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1. Introduction

The standard methods of constructing generalized free products of groups
(with a single amalgamated subgroup) and permutational products of groups are
to consider groups of permutations on sets. Although there is an apparent simil-
arity between these two constructions, the exact nature of the relationship is not
clear. The following addendum to [4] grew out of an attempt to determine this
relationship. By noting that the original construction of permutational products
(B. H. Neumann [7]) deals with a group of permutations on a group (although the
group structure has been previously ignored; see [7], [8]) we here give an extension
of the original permutational product-construction which yields both the general-
ized free product and the permutational products as groups of permutations on
groups. A generalized free product is represented as a group of permutations on the
ordinary free product of the constituents of the underlying group amalgam and a
permutational product is a group of permutations on the direct product of the
constituents of the amalgam.

It is also shown that this construction can be extended to other groups G con-
taining the constituents of the amalgam provided certain conditions hold; to
differentiate the general case from ordinary permutational products we call the
groups of permutations so obtained amalgamated products.

As in [4] an epimorphism can be constructed between suitable amalgamated
products and the wreath product embeddings of permutational products given in
[4] can then be extended to certain amalgamated products.

Finally, this construction also yields a class of related generalized regular
products (Theorem 4.6), which, so far as we know, is the only such class known,
besides ordinary permutational products (Allenby [2]) and some classes which
have been shown to exist by Wiegold [12].

2. Preliminaries

If x and y are elements of a group G, write y~lxy = xy and x~1y~1xy =
[x, y]. Note that all mappings act on the right. If Xt (i e 1) are subgroups of G,
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22 R. J. Gregorac [2]

then [Xt] denotes the subgroup of G generated by {[xt, Xj]\x, e Xit Xj e Xj, i # j ,
i,j e /} and Xf the normal closure Xt [Xt, G] of Xt in G. We shall say that a group
G generated by subgroups Xt (i e I) is a regular product of the Xt, if G ^ F/TV,
where F = J7*{X,|? e / } is the (ordinary) free product of the Xt and TV £ [Z;]

F

(Golovin [3]). Assume now that the index set / i s ordered.

THEOREM 2.1 [3]. If a group G is generated by subgroups Xt (i e I), then G is a
regular product of the Xt if and only if every element g if G has a unique regular
representation

g = xxx2- • • xnu,
where xk e Xik, u e [X^ and

h < h < • • ' < in-

If V is a set of words, let V(G) denote the F-verbal subgroup of G, i.e., the
subgroup of G generated by all values of the words of V in G.

DEFINITION 2.2 [Moron [5]). Let V be.a set of words. The V-verbal product
n${Xi\ieI} of groups Xt is FjV{F) n [Z(]

F, where F = n*{Xt\ieI}.

THEOREM 2.3 [5]. If G = n${X,\ieI} and I = It u I2, where 1^ n 72 is
empty, then the subgroups generated by the X{ {i e / t ) and Xj (j e I2) are, respec-
tively, Gx = Il^Xilieli} and G2 = n*{Xj\jeI2}, and 0 = 0^^02.

THEOREM 2.4 [6]. If Xt (Jel) are groups and </>; is a homomorphism of the

group Xifor each i e I, then there exists a homomorphic mapping <p of 77*{Ar
i|/ e /}

onto n*{X;0;|/ e 1} whose restriction to the group Xt is (f>ifor every i e /.

Suppose for each i e I, At is a group containing a subgroup Ht which is iso-
morphic to a fixed group H, say ^ ; : Ht s H. Let i/ry = ^t^J1. We change the
notation of [4] and define an amalgam of the A, amalgamating the Hi according
to the ipij to be the system (Ai} Ht,rl/tJ;i,jeI). We denote this amalgam by
s/ = Am(At, H^ ij/jj; i,jel) and ordinarily think of the Ht as being identified
by the \jitj so the amalgam becomes the union of the At intersecting in H (or H^.
The A; are called the constituents of the amalgam and H is the amalgamated sub-
group.

A group G embeds the amalgam stf if there exist isomorphisms (j>t: At ->
A- £ G such that (i) A[ n A) = H' £ G, (ii) if h e H, then //t/rf1^. = hij/J^j
and (iii)if A ' e / / ' , then/j '^f1 e ^ i and A '^ rV , = h'^J^j (ijel).

The group G will be said to be generated by the amalgam stf, if G embeds srf
and is generated by the embedded copy of s4'.

If G is the generalized free product on si (this can be defined as the group
constructed in the following Example (3.6) (2)), then K is called a generalized
regular product on si, if K embeds si and K s G/N, where TV is a normal sub-
group of G contained in [A^0 (Wiegold [12]).
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[3] On permutational products of groups 23

DEFINITION 2.5 [11]. If Visa set of words, the group G is a generalized V-verbal

product of its subgroups Gx (a e M) with amalgamations Gx n Gp = H^ (a # /?),
' /

(i) G is generated by the Ga (a e M) and
(ii) V(G) n [GJG = {1}.

THEOREM 2.6 [12]. If the free generalized V-product of A and B amalgamating
H and Hcf> according to (j) exists it is Go/N, where

(i) Go is the V-verbal product of A and B and
(ii) N is the normal closure in Go of the set of all elements of the form h'^Qi^),
where h ranges over H.

LEMMA 2.7. ([11], LEMMA 7.9). Let G be any group and g,deG such that
\d2, g] = 1. Then for each r ^ 0 [g2*, d] is^in the (r + l)-st term of the lower central
series of G, G(r+1) .

3. The construction

For simplicity we deal with only two groups here; an extension to an arbitrary
number of groups will be indicated later.

Let Am{Av, A2; Ht, H2; i//), rl/12 = f , b e a given group amalgam. Suppose G
is any group containing isomorphic copies A* of At (i = 1, 2), where $. : A: s A*
{i = 1, 2), such that

(i) A\ n A\ = H* n H%, where H* = H^i (i = 1, 2), and
(ii) the isomorphism \j/* = <A71IHII/"/)2IH2 from H* onto H* acts as the identity
when restricted to H* n H*.

Let H be the subgroup of G generated by H* and H* and suppose H n A* =
H*. Let G = u zH, z e Z, be a coset decomposition of G relative to H. Assume
further that there is an automorphism T (called a switching map) of H such that
x\H* = xji* and T|/f* = i/**"1. Note that T2 = 1. Next let a be any permutation
on Z of order two which fixes the coset representative of H and such that for all
z e Z, if A*\H* meets zH, then ^4* n (z<r)//is empty. (E.g., see Example 3.6 (1)
which follows.) Define a function TC on G by

(3.1) (zh)n = (zff)(/iT), for z e Z, A e if.

Clearly n2 = 1, so n = n~l and 7r e Sf(G), the group of all permutations
on G. Finally, assume (\n)A% £ 4

Let p : G ->• S^(G) be the right regular representation of G. We shall now
prove that the amalgam ^ = A*p u n~l(A*p)n is a copy oiAm(A1, A2', Ht, H2;
\j>) embedded in £f(G). The subgroup of 6^{G) generated by the amalgam sf will
be the required product.
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Clearly A*p = Ax and 7i~1(/4*p)rc = A%p = A2. We first show that H*p -
n{H%p)n (recall n = n'1).

Let /zt e H* and denote the image of ht under p by pfcl. Then

(3.2) phl = npuit, where u = h^*,

for if zheG, z e Z, /z e H, then

(zh)npun = (zahx)pun

= 2(^0 (a2 = z2 = 1)

= {zh)phl.

Now let

(3.3) pai = npain e A\p n n(A*2p)%.

where flj e A* and a2e A*. Then

(3.4) l p a i = a i E ^ f .

Let 1 = zh, where z represents /f and he H. Note In: = (ZCT)(/ZT) = z(hz) e f̂
and

(l)7tpfl27t = (I7ta2)re

= (ai A')TI, a'2eA*, h'e H ((ln)A$ S ^Jfl)

= (z'a){h"T),

where a^ ' = z'h", z' e Z, h" e H. By (3.3) and (3.4),

(3.5) (z'a)(h"x) = aieA*1,

so (z'a)H meets A*; hence no element of A*\H* can be written as z'h*, h* e H,
that is, a'2e H*. Since l7t e H, a2 = ( l n ) " 1 ^ ^ must also be in / / n A*2 = /f*.
If a2 = aj^*, for some a* e H*, then l;ta2 = z(At)(flt^*) = z{haX)x and (\na2)n
= (zh)a*. But a* = ax by (3.5), so ax e/ff and as in (3.2) a2 = a^*. Hence
H*p = A*p n 7t(y4fp)7t, as required.

The group P(G, Z, a) generated by si in £f(G) will be called a (G, Z, o)-
amalgamated product on si, or more briefly, a (G, Z, a)-product on JS/.

(3.6) EXAMPLES. Throughout the following examples we consider the given
amalgam si = Am(At,A2;Hl,H2; $)•

Let G = At* A2/Nbe any ordinary regular product of Ax and A2 (we assume
here that A* = At (i = 1, 2)). Then (i) and (ii) hold trivially because H^ n H2 = \.
It follows from the unique normal form for elements of G that H c\ A2 = H2,
for, if a2e A2 n H and a2 = h1h2c, hleHt, h2eH2, c e [At, A2], then
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1 = hla21[a21,hl}h2c = hl(a2~
1h2)c', c'e[A1,A2], so alxh2 = 1,

that is, a2e H2.
Choose a transversal Z of H. There is always at least one permutation a

satisfying the hypotheses of the construction, namely, the identity i on Z. For, if
zH meets A2\H2, then zh* = a2 e A2\H2, so z = h*a*c, h* e Hx, a* 6 A2\H2,
ce [At, A2].lfzh = ax e A 1 ; then h\a*2ch = a l 5 that is, h**a**c* = ax,h\* e Hu

a** e A2\H2, c* e [A±, A2], which is impossible by the uniqueness of the normal
form for elements. Thus zH n ^ is empty. Finally, if x exists and 1 e Z, then
ITC = 1, so the condition (ln)A2 ^ A2H can also always be satisfied here. The
main problem is, of course, the existence of T. We now consider some important
cases where T can be shown to exist.

(1) PERMUTATIONAL PRODUCTS. Let G = Ax x A2\ then H = Hx><H2 and the
switching map x exists, since it merely sends (ht, h2)e H to (h2\jj~

l, h^xj/) which
evidently defines an automorphism on H. Let St be any transversal of i / ; in A:

(i = 1, 2), choose S^ x S2 as the transversal Z of H in G and let <7 be the identity
on Z. Note HA2 = A2H, so (1TT)^2 £ ^ 2 # - T f le group P = P(Ay xA2, S± x S^, /)
is a permutational product on J / as originally described by B. H. Neumann [7]
in 1954. (The term 'permutational product' was given by B. H. Neumann in 1960
([8]) to a certain permutation group on SxxS2x. Hx which is isomorphic to P
above.)

(2) GENERALIZED FREE PRODUCTS. Let G = Ax * A2, the ordinary free product
on Ax and A2; then H = Hx * H2. By the fundamental property of free products
the isomorphisms \j/ : Hx -* H2 c H and ij/'1 : H2 ->• Ht ^ H can be extended
to a homomorphism x from H onto H. Since x2 = 1, T is an automorphism on H,
i.e., the switching map exists. Let Z be any transversal of H'm G containing 1 and
let a be i. If % eP = P(A± * A2, Z, i), then without loss of generality

(3-7) X = P B l P a 2 - - - Pln-lPan

where, if % $ Hxp, then it can be assumed that at e Ax\Hx, i = 1, 3, • • •, « and
aieA2\H2, i = 2, 4, • • •, n-\. If n ^ 1, a n d ^ ^ - ^ i P , Z is said to have lengths;
otherwise % has length zero.

In order to show P is the generalized free product on si it suffices to show that
X is non-trivial whenever the length n ^ 1. The action of pai on \eAx*A2 is
lpfll = ai = (fli^i"1)''i> where a ^ r 1 e Z> hx^H, so

where axh~lh\a2h2
l eZ, h2 e H and (\)paipl2 = a

Continuing this process,
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Assume all pairs hj^h) are written in normal form as elements of Al * A2.
Suppose Oj-eAx. Since a^H, h*ajh2$H for any h*,h*eH; in particular
h*ajh* $ Ht for any h*, h* e H^ • Therefore only contractions, but no cancella-
tion, can occur between the hj^h) and a,- when reducing 1/ to normal form. Thus,
1/ T̂  1, which was to be shown.

(3) A retraction <f> of a group G is an idempotent endomorphism of G, i.e.
4>2 = 4> : G -> G. If H = G(j>, then H is called a retract of G.

LEMMA 3.8 (SmeVkin [10]). Let G = Ax *v A2 be a V-verbal product of Ay

and A2. Suppose 4>i is a retraction of Au (i = 1, 2). Then the subgroup H of G
generated by the retracts Ht = A^i, (/ = 1,2), is the V-verbal product of / / t

and H2 •
Now suppose Hl and H2 are retracts of At and A2, i.e., H^ and H2 have

normal complements in At and ^42 (in particular, suppose A{ is a regular product
4̂J * HiJNi, i = (1, 2)). Let V be a verbal subgroup of v4x * ^42 and let G =

A1 *v A2 be the F-verbal product of Ax and A2. By the above Lemma 3.8 H =
Hi *v H2, so T exists by an argument similar to that given in (2). That is, by
Theorem 2.4 an epimorphism x :H^> //exists such that x\Hx = \\i and z\H2 = ij/~1.
Finally, x is an isomorphism because x2 = 1.

Before continuing with further examples consider the following special case
of Example (3) which shows that the amalgamated products will, in general, be
different from each other as V varies. (Of course, not always. Some amalgams can
only generate their generalized free products; see Example 4.12 [4].)

Suppose Hl and H2 are F-verbal factors of At and A2, say A^ = A\ *v Ht

and A2 = A2 *v H2 • Let G = A^ *v A2. Then H - Hx*v H2 is a F-verbal factor
of G, G = (A[ *v A'2) *v H, by the properties of F-verbal multiplication. Further-
more, the switching map T as defined above can be extended to an automorphism T'
of G of order two such that x'\A\ *y A'2 is the identity on A\ *v A'2 by Theorem 2.4.
Choose Z to be the normal complement (A\ *v A'2)

G o f / / i n G, and let a = x'\Z.
Since Z = {A\ *Y A'2)[A\ *K A'2, G], a is a permutation on Z. It must be verified
that if Ax meets (zx')H, then ( ^ 2 \ ^ 2 ) n zH is empty. Suppose zx'h = ax e At

for some z e Z. Applying %' to both sides of this equation, z(hx') = atx' eAt *v H2.
Thus z = a\hlc* for some a^eA^hte H2,c* e [Ai,A2]. If also zh* = a2 e
A2\H2, then z = h\a'2d', where h\ eHy, a'2e A2\H2 and c' e [Ai,A2\. This
would imply the contradiction d2 - h\eH2. Thus (A2\H2) n z// is empty.

Now we show

(3.9) P = P{G, Z, T'|Z) s ^ ; *K //i *K J 2 .

Let w e A'2 and z/z e G, where ze Z, he H. Then

K = ((zh)x'u)n (a = t'|Z)
= ((zhu)x')x' (x'\A2 is the identity on A'2)
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[7] On permutational products of groups 27

that is, P is generated by A t p and (A'2 p)* = A'2 p- But these are just the right regular
representations of At and A'2 over G, which generate the right regular representa-
tion of At *Y A'2 over G, conpleting the proof of (3.9).

Note the condition that Ht and H2 be retracts in (3) is not necessary in order
that T exist; for example, Smel'kin [10] proved that if Ar and A2 are torsion free
abelian groups and V is the verbal subgroup of A^ * A2 corresponding to the
variety of nilpotent groups of class at most n, then H = H^Xy H2 ^ At-*v A2.

(4) ISOMORPHIC CONSTITUENTS. Suppose A± and A2 are isomorphic, say
y : Ax = A2, \j/ = y | / / i , and consider the F-verbal product At *VA2. Then x
exists, for there is an isomorphism T' of order two from Ay *v A2 onto At *v A2

such that T'\Ai = y and t'\A2 = y"1. Take T = x'\H.

(5) RIGHT REGULAR REPRESENTATION. SO far in the examples At n A2 =

{1} <= G. At the other extreme, let stf generate G, H^ = H2 = H <= G, take T as
the identity on H; let Z be any transversal of H in G containing 1 and let a be the
identity on Z. Clearly n is the identity and P(G, H, i) is just the right regular rep-
resentation of G. In particular, an amalgam s# can generate a group G if and
only if G is isomorphic to some amalgamated product on stf.

(3.11) THE GENERAL CASE. Suppose now that the amalgam has more than two
constituents. Suppose that for each i e I, Ax is a group having a subgroup Ht which
is isomorphic to a fixed group H', say i^;: Ht = H' and set il/tJ = ij/^J1 : Hi ^
Hj, i,jel, i #_/. Let G be any group containing isomorphic copies A* of Au say
(j>i : At ^ A*, (iel), and suppose A* n A* = H* n i/* and <j>rl$u<l>j acts as
the identity on 77* n TTj*, (1,7 e I, i ^ j). Let / / be the subgroup of G generated by
the Hf, (iel), and assume Hn A* = H*,jel\{\}. Choose a transversal Z of
HinG and assume automorphisms T,- can be denned on H such that Tj]H* = ij/*j,
Tj\Hf = il/if and Xj]H* acts as the identity on H*, (j, k e I\{\], k # j). Define a
permutation a on Z as before, except assume for all /, j e I, i # 7, if /i* meets zH,
then both (Af\H*) n (z<r)// and (Af\H^) n zH are empty. Finally, for each
7" e / \{1}, let 7t̂- be a permutation on G given by (zh)nj = (zff)(/jTy), z eZ, he H;
assume also that (171^,- = AjH, (je/\{1}). Then, as before, the amalgam is
isomorphic to u {(^fp^'l/e/}, where n^ is defined to be the identity on G. The
details are omitted.

4. An epimorphism

Let <s/ = Am(Ai, Ht; \j/tJ; i,j e I) be an amalgam and let G be a group con-
taining copies A* of the A{ as in Section (3.11).

Assume further that G is generated by the A* and let P — P(G, Z, a) be an
amalgamated product on stf. A homomorphism 0 of G will be called a (G, Z, <?)-
homomorphism, if the following conditions are satisfied:
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(i') there exist isomorphisms \j/[j : Ht9 s HjO such that Oip'u = ^tj9, on Ht

(ijel, i #7).
(ii') ZO is a transversal of HO = {H^ieiy in GO.

(iii') a permutation er' : ZO -> Z0 exists as required in order to construct a
(GO, ZQ, o-')-product on the factor amalgam !F = Am(Afi, Hx0, ^[j\i,jel,
i # 7), such that in addition Oa' = o9 on Z, and

(iv') for ally e I,j =£ 1, switching maps x] : H9 -> H9 exist such that t'^Hx 0 = i/^-
and z'j\Hjd = (^j)'1.

Now suppose 0 is such a (G, Z, cr)-homomorphism; then, since H is generated
by the Hu OT'J — xfi on H. Furthermore, permutations n] :G0-*G0 can be con-
structed as in (3.11) using a' and z] and

(4.1) 9n'j = nje, <jel,j±\).

Thus (lnj)AjO = ((Inj)Aj)0 S (AjH)9 = AjOHO, which is required to construct
a (GO, ZO, ff')-amalgamated product on J5" using the switching maps T'J. Denote
the product depending on the rj/'tJ by P'(G9; ZO, a', i//'tJ) or merely by P'.

THEOREM 4.2. Let s/ and G be as above and suppose 0 is a (G, Z, a)-homomorph-
ism of G. Then there exists an epimorphism f from P = P(G, Z, a) onto P' =
P'(G0, ZO, a', \j/'u) extending the canonical epimorphisms (Aip)1" -* (AiOp)"', (iel).

PROOF. The function Q is an epimorphism. It follows from (4.1) that for each
aj G A*

(4.3) njP^njO = On'jP^n'j (jel)

where, as in Section (3.11), n^ and %\ are the identities on G and GO respectively.
Thus, since P is generated by the (A*p)ni, to each xsP, there exists a unique
xfeP' such that xO = 0(xf); xfis unique because 0 is an epimorphism. The re-
quired epimorphism/is given b y / : x -» xf. (cf. Theorem 3.1, [4]).

We shall cal l / the natural homomorphism from P onto P' when it exists.
The usual proof of the following well-known result uses directly the uniqueness

of the normal form in the generalized free product.

COROLLARY 4.4. Let G be any group generated by si. Then there exists a natural
homomorphism from the generalized free product on <s/ onto G which acts as the
identity on the Ah (i e I).

PROOF. (See Example (3.6), (2) and (5).) Consider the right regular represen-
tation of G, Gp as a product on G. There is a natural homomorphism 0 from
F = n*{A,\ie 1} onto G extending the maps At -* At ^ G. Let Z = ZXZ2 where
Z2 is a transversal of H in H ker 9 such that 1 e Z2 c ker 9 and Z t is a transversal
of H ker 0 in F, 1 e Z x . Then Z is a transversal of H in F which maps onto a
transversal ZO of HO in F9 = G. Let a be the identity on Z. Then if a', ^'{i and
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x'j are taken to be identity maps, 6 is a (G, Z, <r)-homomorphism, so the result
follows by Theorem 4.2.

NOTE. Many times it will be convenient to choose Z as above in Corollary
4.4; this will be denoted by a remark such as 'let Z = Z1Z2- • •', if no further
explanation is required. If no mention of a is made it will be assumed to be the
identity on Z.

Now consider an amalgam on two groups Ax and A2. Let G = Ay *v A2 be
a verbal product. Choose a transversal Zx Z2 of Hin G as follows: let Z2 be a trans-
versal of/fin HN, 1 e Z2 s N, where iV is the normal closure of the amalgamating
relations {h~[ l (hl\l/)\h1 e H^ in G and let Zt be a transversal of HN in G, 1 e Zt.
(See Theorem 2.6.)

COROLLARY 4.5. Let G = Ay *v A2 and ZXZ2 be as above. If some P =
P(G, Zj Z2, o) exists which is a generalized V-verbal product on stf, then P is the
free generalized V-verbal product on s/.

PROOF. Let Khz the free generalized F-verbal product on si and let 9 : G -» K
be the natural epimorphism from G onto K. Then Z9 is a transversal of Ht in K.

Thus there is a natural epimorphism/from P onto Kp. If \j/ is the canonical
epimorphism from Kp onto P, then \jif is the identity, so P s K which was to be
shown.

THEOREM 4.6. Let G = At* A2JN be any regular product. If any amalgamated
product exists on G which is generated by the amalgam s/, then a (G, Z, ^-amalgam-
ated product exists which is a generalized regular product on s/.

PROOF. Since at least one amalgamated product exists, the switching map
exists. Let Z be any transversal of H in G which maps onto a transversal ZQ =
Sx T of Hl x H2 in Ax x A2, where 9 is the canonical epimorphism from G onto
Ax xA2. Then an amalgamated product P = P(G, Z, i) exists and maps onto the
permutational product P' = P{A xB; SxT), say <j> : P -• P'. Le t / and / ' be the
natural epimorphisms from the generalized free product on the amalgam onto
P and P', respectively. Since

A*B

A*BJN >AxB

is a commutative diagram (where the maps are the canonical epimorphisms) it
follows from Theorem 4.2 that/ ' = /<£, so ker/ s ker/'. Allenby [2] has shown
that any permutational product is a generalized regular product, hence P is itself
a generalized regular product on the amalgam.

It is known that if the generalized direct product D on s/ = Am(A, B; H1,
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H2; \j/) exists, then all permutational products must be isomorphic to D, that is,
D is the free generalized abelian product on stf. The following examples show that
even though the free generalized F-product generated by s/, say K, exists, and an
amalgamated product P = P{G, Zx Z2, /) exists on A *y B where the transversal
Zx Z2 is chosen as in Corollary 4.5 (so P is a generalized regular product mapping
onto K), P may not be isomorphic to K. (In this example K will exist, because the
generalized direct product does; see Wiegold [11], Theorem 4.6.)

Let Nc stand for the verbal subgroup of A * B corresponding to the class of
nilpotent groups of class at most c.

Let A ® B denote the tensor product of the groups A and B. The regular N2-
product of groups A and B can be faithfully represented by

G = {{a, b, c)\a e A,b e B,ce A ® B],
where

{a, b, cXa^b^Ci) = {aal,bb1,ccla'li <g> b)
and

A s {{a, 0, 0)|a € A}, B^ {(0, b, 0)|ft e B}

(Wiegold [11], p. 154).

EXAMPLE (4.7). If A and B are copies of the additive group of rational num-
bers, Q, then (using additive notation)

G = {(s, t, u)\s, t,ueQ}
where

(S, t,u)(st, t^Ui) = (s + S1,t + t1,U + U1~tS1),

a n d

(s, t,u)~l = (s, -t, -u-ts).
Let

Hx = {{In, 0, 0)|n e / } , H2 = {(0, 3m, 0)\m e I},

where / is the integers, and assume the amalgamating isomorphism x// is given by
(In, 0, 0) =[(0, In, 0), n e I. Now

(4.8) [(2, 0,0), (0, 3, 0)] = (0, 0, 6)

so
(Hx, H2y = {{In, 3m, 6p)\n, m,pe I}.

The switching map t exists by the remark at the end of (3.6) (3).
If h1 = (2n, 0, 0), n e / then h^h;1^) = {2n, -3n,0) e N, where N is the

normal closure of {/*i(A7V)l^i £ Hi} in G>

(2n, -3n, 0)(s'('u) = (2n, -3n, 2nt + 3ns) e JV
and

(2, - 3 , «)(-2, 3, 0) = (0, 0, K - 6 ) e iV,
where s, t, u, e Q.
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Thus
N= {(2n, -3n,u)\neI,ueQ)

and
HN = {(2n, 3m, u)\n, meI,ueQ}.

IfueQ, then u can be uniquely written u = 6k+u',0 ^ u' < 6, k e I,u' e Q.
Choose the transversal Z2 of H in HN to be

Z2 = {(0, 0, M')|0 ^ «' < 6, u' e Q}.

Similarly choose a transversal Zt, of HN in G; let

Zt = {(*', f', 0)|0 g J ' < 2, 0 ^ f < 3, *', f' s Q}.
Then

Z t Z 2 = {(s1, t', u')\0 ^ s' < 2,0 ^ z' < 3,0 ^ u' < 6, s', r', u' e Q]

is a transversal of H in G chosen as required in Corollary 4.5.
If z = (0, 0, 6p) = (0, 0, 6)" e H, then by (4.8) ZT = (0, 0, 6)TP = [(0, 3, 0),

(2, 0, 0)]" = (0, 0, -6)p . Thus if (2m, 3m, 6p) e H,

(2n, 3m, 6p)r = (2m, 3n, —6p — 6mn).

Since a = i on Zt Z2, (s, t, u)n can now be calculated for any (s, t, u) e G.
Let a' = (1, 0, 0)p and V = (0, 1, 0)p\ Then (a')2 e Hp s Z(P); set J equal

to a' in Lemma 2.7 and # = (b')*" = (0, ir, O)/)". Then [b1, a'] e G(r+1), r ^ 0.
Calculating,

Thus /* is not nilpotent of any class, so P is not isomorphic to the free general-
ized nilpotent product of class 2, K.

Suppose now the generalized ^-product of an amalgam si exists. Does the
existence of this product force the switching automorphism to exist in A *N2 Bl

The following example due to Dr L. G. Kovacs shows this is not the case.
Let A = C2y-C^ and B = C2xC2, where CB is the cyclic group of order n; let
these cyclic groups be generated by a, b, c and d, respectively. Amalgamate
{a, b2} with B via a <-• c, b2 <-* d. Then in G = A *N2 B we have [b2, e] = [b, e2]
= 1, e E {c, d}, so b2 is in the centre of G and thus of H. A simple calculation using
Wiegold's representation of G above shows that d does not commute with a. Thus
a switching automorphism does not exist. I thank Dr. Kovacs for allowing me to
use this example.

5. A wreath product embedding

It is convenient to generalize and unify the embeddings given in Theorems 4.1,
5.2 and 6.1 of [4] in the following way.

Assume that an amalgam s/ is given as in (3.11) and that some amalgamated
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product P = P{G, Z, a) on a group G exists generated by sf. Let 9 be a (G, Z, a)-
homomorphism, P' = P'(G9, Z9, a') a n d / : P -> P' the natural homomorphism.
Choose a set PF of coset representatives of ker 9 in G. Thus, if de G, then d = wX,
w eW, Xe ker 9 and d9 = w9. Define [<#] = w and note [</0]0 = d9.

THEOREM 5.1. Suppose there exist homomorphisms u.;P-* Aut(ker 9) and
r : ker 9 -* «^(G) such that

(1) if g e G, then there exists a unique Xr e (ker 9)r = R such that g = \g9\kr,
(2) ify e P, then

(5-2) y-\*.r)y = {nr

and (ker r)3'* c ker r (^ e P).

TAen /Aere exw?5 a monomorphism from P into the unrestricted permutational
wreath product

(5.3) P£(ker 9)r Wr(P'; G9),

where the homomorphism ft : P -* Aut((ker 9)r) is given by

(5.4) Xr>f = (Xya)r (X e ker 9, y e P).

PROOF. First note that (5.4) determines a homomorphism j6 as required.
Now let x eP. It follows from the proof of Theorem 4.2 if de G, then

(5.5) dx9 = ddxf,

so [d9]x9 = ddxf. Thus, by (1), if de G, there exists a unique (Xx(d9))r e (ker 9)r
such that

(5.6) [d9]x = [^/](A,(rf0)>.

Define an element ex in the direct power of \G9\ copies of P/J(ker 9)r,
9)rfe, by

(5.7) ex(d9) = xp(X;\d9))r. (d9eG9)

LEMMA 5.8. The required monomorphism is given by

(5.9) x^xfex' = exxf (xeP).

PROOF. It must be shown that

= exxfeyyf
xf'

XV "™" X V

which by the definition of conjugation in wreath products is equivalent to

(5.10) exy(d6) = ex(d9)ey(d9xf) (d9eG9).

Now by (1) and repreated use of (5.6), if d = [d9]Xr e G, with X e ker 9, then
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{\dff\h)xy =

where
Ay = Xxy(d6)Xixy)*

A2 = A^OMx/Mi

= \dff]xy{A3)r
= (ldOVr)(rl)
= {[_dff]Xr)xy{AA)r,

and A4 = X~(xy)xA3 = X-(xy)"X;yx(d6)X;1(ddxj)Xxy(dd)X{xy)".

Thus (Ajr = 1, so

from which (5.10) follows.
To complete the proof suppose exxf = 1. Then xf = 1, x/? = 1 and for each

d6eG6, (Xxy(dd))r = 1. Let d = [d6]XreG. Then

(\dff\kr)x =

= \_d9xj-}{Xx{dd))rXrxl)

Thus x = 1 completing the proof.
For example, if Theorem 5.1 is applied to permutational products where

# ! <i A and H2 <i 5, then ker 0 = H1xH2,r can be chosen to be the restriction
of the right regular representation of G to Hy x /f2 and if 7 = pai pj2 • • • pa<t e P,
where atsA, bjeB, then a is given by the equations y~1(phlh2)y = P«> where
M = /JI/J2> ^1^2 e Hl xH2, and (with the obvious meaning), 2 = axb2- • • an.
This is essentially the embedding Theorem 4.1 of [4] mentioned at the beginning
of this section. It can be shown that, in general, the term Pfi is needed for per-
mutational products. On the other hand, the following shows why r is not always
set equal to p as above.

If G* is the generalized free product of A and B above (H normal in each),
then there is a homomorphism 0 : G* -> A\H * B/H such that ker 6 = H. Con-
sidering both the right regular representations of G* and A\H * B\H as amalgam-
ated products on G* and A/H * BjH, and taking r = p as above, G* can be em-
bedded in PfSH WrA/H * B/H, where P0 is the group of automorphisms G* in-
duces on H, G*/CG.(H). This is not as good as the standard wreath product
embedding of G*, H WrAjH*BjH. Instead if g* e G*, define (g*)Xr = X~xg*.
Then Hr commutes with P in £?{G). This choice of r in (5.1) thus gives the expected
embedding of G*.
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It is also not difficult to see that Theorem 6.10 of [4] can also be extended to
amalgamated products. That is, suppose P(G, Z, a) is an amalgamated product on
s£, H^ £ t/x £ Ax, H2 £ U2 £ A2, and assume Z is chosen as in [4], i.e.,
Z = ZtZ2, where Zt is a transversal of U in G, where U = (Ut, t/2>, and Z2

is a transversal of H in £/, 1 6 Zt n Z2.
Then, if a sends z±z2 to z ^ , Z ieZ j , Z2, Z2 e Z2, the subgroup U* of P

generated by Utp and (U2p)n is isomorphic to /^(t/, Z2, CT|Z2).

We conclude by stating two of the many problems which suggest themselves
here and which we have not been able to answer.

(1) It is known that not every subgroup U* of a permutational product (i.e.,
an amalgamated product o n ^ x 5 ) need again be a permutational product even
though it is generated by Ut £ Ax and U2 £ A2, where U^n Hx = U2 n Ht

([9]). Suppose Ul and U2 are so chosen in an amalgamated product P on a regular
product A * BjN, such that (i) P is a generalized regular product and (ii) the sub-
group U* of P is a generalized regular product (Allenby [1 ] gives some general
criteria for this to happen). When must the subgroup U* be an amalgamated pro-
duct on a regular product Ux * U2/N1 (where A^ is possibly different from JV)?

(2) Determine some classes of amalgamated products on verbal products
A *v B which are generalized F-verbal products, other than those on A * B and
AxB.
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