with a group of permutations on a group (although the
group structure has been previously ignored; see [7], [8]) we here give an extension
of the original permutational product-construction which yields both the general-
ized free product and the permutational products as groups of permutations on
groups. A generalized free product is represented as a group of permutations on the
ordinary free product of the constituents of the underlying group amalgam and a
permutational product is a group of permutations on the direct product of the
constituents of the amalgam.

It is also shown that this construction can be extended to other groups G con-
taining the constituents of the amalgam provided certain conditions hold; to
differentiate the general case from ordinary permutational products we call the
groups of permutations so obtained amalgamated products.

As in [4] an epimorphism can be constructed between suitable amalgamated
products and the wreath product embeddings of permutational products given in
[4] can then be extended to certain amalgamated products.

Finally, this construction also yields a class of related generalized regular
products (Theorem 4.6), which, so far as we know, is the only such class known,
besides ordinary permutational products (Allenby [2]) and some classes which
have been shown to exist by Wiegold [12].

2. Preliminaries

If x and y are elements of a group G, write y " 'xy = x* and x~ 'y 'xy =
[x, ¥]. Note that all mappings act on the right. If X; (i € I) are subgroups of G,
21
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then [X;] denotes the subgroup of G generated by {[x;, x;llx,e X;, x; € X;, i # j,
i,je I} and X7 the normal closure X; [X;, G] of X;in G. We shall say that a group
G generated by subgroups X; (i€ l) is a regular product of the X;, if G =~ F|N,
where F = IT*{X}i € I} is the (ordinary) free product of the X; and N < [X;}F
(Golovin [3]). Assume now that the index set I is ordered.

THEOREM 2.1 [3]. If a group G is generated by subgroups X; (i€ I), then G is a
regular product of the X, if and only if every element g if G has a unique regular
representation

g = Xy X" XU,
where x, € X, , u€ [X;]° and
i<y <t <i,.

If V'is a set of words, let ¥ (G) denote the V-verbal subgroup of G, i.e., the

subgroup of G generated by all values of the words of ¥'in G.

DEFINITION 2.2 (Moran [5}). Let V be.a set of words. The V-verbal product
Iy{X\ieI} of groups X, is F[V(F) n [X;), where F = IT*{X lie I}.

THeoREM 2.3 [5). If G = Iy{X\liel} and I =1, U I,, where I, n I, is
empty, then the subgroups generated by the X; (i€ I,) and X; (j € I,) are, respec-
tively, G, = I}{X}liel,} and G, = I}{X||jel,}, and G = G %, G,.

THEOREM 2.4 [6]). If X; (ieI) are groups and ¢; is a homomorphism of the
group X, for each i € I, then there exists a homomorphic mapping ¢ of II}{X lie I}
onto Iy{X;¢,|i € I’} whose restriction to the group X, is ¢ for every i€ I.

Suppose for each i € I, A; is a group containing a subgroup H; which is iso-
morphic to a fixed group H, say ¥, : H; = H. Let y;; = y;y; '. We change the
notation of [4] and define an amalgam of the 4, amalgamating the H; according
to the ¢,;; to be the system (A4;, H;, ¥;;i,je ). We denote this amalgam by
o/ = Am(A;, H;, ;5 i, j e I') and ordinarily think of the H; as being identified
by the ¥;; so the amalgam becomes the union of the A4; intersecting in H (or H,).
The A; are called the constituents of the amalgam and H is the amalgamated sub-
group.

A group G embeds the amalgam &7 if there exist isomorphisms ¢; : 4; —
A, = G such that (i) 4, n 4} = H' = G, (i) if he H, then hy; ', = hy;'¢;
and (iii) if /' € H', then h'¢; ' e H;and K'¢p; ", = Ko 'y, (i, j ).

The group G will be said to be generated by the amalgam </, if G embeds &/
and is generated by the embedded copy of .«7.

If G is the generalized free product on 2/ (this can be defined as the group
constructed in the following Example (3.6) (2)), then K is called a generalized
regular product on &/, if K embeds &/ and K =~ G/N, where N is a normal sub-
group of G contained in [4;]¢ (Wiegold [12]}).
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DeriNiTION 2.5 [11]. If V is a set of words, the group G is a generalized V-verbal
product of its subgroups G, (o« € M) with amalgamations G, 0 Gy = H,z (2 # ),
if

(i) G is generated by the G, (x € M) and
(i) V(G) n [G,I° = {1}.

THEOREM 2.6 [12]. If the free generalized V-product of A and B amalgamating
H and H¢ according to ¢ exists it is Go/ N, where

(i) Gy is the V-verbal product of A and B and
(ii) N is the normal closure in G, of the set of all elements of the form h™'(ho),
where h ranges over H.

Lemma 2.7. ([11], LemMA 7.9). Let G be any group and g,d e G such that
[d?, g] = 1. Then for eachr = O [g%, d) is,in the (r+1)-st term of the lower central
series of G, G, 41y

3. The construction

For simplicity we deal with only two groups here; an extension to an arbitrary
number of groups will be indicated later.

Let Am(A,, Ay; Hy, Hy; ), Y1, = ¥, be a given group amalgam. Suppose G
is any group containing isomorphic copies 4 of 4; (i = 1,2), where ¢, : A; = A}
(i = 1, 2), such that
(i) 4T n A7 = Hf n Hy, where H* = H;$; (i = 1,2), and
(ii) the isomorphism y* = ¢ |z, |y, from HY onto Hj acts as the identity
when restricted to H} n H.

Let H be the subgroup of G generated by H} and H; and suppose H N 43 =
HY. Let G = U zH, z € Z, be a coset decomposition of G relative to H. Assume
further that there is an automorphism t (called a switching map) of H such that
T|H} = y* and 7|H5 = * 1. Note that 72 = 1. Next let ¢ be any permutation
on Z of order two which fixes the coset representative of H and such that for all
z€ Z, if A3\ Hj meets zH, then 4T N (zo)H is empty. (E.g., see Example 3.6 (1)
which follows.) Define a function # on G by

(3.1 (zh)n = (zo)(ht), for zeZ, he H.

Clearly n* =1, so = = n~' and n e ¥(G), the group of all permutations

on G. Finally, assume (1n)4; < A3H.

Let p : G » Z(G) be the right regular representation of G. We shall now
prove that the amalgam &/ = A%p U n~1(A3p)n is a copy of Am(4,, A,; H,, H,;
¥) embedded in % (G). The subgroup of F(G) generated by the amalgam o7 will
be the required product.
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Clearly ATp = A, and n™'(4%p)n = A3p = A,. We first show that Hip =
n(Hyp)n (recall w = z~1).
Let h, € Hy and denote the image of /, under p by p,, . Then

(3.2) Pny, = TP, T, where u = h ¥,
forifzhe G,ze Z, he H, then

(zh)rnp,n = (zo ht)p,m

= (zohth y*)n
= (zo(hh)r)n  (* = 1|HY)
= z(hh,) (c*=7=1)
= (zh)py, -

Now let

(33) Pay = Tpa,mE AL p N (A p).

where a, € A} and a, € AY. Then
(3.4) 1p,, = a; € AT.

Let 1 = zh, where z represents H and 4 € H. Note 1n = (z6)(ht) = z(ht)e H
and
(Ompey 7 = (1nay)m
= (ayh)m, aye A5, e H  ((in)A; < A3H)
= (z'o)(h' ),
where ayh' = z'h'', 2’ € Z, k"' € H. By (3.3) and (3.4),
(3.5) (z'o)(h''t) = a, € AT,

so (z'c)H meets A7; hence no element of A3\ H; can be written as z'h*, h*e H,
that is, aj € H; . Since 1n € H, a, = (1)~ 'a,h’ must also be in Hn A3 = H;.
If a, = afy*, for some a} € Hy, then lna, = z(ht)(aty*) = z(ha?)r and (Ina,)n
= (zh)a}. But af = a, by (3.5), so a,; € Hf and as in (3.2) a, = a,y*. Hence
Hfp = Afp n n(A4;p)r, as required.

The group P(G, Z, o) generated by & in &(G) will be called a (G, Z, o)-
amalgamated product on &/, or more briefly, a (G, Z, o)-product on .

(3.6) ExaMPLEs. Throughout the following examples we consider the given
amalgam & = Am(A4,, A,; Hy, Hy; §).

Let G = A4, = A,/N be any ordinary regular product of A, and 4, (we assume
here that AT = A4; (i = 1, 2)). Then (i) and (ii) hold trivially because H; n H, =1.
It follows from the unique normal form for elements of G that H N 4, = H,,
for, if a,e A, n H and a, = hyh,c, hye H,, hye H,, ce [4,, A;], then
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1= hya; ' [a;', hdhyc = hy(a; 'hy)c’, ¢’ e[A;, A,],  so az'h, =1,

that is, a, € H,.

Choose a transversal Z of H. There is always at least one permutation ¢
satisfying the hypotheses of the construction, namely, the identity i on Z. For, if
zH meets A,\H,, then zh* = a, € A,\H,,s0 z = hiasc, hf e H,, a5 € A,\H,,
celdy, A,)Ifzh = a, € A, thenhiadich = a,,thatis, AT a3 c* = a,, hi* € H,,
ay* e A,NH,, c* e [4,, 4,], which is impossible by the uniqueness of the normal
form for elements. Thus zH n A, is empty. Finally, if 7 exists and 1 € Z, then
In = 1, so the condition (In)4, = A4, H can also always be satisfied here. The
main problem is, of course, the existence of . We now consider some important
cases where t can be shown to exist.

(1) PERMUTATIONAL ProDUCTS. Let G = A4, X A,; then H = H; x H, and the
switching map t exists, since it merely sends (k,, i,) € H to (h,¥ ™", 1) which
evidently defines an automorphism on H. Let S; be any transversal of H; in A,
(i = 1, 2), choose S; x S, as the transversal Z of H in G and let 6 be the identity
on Z. Note HA,=A, H, so (1n)4, < A, H. The group P=P(A4,; x A,,S; xS,,1)
is a permutational product on &/ as originally described by B. H. Neumann [7]
in 1954. (The term ‘permutational product’ was given by B. H. Neumann in 1960
([8]) to a certain permutation group on S; x S, X H; which is isomorphic to P
above.)

(2) GenerALIZED FREE PRODUCTS. Let G = A, * A4,, the ordinary free product
on A, and A4,; then H = H, * H,. By the fundamental property of free products
the isomorphisms ¢ : H, - H, < H and Yy "' : H, > H; = H can be extended
to a homomorphism t from H onto H. Since 12> = 1, t is an automorphism on H,
i.e., the switching map exists. Let Z be any transversal of H in G containing 1 and
let o be i. If ye P = P(A4, = A,, Z, i), then without loss of generality

(3.7) A= PaPiy " Pones Pa
where, if x ¢ H, p, then it can be assumed that a;¢ 4\ H,;,i=1,3,--, nand
a,eANH,,i=2,4,--- n=1.Ifn = 1, and y ¢ H, p, ¥ is said to have length »;
otherwise y has length zero.

In order to show P is the generalized free product on 7 it suffices to show that
X is non-trivial whenever the length » = 1. The action of p, on 1€ 4; % 4, is
1p,, = a, = (a,h{")h,, where a,hi' € Z, h, € H, so

(1pe, 7psy = a; b7 W a3
= (a; hy'hia, hz_l)hz

where a, h{'hia,h;' € Z, hy € H and (1)p,, pk, = ayhy *hayhy 'h.
Continuing this process,

ly =a h{'hia,h;'hy - - a,€ Ay = A,.
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Assume all pairs hj"h} are written in normal form as elements of 4, * A4,.
Suppose a;€ A,. Since a;¢ H, hiahy ¢ H for any h}, h% e H; in particular
hia;h3 ¢ H, for any A}, h} € H,. Therefore only contractions, but no cancella-
tion, can occur between the hj"’h;- and a; when reducing 1y to normal form. Thus,
1y # 1, which was to be shown.

(3) A retraction ¢ of a group G is an idempotent endomorphism of G, i.e.
¢2=¢:G - G. If H= G¢, then H is called a retract of G.

LEMMA 3.8 (Smel’kin [10]). Let G = A, *, A, be a V-verbal product of A,
and A,. Suppose ¢; is a retraction of A;, (i = 1,2). Then the subgroup H of G
generated by the retracts H, = A;¢;, (i = 1,2), is the V-verbal product of H,
and H,.

Now suppose H, and H, are retracts of 4, and 4,, i.e., H, and H, have
normal complements in 4; and A4, (in particular, suppose 4; is a regular product
A= HN;, i = (1,2)). Let ¥ be a verbal subgroup of A, * 4, and let G =
Ay #, A, be the V-verbal product of 4; and 4,. By the above Lemma 3.8 H =
H, %, H,, so 7 exists by an argument similar to that given in (2). That is, by
Theorem 2.4 an epimorphism t : H — H exists such that t|[H, = and t|H, = ¢ L.
Finally, 1 is an isomorphism because 72 = 1.

Before continuing with further examples consider the following special case
of Example (3) which shows that the amalgamated products will, in general, be
different from each other as V varies. (Of course, not always. Some amalgams can
only generate their generalized free products; see Example 4.12 [4].)

Suppose Hy and H, are V-verbal factors of 4, and A4,, say A; = A} =, H,
and 4, = Ay #p H,. Let G = A4, %, A,. Then H = H, %, H, is a V-verbal factor
of G, G = (A} #y A3) =, H, by the properties of V-verbal multiplication. Further-
more, the switching map 7 as defined above can be extended to an automorphism t’
of G of order two such that t'| 4} #, A’ is the identity on 4] #, 43 by Theorem 2.4,
Choose Z to be the normal complement (4} #y A45)° of Hin G, and let ¢ = 7'|Z.
Since Z = (A} #, A3)[A] =, A,, G], ¢ is a permutation on Z. It must be verified
that if 4, meets (zt')H, then (A,\H,) n zH is empty. Suppose zt'h = a; € 4,
for some z € Z. Applying 1’ to both sides of this equation, z(ht') = a; T € 4, #y H,.
Thus z = athic* for some af € A,, i3 € Hy,c* € [A4,, 4,1 If also zh* = a, €
ANH,, then z = hja,c', where A} e H,, a3 € A,N\H, and ¢’ € [4,, 4,). This
would imply the contradiction a;, = A3 € H,. Thus (4,\H,) N zH is empty.

Now we show

(3.9) P = P(G, Z,7|Z) = Ay #y Hy %, Aj.
Let ue A, and zh e G, where z€ Z, he H. Then
(zh)py = ((zh)u)r (o = 7'|Z)
= ((zhu)t')r" (7|4} is the identity on A})
= (zh)p.>
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thatis, P is generated by 4, p and (43 p)* = A} p. But these are just the right regular
representations of A; and A, over G, which generate the right regular representa-
tion of 4, #, A, over G, conpleting the proof of (3.9).

Note the condition that H, and H, be retracts in (3) is not necessary in order
that t exist; for example, Smel’kin [10] proved that if 4, and 4, are torsion free
abelian groups and V is the verbal subgroup of A4, # 4, corresponding to the
variety of nilpotent groups of class at most n, then H = H, %, H, © A, %, A,.

(4) IsoMorPHIC CONSTITUENTS. Suppose A; and A, are isomorphic, say
y: A, = A,, Yy = y|H,, and consider the V-verbal product 4; %, A,. Then 7
exists, for there is an isomorphism 1’ of order two from A, %, A, onto A4, %, A,
such that 7|4, = y and t'|4, = y~'. Take t = t'|H.

(5) RIGHT REGULAR REPRESENTATION. So far in the examples 4, N A4, =
{1} = G. At the other extreme, let &7 generate G, H; = H, = H < G, take 7 as
the identity on H; let Z be any transversal of H in G containing ! and let ¢ be the
identity on Z. Clearly = is the identity and P(G, H, i) is just the right regular rep-
resentation of G. In particular, an amalgam &7 can generate a group G if and
only if G is isomorphic to some amalgamated product on 7.

(3.11) THE GENERAL CASE. Suppose now that the amalgam has more than two
constituents. Suppose that for each i € I, A; is a group having a subgroup H; which
is isomorphic to a fixed group H', say ¥; : H; = H’ and set y;; = t//,-tllj‘1 tH, =
H;,i,jel, i # j. Let G be any group containing isomorphic copies 4;" of 4;, say
¢i:A; = A7, (iel), and suppose A N AT = H* n H} and ¢; 'Y,;¢; acts as
the identity on H* n H;", (i,je I, i # j). Let H be the subgroup of G generated by
the H, (ieI), and assume H n A} = H}, je I\{1}. Choose a transversal Z of
H in G and assume automorphisms 7; can be defined on H such that T HY = ¥,
T,|H} = ¢} and ;] H;S acts as the identity on Hy, (j, k e I\{1}, k # j). Define a
permutation ¢ on Z as before, except assume for all i,je I, i # j, if Af meets zH,
then both (Af\H;*) N (zo)H and (4¥\ H;*) n zH are empty. Finally, for each
jeI\{1}, let 7; be a permutation on G given by (zh)r; = (zo)(ht;),z€ Z, he H;
assume also that (1n;)4; = A;H, (je I\{1}). Then, as before, the amalgam is
isomorphic to U {(4;"p)"|i € I}, where =, is defined to be the identity on G. The
details are omitted.

4. An epimorphism

Let & = Am(A;, H; {5 8, j € I) be an amalgam and let G be a group con-
taining copies A} of the 4; as in Section (3.11).

Assume further that G is generated by the 4F and let P = P(G, Z, ¢) be an
amalgamated product on &/. A homomorphism 0 of G will be called a (G, Z, ¢)-
homomorphism, if the following conditions are satisfied:
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(i') there exist isomorphisms y;; : H,0 = H;0 such that Oy;; = ¥;;0, on H,
(jel, i #j).

(") Z8is a transversal of H) = (H;0lie I} in GO.

(iii") a permutation ¢’ :Z0 — Z0 exists as required in order to construct a
(GO, Z0, a’)-product on the factor amalgam F = Am(4,0, H;0, y;jli,je I,
i # j), such that in addition 8¢’ = 60 on Z, and

(iv') forallje I,j # 1, switching maps tj : H) — H0 exist such that 7j| H, 6 = y/};
and Tj|H;0 = (Y1) "
Now suppose 8 is such a (G, Z, o)-homomorphism; then, since H is generated

by the H;, 0t; = ;0 on H. Furthermore, permutations n; : G — G0 can be con-

structed as in (3.11) using ¢’ and 7} and

(4.1) on, = ,0, (jeLj#1).

Thus (175)4;0 = ((1n;)4;)0 < (4;H)0 = A;0HH, which is required to construct
a (GO, Z0, ¢')-amalgamated product on # using the switching maps 7;. Denote
the product depending on the y;; by P'(G8; Z0, a’, y;;) or merely by P'.

THEOREM 4.2, Let &/ and G be as above and suppose 0 is a (G, Z, ¢)-homomorph-
ism of G. Then there exists an epimorphism f from P = P(G, Z, ¢) onto P’ =
P'(GY, Z9, ', ;) extending the canonical epimorphisms (4;p)™ — (4,0p)*", (ieI).

Proor. The function 6 is an epimorphism. It follows from (4.1) that for each
a;e A}

(4.3) ;P ;0 = 0n;Pen;  (jel)

where, as in Section (3.11), n, and = are the identities on G and G0 respectively.
Thus, since P is generated by the (4p)™, to each x € P, there exists a unique
xf e P’ such that xf = 6(xf); xf is unique because 0 is an epimorphism. The re-
quired epimorphism f'is given by f: x — xf. (cf. Theorem 3.1, [4]).

We shall call f the natural homomorphism from P onto P’ when it exists.

The usual proof of the following well-known result uses directly the uniqueness
of the normal form in the generalized free product.

COROLLARY 4.4, Let G be any group generated by of . Then there exists a natural
homomorphism from the generalized free product on sZ onto G which acts as the
identity on the A;, (iel).

PROOF. (See Example (3.6), (2) and (5).) Consider the right regular represen-
tation of G, Gp as a product on G. There is a natural homomorphism 6 from
F = n*{A,|lie I} onto G extending the maps A; > 4; = G. Let Z = Z, Z, where
Z, is a transversal of Hin H ker 6 such that 1 e Z, < ker 8 and Z, is a transversal
of Hkerf in F, 1 € Z,. Then Z is a transversal of H in F which maps onto a
transversal Z0 of HO in F8 = G. Let ¢ be the identity on Z. Then if o', y;; and
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7; are taken to be identity maps, 8 is a (G, Z, 6)-homomorphism, so the result
follows by Theorem 4.2.

Note. Many times it will be convenient to choose Z as above in Corollary
4.4; this will be denoted by a remark such as ‘let Z = Z,Z, - - -, if no further
explanation is required. If no mention of ¢ is made it will be assumed to be the
identity on Z.

Now consider an amalgam on two groups 4; and 4,. Let G = 4, %, A, be
a verbal product. Choose a transversal Z; Z, of H in G as follows: let Z, be a trans-
versal of Hin AN, 1 € Z, < N, where N is the normal closure of the amalgamating
relations {A; '(h, )|k, € H,;}in G and let Z, be a transversal of HN in G, 1 € Z,.
(See Theorem 2.6.)

COROLLARY 4.5. Let G = A, %y, A, and Z,Z, be as above. If some P =
P(G, Z,Z,, o) exists which is a generalized V-verbal product on A, then P is the
free generalized V-verbal product on /.

Proor. Let K be the free generalized V-verbal product on o7 andlet8 : G —» K
be the natural epimorphism from G onto K. Then Z#8 is a transversal of H; in K.

Thus there is a natural epimorphism f from P onto Kp. If i is the canonical
epimorphism from Kp onto P, then y/f is the identity, so P =~ K which was to be
shown.

THEOREM 4.6. Let G = A, * A,[N be any regular product. If any amalgamated
product exists on G which is generated by the amalgam < , then a (G, Z, i)-amalgam-
ated product exists which is a generalized regular product on .

ProoF. Since at least one amalgamated product exists, the switching map
exists. Let Z be any transversal of H in G which maps onto a transversal Zf =
SxTof H x H, in A; x A,, where 0 is the canonical epimorphism from G onto
A, x A,. Then an amalgamated product P = P(G, Z, i) exists and maps onto the
permutational product P’ = P(Ax B; SxT), say ¢ : P — P'. Let f and f” be the
natural epimorphisms from the generalized free product on the amalgam onto
P and P’ respectively. Since

A= B

N

A% BIN—> AxB

is a commutative diagram (where the maps are the canonical epimorphisms) it
follows from Theorem 4.2 that f' = f¢, so ker f < ker f’. Allenby [2] has shown
that any permutational product is a generalized regular product, hence P is itself
a generalized regular product on the amalgam.

It is known that if the generalized direct product D on & = Am(4, B; H,,
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H,; ) exists, then all permutational products must be isomorphic to D, that is,
D is the free generalized abelian product on 7. The following examples show that
even though the free generalized V-product generated by o7, say K, exists, and an
amalgamated product P = P(G, Z, Z,, i) exists on A #, B where the transversal
Z,Z, is chosen as in Corollary 4.5 (so P is a generalized regular product mapping
onto K), P may not be isomorphic to K. (In this example K will exist, because the
generalized direct product does; see Wiegold [11], Theorem 4.6.)

Let N, stand for the verbal subgroup of 4 # B corresponding to the class of
nilpotent groups of class at most c.

Let A ® B denote the tensor product of the groups A and B. The regular N,-
product of groups 4 and B can be faithfully represented by

G ={(a,b,c)lacA,beB,ce A® B},

where

(a, b, c)ay, by, c,) = (aa,, bb;, cc,a;' ® b)
and

A= {(a,0,0)lac 4}, B = {(0,b,0)be B}
(Wiegold [11], p. 154).

ExaMPLE (4.7). If 4 and B are copies of the additive group of rational num-

bers, 0, then (using additive notation)

G = {(s,t,u)ls, t,uec Q}

where
(s, tu)(sy, ty, uy) = (S48, 4+, utu, —ts;),
and
(s,t,u)™t = (=5, —t, —u—1s).
Let

Hy, ={(21,0,0)nel}, H,={(0,3m,0)mel},
where I is the integers, and assume the amalgamating isomorphism y is given by
(2n,0,0) ="(0, 31, 0), n e I. Now
(4.8) [(2,0,0),(0,3,0)] = (0,0,6)
s0
(H,, Hy> = {(2n, 3m, 6p)|n,m,peI}.

The switching map 7 exists by the remark at the end of (3.6) (3).
If 4y = (2n,0,0), nel then hy(h;'y) = (2n, —3n,0) € N, where N is the
normal closure of {h,(k{ W)k, € H,} in G,

(2n, —3n,0)®"*" = (2n, —3n,2nt+3ns)e N
and
(2, =3, u)(—2,3,0) = (0,0, u—6)e N,
where s, t, u, € Q.
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Thus
N = {(2n, =3n,u)lnel,uec Q}
and
HN = {(2n,3m, u)ln,me I, ue Q}.

If u € Q, then u can be uniquely written u = 6k+u',0 S u' < 6, kel,u € Q.
Choose the transversal Z, of Hin HN to be

Z,={(0,0,4)0 < < 6,u'€Q}.
Similarly choose a transversal Z,, of HN in G; let

Z, = {5, 1,005 <20t <3,5,te0)
Then
Z.Z,={(s,t, )05 <2057 <3,05u <6,5,7,u €0}

is a transversal of H in G chosen as required in Coroliary 4.5.
If z = (0,0, 6p) = (0,0, 6)’ € H, then by (4.8) zr = (0, 0, 6)r* = [(0, 3, 0),
(2,0,0)]” = (0,0, —6)*. Thus if (2m, 3m, 6p) € H,

(2n, 3m, 6p)r = (2m, 3n, —6p—6mn).

Since 6 =i on Z,Z,, (s, t, u)n can now be calculated for any (s, t, u) € G.
Leta’ = (1,0,0)p and b’ = (0, 1, 0)p™. Then (a')* € Hp = Z(P); set d equal
to @’ in Lemma 2.7 and g = (b')¥ = (0,3, 0)p". Then [V, a’]€ G4yy, r 2 0.
Calculating,
34 S, @] = (3,3, 6).

Thus P is not nilpotent of any class, so P is not isomorphic to the free general-
ized nilpotent product of class 2, K.

Suppose now the generalized N,-product of an amalgam 2 exists. Does the
existence of this product force the switching automorphism to exist in A #y, B?

The following example due to Dr L. G. Kovacs shows this is not the case.
Let A = C,xC, and B = C, x C,, where C, is the cyclic group of order n; let
these cyclic groups be generated by a, b, ¢ and d, respectively. Amalgamate
<a, b*) with B via a ¢, b* <> d. Then in G = A #y, B we have [b?, e] = [b, €°]
= 1,ee {c, d}, so b? isin the centre of G and thus of H. A simple calculation using
Wiegold’s representation of G above shows that d does not commute with a. Thus
a switching automorphism does not exist. I thank Dr. Kovacs for allowing me to
use this example.

5. A wreath product embedding

It is convenient to generalize and unify the embeddings given in Theorems 4.1,
5.2 and 6.1 of [4] in the following way.

Assume that an amalgam & is given as in (3.11) and that some amalgamated
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product P = P(G, Z, ¢) on a group G exists generated by <. Let § be a (G, Z, 0)-
homomorphism, P' = P'(GO, Z8, ¢') and f: P — P’ the natural homomorphism.
Choose a set W of coset representatives of ker 6 in G. Thus, if de G, then d = wi,
we W, Aeker 0 and df = wh. Define [d8] = w and note [d0]0 = d6.

THEOREM 5.1. Suppose there exist homomorphisms o : P — Aut(ker 0) and
r: ker 0 » F(G) such that

(1) if g€ G, then there exists a unique Ar € (ker O)r = R such that g = [g0}ir,
(2) if y e P, then

(5.2) yT i)y = (@)
and (ker ry* < kerr (y € P).

Then there exists a monomorphism from P into the unrestricted permutational
wreath product

(5.3) Pp(ker 6)r Wr(P'; GO),
where the homomorphism B . P — Aut((ker 0)r) is given by
(5.4) f =%  (iekerf, yeP).

Proor. First note that (5.4) determines a homomorphism f as required.
Now let x € P. It follows from the proof of Theorem 4.2 if d € G, then

(5.5) dx0 = doxf,

so [d8]x6 = dfxf. Thus, by (1), if d € G, there exists a unique (4,(d0))r € (ker 9)r
such that

(5.6) [d0]x = [dOxf)(A(dO))r.

Define an element e, in the direct power of |GO| copies of Pp(ker 0)r,
(PB(ker 0)r)*?, by

(5.7) e,(d0) = xB(A;1(d0))r.  (db e GO)
LemMmA 5.8. The required monomorphism is given by

(5.9) x> xfef =exf (xeP).
Proor. It must be shown that

eo(xy)f = e.xfe,yf
or ey = e
which by the definition of conjugation in wreath products is equivalent to
(5.10) e.,(d0) = e (df)e,(dOxf) (d6 € GO).

Now by (1) and repreated use of (5.6), if d = [df]ir € G, with A € ker 6, then
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([d61Ar)xy = [doxfyfJ(As)r
= [doxfIy(A2)r
= [d61x(2; ' (d0))ry(Az)r
= [d0]xy(45)r
= ([d01Ar) (A~ )rxy(As)r
= ([d6]Ar)xy(Aqd)r,
where
Ay = Ay (d0)10M*
Ay = 2,1 (d0xf)4,
Ay = 2.7%(d6)4,
and Ay = A7y = 170N =55 40)) 1 (dOxf ) Ay, (dO)AT.
Thus (4,)r = 1, so
(2:7%(d0))r(4; (8] ))r(A.,(dO))r = 1

from which (5.10) follows.
To complete the proof suppose e, xf = 1. Then xf = 1, xf = 1 and for each
db e GO, (4,,(d0))r = 1. Let d = [d0]ir e G. Then

([d0)Ar)x = [dO]xAr™®

= [dOxf J(A(d0))rir?
= [d@]Ar.

Thus x = 1 completing the proof.

For example, if Theorem 5.1 is applied to permutational products where
H, <1 Aand H, < B, then ker 0 = H,; x H,, r can be chosen to be the restriction
of the right regular representation of G to Hy x H, and if y = p,, p}, * * * pa, € P,
where a; € 4, b; € B, then a is given by the equations y~'(py,s,)y = p,, Where
u=Mhhy, hyh,e H x H,, and (with the obvious meaning), z = a, b, - a,.
This is essentially the embedding Theorem 4.1 of [4] mentioned at the beginning
of this section. It can be shown that, in general, the term Pf is needed for per-
mutational products. On the other hand, the following shows why r is not always
set equal to p as above.

If G* is the generalized free product of 4 and B above (H normal in each),
then there is a homomorphism 6 : G* — A/H % B/H such that ker § = H. Con-
sidering both the right regular representations of G* and 4/H = B/H as amalgam-
ated products on G* and 4/H = B/H, and taking r = p as above, G* can be em-
bedded in PBH WrA/H % B{H, where PB is the group of automorphisms G* in-
duces on H, G*/Cg(H). This is not as good as the standard wreath product
embedding of G*, H Wr A/H % B/H. Instead if g* € G*, define (g*)ir = A7 'g*.
Then Hr commutes with P in #(G). This choice of r in (5.1) thus gives the expected
embedding of G*.
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It is also not difficult to see that Theorem 6.10 of [4] can also be extended to
amalgamated products. That is, suppose P(G, Z, ¢) is an amalgamated product on
&, HcU <A, H = U, € A,, and assume Z is chosen as in [4], i.e.,
Z =27,7,, where Z, is a transversal of U in G, where U = (U, U,>, and Z,
is a transversal f Hin U, 1€ Z, n Z,.

Then, if ¢ sends z,z, to z,2;, z, € Z,, z,,2z; € Z,, the subgroup U* of P
generated by U, p and (U, p)" is isomorphic to P,(U, Z,, 6|Z,).

We conclude by stating two of the many problems which suggest themselves
here and which we have not been able to answer.

(1) It is known that not every subgroup U* of a permutational product (i.c.,
an amalgamated product on A x B) need again be a permutational product even
though it is generated by U, € 4, and U, = 4,, where U, n H, = U, n H,
([91). Suppose U, and U, are so chosen in an amalgamated product P on a regular
product A * B/N, such that (i) P is a generalized regular product and (ii) the sub-
group U* of P is a generalized regular product (Allenby [1] gives some general
criteria for this to happen). When must the subgroup U* be an amalgamated pro-
duct on a regular product U, # U,/N, (where N, is possibly different from N)?

(2) Determine some classes of amalgamated products on verbal products
A %, B which are generalized V-verbal products, other than those on 4 * B and
AxB.
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