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QUASIGROUP IDENTITIES AND 
MENDELSOHN DESIGNS 

F. E. BENNETT 

1. Introduction. A quasigroup is an ordered pair (g, •), where Q is a set and 
(•) is a binary operation on Q such that the equations ax — b and ya — b are 
uniquely solvable for every pair of elements a,b in Q. It is well-known (see, 
for example, [11]) that the multiplication table of a quasigroup defines a Latin 
square, that is, a Latin square can be viewed as the multiplication table of a 
quasigroup with the headline and sideline removed. We are concerned mainly 
with finite quasigroups in this paper. A quasigroup (<2, •) is called idempotent 
if the identity x2 = x holds for all x in Q. 

The spectrum of the two-variable quasigroup identity u(x,y) = v(x,y) is the 
set of all integers n such that there exists a quasigroup of order n satisfying 
the identity u(x,y) = v(x,y). It is particularly useful to study the spectrum of 
certain two-variable quasigroup identities, since such identities are quite often 
instrumental in the construction or algebraic description of combinatorial designs 
(see, for example, [1, 22] for a brief survey). 

If 02? ®) is a quasigroup, we may define on the set Q six binary operations 
®(1,2,3),<8)(1,3,2),®(2,1,3),®(2,3,1),(8)(3,1,2), and 0(3,2,1) as follows: 
a (g) b = c if and only if 

a <g> (1,2, 3)b = c,a® (1, 3,2)c = 6, b ® (2,1,3)a = c, 

ft <g> (2,3, l)c = a, c ® (3,1,2)a = ft, c ® (3,2, \)b = a. 

These six (not necessarily distinct) quasigroups (Q,®(iJ,k)), where 
{/,./,&} = {1,2,3}, are called the conjugates of 02,®) (see [40]). If the mul­
tiplication table of a quasigroup 02?®) defines a Latin square L, then the six 
Latin squares defined by the multiplication tables of its conjugates (g, ®(/,y, k)) 
are called the conjugates of L. It is fairly well-known (see, for example, [29]) 
that the number of distinct conjugates of a quasigroup (Latin square) is always 
1, 2, 3 or 6. The interested reader may wish to refer to [11] for more details 
pertaining to Latin squares. 

Two quasigroup identities u\(x,y) = U2(x,y) and v\(x,y) — V2(JC, j ) are said 
to be conjugate-equivalent if when (<2, •) is a quasigroup satisfying one of them, 
then at least one conjugate of (2, •) satisfies the other. For example, it is known 
(see [1]) that the identity (yx • y)y = x is actually equivalent to the identity 
(y • xy)y = x, and it is conjugate-equivalent to the identities (y • yx)y = x and 
(yx -x)y = x. Consequently, the spectrum of each of these identities is the same. 
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Two quasigroups (Q, •) and (g, *) defined on the same set Q are said to be 
orthogonal if the pair of equations x • y = a and x * y = b, where a and h are 
any two given elements of Q, are satisified simultaneously by a unique pair of 
elements from Q. Equivalently, we say that (<2, •) and ((?,*) are orthogonal if 
x • y — z -1 and x *y — z *r together imply x = z and y — t. We remark that when 
two quasigroups (Q, •) and (Q, *) are orthogonal, then their corresponding Latin 
squares are also orthogonal in the usual sense. A quasigroup (Latin square) which 
is orthogonal to its (/,y, &)-conjugate is called (/,/, k)-conjugate orthogonal A 
(2, 1, 3)-conjugate orthogonal quasigroup (Latin square) is more commonly 
called self-orthogonal. Orthogonality relations between pairs of conjugates of 
quasigroups (Latin squares) have been studied quite extensively, and the reader 
is referred to [1] for a brief survey. 

In this paper, we investigate the spectrum of the identity (yx • y)y — x which, 
in the terminology of Trevor Evans [13], is a representative of the class of "short 
conjugate- orthogonal identities" (see [13, Theorem 6.2] and more recently [1, 
Proposition 1.3]). A quasigroup satisfying the identity (yx • y)y = x has the 
interesting property of being orthogonal to its (2, 3,1)-, (3, 1, 2)-, and (3, 2, 1)-
conjugate. In particular, idempotent models of (yx • y)y — x can be associated 
with a class of resolvable Mendelsohn designs, which we briefly describe in 
the next section. It is shown that the spectrum of (yx • y)y = x contains all 
integers n ^ 1 with the exception of n — 2,6 and the possible exception of 
n e {10,14,18,26,30,38,42,158}. It is also shown that idempotent models of 
(yx ' y)y — x e x i s t for all orders n > 174. We shall employ both direct and 
recursive methods for constructing quasigroups, including the use of pairwise 
balanced designs and related combinatorial structures. The main objective of 
this paper is to provide a supplement to [1] and the much earlier work of Trevor 
Evans [13]. 

2. Quasigroups associated with Mendelsohn designs. In what follows, we 
shall adapt the notation and terminology of Hsu and Keedwell [20] and Keedwell 
[21] relating to Mendelsohn designs. We shall provide only a brief description 
here and for more details on Mendelsohn designs the interested reader is referred 
to [3, 4, 5, 20, 21, 31-33]. 

A (v,Af, \)-Mendelsohn design (briefly (v,/T, 1)-MD) is a pair (X, # ) where 
X is a v-set (of points) and *B is a collection of cyclically ordered subsets of X 
(called blocks) with sizes in the set K such that every ordered pair of points of 
X are consecutive in exactly one block of *B. 

If (X,#) is a (v ,# , l ) -MD with X = { l , 2 , . . . , v } and K - {*i, Jfc2,..., M 
where Y^i^i^s^ = v — 1, then (X1 $) is called loosely resolvable if its blocks 
can be partitioned into v parallel classes such that the set theoretic union of 
the elements in the blocks of the y-th parallel class is X — {/}. If each parallel 
class contains one block of each of the sizes k\, £2,.. •, ks, then (X, <B ) is called 
precisely resolvable. The (v, K, 1)-MD is called x-fold perfect if each ordered pair 
of points of X appears /-apart in exactly one block of <B for all t — 1,2,..., r. 
If K = {k} and r = k — 1, then the design is called perfect. 
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It is well-known [32] that an idempotent semisymmetric quasigroup 
(g, •)? {x2 = x, (xy)x ~ y,x(yx) — y}, corresponds to a Mendelsohn triple 
system, with (x,y,z) as a cyclically ordered triple if and only ifx-y = z, where 
x , j , z are distinct and x2 — x for all x. It is also known [5] that idempotent 
quasigroups satisfying the identity (xy • y)y — x correspond to a class of resolv­
able Mendelsohn triple systems. Mendelsohn [31] associated idempotent models 
of the identity (x • yx)y — x with perfect Mendelsohn designs having block size 
4. Note that this identity is also conjugate-equivalent to the identity yx - xy — x, 
called Stein's third law. If we do not restrict our attention to Mendelsohn designs 
with uniform block size k, for some integer k ^ 3, then a result of Keedwell [21] 
provides us with a large variety of quasigroups which can be associated with 
2-fold perfect loosely resolvable Mendelsohn designs. A very brief description 
of the construction is presented here. 

Let \Q\ — v and suppose that (Q1 •) is an idempotent (3, 2, l)-conjugate 
orthogonal quasigroup. Let (0, *) denote the (3, 2, l)-conjugate of (£?,-)• We 
can then define the blocks of a 2-fold perfect loosely resolvable (v,A^ 1)-MD 
as follows. For the block containing a of the x-th parallel class, the right-hand 
neighbour of aisa-x and the left-hand neighbour of a is a*x. This construction 
produces well-defined blocks of size k ^ 3 in K, and it can be verified that the 
resulting design is a 2-fold perfect loosely resolvable (v,K,1)-MD. 

It is fairly evident from our previous discussions that idempotent models of 
(yx-y)y — x can be assocaaiated with 2-fold perfect loosely resolvable (v, K, 1)-
MDs. As already mentioned, we know that idempotent commutative models of 
the identity (yx • y)y = x, which necessarily satisfy (xy - y)y = x, correspond 
to resolvable Mendelsohn triple systems. For some other quasigroups satisfying 
short conjugate-orthogonal identities, which can be associated with Mendelsohn 
designs, the reader is referred to [1]. 

3. Direct and recursive constructions of quasigroups. In what follows, 
we shall be concerned mainly with finite quasigroups. We shall describe some 
of the techniques for constructing quasigroups which satisfy some particular 
two-variable identity u(x,y) — v(x,y). 

The most direct method of constructing finite models of a quasigroup ((?,•) 
satisfying u(x,y) — v(x,y) is to look for a model of the identity of the form 
x-y = Ax + jLxy, where the elements lie in a finite field (or finite near field). This 
technique is fairly well-known and has been used quite extensively (see, for 
example, [15, 28, 31, 34, 40]). In particular, for idempotent models, we shall 
look for models of the identity of the form x-y = AJC + (1 — X)y in GF(q), 
where q is a prime power and A ^ 0 or 1. This will require finding a solution to 
some polynomial equation f(\) = 0 in GF(q), depending on the identity being 
investigated. We present the following useful example. 

Example 3.1. Consider the identity (yx -y)y — x, which is under investigation. 
This identity does not imply the idempotent law x2 — x. If, however, we are 
interested in idempotent models of (yx-y)y = x, we may look for models of the 
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identity of the form x-y = \x + (l — X)y, where A ^ 0 or 1 and the polynomial 
equation/(A) = A3 — A2 + 1 = 0 is satisfied in GF(p). If /(A) has a root in 
GF(p), then this value of A yields a solution in GF(p), and hence an idempotent 
model of the identity in GF(p). For example, A = 2 yields an idempotent model 
in GF(5), while A = 4 yields an idempotent model in GF(1). If /(A) does not 
have a root in GF(p), then there is an extension field GF(p3) in which /(A) 
has a root, and this root yields an idempotent model in GF(p3). For example, 
there are idempotent models in GF(23) and GF(33). In other words, there is 
an idempotent quasigroup satisfying (yx • y)y = x for orders 5, 7, 8 and 27. In 
actual fact, for all primes p < 300, it can readily be verified that /(A) has a 
root in GF(p) (and hence produces an idempotent model in GF(p)) except for 
p e {2, 3, 13, 29, 31, 47, 71, 73, 127, 131, 151, 163, 179, 193, 233, 239, 257, 
269, 277}. 

Having found models of the two-variable quasigroup identity u(x,y) — v(x, v) 
using finite fields (or finite near fields), one may recursively construct other 
models by various techniques. In what follows, we shall describe some of these 
techniques. 

The direct product construction is well-known. 

THEOREM 3.2. Let (P, •) and (Q, *) be two quasigroups satisfying the identity 
u(x,y) = v(x,y), where \P\ — m and \Q\ = n. Then their direct product 
(P x Q,®) is a quasigroup of order mn satisfying u(x1 y) = v(x, y). Moreover, 
if (P, •) and (Q1 *) are idempotent, so is ( P x Q , ®). 

Example 3.3. Using the fact that there are idempotent quasigroups of orders 
5, 7 and 8 satisfying the identity (yx -y)y = x (see Example 3.1), we can apply 
Theorem 3.2 to get idempotent models of (yx • y)y — x of orders 5r • Is • 8', 
where r, s, t are non-negative integers. 

Our next construction is a generalized form of the above direct product con­
struction for quasigroups, and it is originally due to Sade [38] who called it 
"produit direct-singular". This construction was subsequently generalized and 
used extensively in various ways by C. C. Lindner (see, for example, [23-26]). 
We shall adapt the definition of Lindner in the theorem which follows, and the 
reader is referred to [24] for all undefined terms. 

THEOREM 3.4. (C. C. Lindner [24]) Let (V, •) be a discrete w(x,y) — v(x1y)-
idempotent quasigroup. Further let (Q, *) be a quasigroup satisfying w(x,y) — 
v(x, v) and containing a subquasigroup (P, *). Let P — Q—P and suppose it is 
possible to define onP a binary operation <g) (not necessarily related to *) so that 
(P, 0 ) is a quasigroup satisfying w(x,y) = v(x,y). Let S — PU(P xV). Then the 
singular direct product (5, 0 ) ofV and Q satisfies the identity w(x,y) = v(x1y). 
Moreover, if\V\ = v, \Q\ = q, \P\ —p and \P\ = q—p, then \S\ ~ v(q—p)+p. 

We wish to remark, as Lindner himself has pointed out, that in the statement of 
Theorem 3.4 only the quasigroup (V, •) need be idempotent and also (V', •) is the 
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only quasigroup that is required to be a discrete w(x1 y) = v(x,_y)- quasigroup. 
Of course, if (Q, *) is an idempotent quasigroup, then the singular direct product 
(S, 0 ) of V and Q will also be an idempotent quasigroup. 

Example 3.5. Let (V, •) be an idempotent quasigroup of order 7 satisfying 
the identity (yx • y)y = x. Let ( g , *) be an idempotent quasigroup of order 5 
satisfying the identity (yx • y)y — x based on the set Q = { 1 , 2 , 3 , 4 , 5 } . Let 
P = {5} and on P — Q — P = {1,2, 3,4} define the binary operation <g) using 
the multiplication table given below. 

0 1 1 2 3 4 
1 1 3 4 2 
2 3 1 2 4 
3 4 2 1 3 
4 | 2 4 3 1 

Now it is readily checked that (P ,®) is a quasigroup of order 4 satisfying the 
identity (yx -y)y — x. It is also easy to verify that (V, •) is an idempotent discrete 
(yx-y)y — x quasigroup and the singular direct product (S, ®) of V and Q is an 
idempotent quasigroup of order 29 = 7(5 — 1) + 1 satisfying (yx • y)y = x. Note 
that this is an addition to the list given in Example 3.1, where constructions 
using finite fields were used. 

While the direct product and singular direct product constructions are useful 
tools in the construction of quasigroups satisfying two-variable identities, it is 
fairly obvious that there are limitations with respect to their ability to determine 
the spectrum. In general, the most effective recursive method of construction in 
investigating the spectra of two-variable quasigroup identities makes use of the 
concept of pairwise balanced designs (PBDs) and related combinatorial designs. 
In what follows, we shall describe the techniques involved. However, the inter­
ested reader is referred to [1] or [8, 17, 45] for all undefined terms associated 
with PBDs and related designs. 

Construction 3.6. Let ( g , <B) be a PBD B(K, 1; v) and for each block B e *B 
let o(B) be a binary operation on B so that (#, o(B)) is an idempotent quasigroup. 
Define a binary operation (•) on Q by x -x — x for all x G Q, and x -y = xo(B)y, 
where x ^ y and B is the unique block in *B containing x and _y. It is well-known 
and easy to see that ( g , •) is an idempotent quasigroup of order v. 

More important is the fact that PBDs can be used to investigate the spectrum of 
certain collections of two-variable quasigroup identities. The following theorem 
is now well-known (see, for example, [14, 16, 41]) and has been used quite 
extensively. 

THEOREM 3.7. Let V be a variety (more generally universal class) of algebras 
which is idempotent and which is based on two-variable identities. Suppose that 
there is a PBD B(K1 l ;v) such that for each block of size k G K there is a 
model ofV of order k, then there is a model ofV of order v. 
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We shall denote by B(K) the set of all integers v for which there exists a 
PBD B(K, 1;v). We briefly denote by B(k\,k2,...,kr) the set of all integers v 
for which there is a PBD B({k\,k2,... ,£,-}, l;v). R. M. Wilson's remarkable 
theory concerning the structure of PBD-closed sets (see [46-48]) often provides 
us with some form of asymptotic results in the following theorem. 

THEOREM 3.8. (R. M. Wilson [46-48]) Let K he a set of positive integers and 
define the two parameters: 

a(K) = g-cd{k-\\k€K}, and 

(3(K) = g-c-d{k(k-\):keK}. 

Then there exists a constant C (depending on K) such that, for all integers 
v > C , v eB(K)ifandonlyifv-l = 0(mod a(K)) and v (v- l ) = 0(mod (3(K)). 

Example 3.9. Using finite fields in Example 3.1, we constructed idempotent 
quasigroups of orders 5, 7 and 8 satisfying the identity (yx-y)y = x. If we let K = 
{5,7,8} in Theorem 3.8, then a(K) = 1 and 0(K) = 2, and consequently the 
theorem guarantees v G 5(5,7, 8) for all sufficently large values of v. Theorem 
3.7 then further guarantees the existence of idempotent quasigroups satisfying 
(yx -y)y — x for all sufficiently large orders, where the term "sufficiently large" 
is unspecified. 

As already mentioned, the identity (yx-y)y = x does not imply the idempotent 
identity x2 = x. Consequently, while Theorem 3.7 usually has a dramatic effect 
in investigating the spectrum of certain collections of two-variable identities, 
the requirement that the variety V be idempotent is a definite drawback in some 
cases. To get around this, we sometimes use the notion of a group divisible 
design (GDD). 

The group-type (or type) of a GDD (X, Q, <B) is the multiset {\G\ : G G Ç] 
and we usually use the "exponential" notation for its description: a group-type 
V2J3k... denotes / occurrences of groups of size \J occurrences of groups of 
size 2, and so on. 

Construction 3.10. Let ( £ , £ , # ) be a GDD GD(K,l,M;v) and for each 
group G E Q let o(G) be a binary operation on G so that (G, o(G)) is a 
quasigroup (not necessarily idempotent). Further, for each block B G (B, let 
o(B) be a binary operation on B so that (#, o(B)) is an idempotent quasigroup. 
Define on Q the binary operation (*) by x * y = x o (G)y if x and y belong to 
the group G G Q (in particular, x * x — x o (G)x for all x G Q, where G is the 
group in Q containing x), and x*_y = x o(B)y, if x ^ y and the pairset {x,y} 
belongs to the block B G (B. It is readily checked that (g, *) is a quasigroup of 
order v (cf. [45]). 

Unfortunately, this construction of quasigroups using GDDs does not neces­
sarily preserve two-variable identities as C. C. Lindner has pointed out in [27]. 
However, Lindner [27] (see also Ganter [16] for a generalization) was able to 
use the concept of a discrete model of a two-variable identity to obtain the 
following result. 
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THEOREM 3.11. Let {Q,Ç ,{B)be a GDD and ( g , *) a quasigroup constructed 
from ( g , Q, # ) such that the quasigroup (G, o(G)) constructed on each group 
G in Q satisfies the identity u{x,y) — v(x,y) and the quasigroup (P,o(P)) 
constructed for each block B in *B is an idempotent discrete model of u(x,y) = 
v(x, y). Then the quasigroup ( g , *) satisfies the identity u(x,y) = v(x,y). 

We wish to remark that in the statement of Theorem 3.11 only the quasigroups 
(P,o(P)) defined on the blocks of *B need be discrete models of the identity 
u(x,y) = v(x, j ) , and that the quasigroups (G, o(G)) defined on the groups of Q 
need only satisfy the identity u(x,y) = v(x,y). We also have the following easy 
generalization of Theorem 3.11, which is a GDD analog of the singular direct 
product construction result in Theorem 3.4. 

THEOREM 3.12. Let (X,Ç,<B) be a GDD GD(K, 1, A/; v) and let P be a set 

of order p disjoint from X. Suppose for each block B in *B it is possible to 
define a binary operation o(B) on B so that (P, o(B)) is an idempotent discrete 
model of the identity u(x,y) = v(x,y). Also suppose that for each group G 
in Q, there is a binary operation o(G/>) on the set GUP which converts it 
into a w(x, y) = v(x,y)-quasigroup containing P as a common subquasigroup. 
Then there exists a quasigroup (X U P , *) of order v +p satisfying the identity 
u(x,y) = v(x,y). 

Proof We define the operation (*) on XUP as follows: 
( l ) x * v = x o(B)y, if x ^ y and the pairset {x,y} is contained in the block 

B e<B\ 
(2) x*y =xo(GP)y, if x,y E G, or x G G and y G F , or x G P and y G G, 

where G G Q\ 
(3) x * y — x • y, if x,y G P and (P, •) is a quasigroup satisfying the identity 

u(x,y) = v(x,y). 
The verification that (X U P , *) is a quasigroup satisfying u(x,y) — v(x,y) is 

fairly straightforward. 
The following theorem is a slight modification of Theorem 3.12 and its proof 

is very similar. 

THEOREM 3.13. Let (X,Ç,<B) be a GDD GD(K, 1,M; v) and let P be a set 

of order p disjoint from X. Suppose that for each block B in *B it is possible to 
define a binary operation o(B) on B so that (P, o(P)) is an idempotent discrete 
model of the identity u(x,y) = v(jt,;y). Suppose that Q — {G\, G 2 , . . . , Gm} and 
for each group G/, / = 1,2 , . . . , m — 1, there is a binary operation (GJP) on the 
set Gi UP which converts it into a u(x,y) — v(x,y)-quasigroup containing P 
as a common subquasigroup. Further suppose that there is a binary operation 
(•) on the set GmUP which converts it into a u(x,y) = v(x,y)- quasigroup. 
Then there exists a quasigroup (X U P , *) of order v +p satisfying the identity 
u(x,y) = v(x,y). 

Proof We define the operation (*) on X UP as follows: 
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(1) x *y = x o(B)y, if x ^ y and the pairset {x,y} is contained in the block 
B G £ ; 

(2) x *y = x o (Gtp)y, ifx,y G G;, or x G G; and y G P, or x G P and y G G/, 
where / = 1,2,..., m — 1. 

(3) x * y =x-;y, if x, y G Gm U P. 
Then (XUP, *) is a quasigroup satisfying u(x,y) — v(x,y). 

4. Some useful constructions for PBDs and GDDs. Since most of our 
constructions of quasigroups in this paper will make use of PBDs and GDDs, it 
is perhaps appropriate that we describe some of the useful techniques employed 
in the construction of such designs. First of all, some useful PBDs and GDDs 
will be derived from transversal designs (TDs). 

Definition 4.1.. A transversal design (TD) T(k,l;m) is a GDD with km 
points, k groups of size m and m2 blocks of size k, where each block meets 
every group in precisely one point, that is, each block is a transversal of the 
collection of groups. 

Definition 4.2.. Let (X, ®) be a PBD B(K, 1; v). A parallel class in (X, <B) 
is a collection of disjoint blocks of *B, the union of which equals X. (X, CB) 
is called resolvable if the blocks of (B can be partitioned into parallel classes. 
A GDD GD(K, 1,M; v) is resolvable if its associated PBD B(K UM, 1; v) is 
resolvable with M as a parallel class of the resolution. 

It is fairly well-known that the existence of resolvable TD T(k, \;m) (briefly 
RT(k, Urn)) is equaivalent to the existence of a TD T(k+1,1;m) or equivalently 
k—\ mutually orthogonal Latin squares (MOLS) of order m. The following two 
results can be found in [30]. 

THEOREM 4.3. For every prime power q, there exists a T(q + 1, \\q). 

THEOREM 4.4. Let m = p\lp2
2 • • -Pk

r
r be the factorization of m into powers of 

distinct primes pi, then a T(k, \\m) exists, where k ^ 1 +min{/?f'}. 

Before proceeding, we need to establish some more notations, which are 
adapted from earlier papers by the author (see, for example, [1, 6]). We 
shall simply write B(k, l;v) for #({&}, l;v) and similarly GD(k, l,m;v) for 
GD({k}, l,{m};v). We observe that a PBD B(k, l;v) is essentially a bal­
anced incomplete block design (BIBD) with parameters v,& and À = 1. If 
ktjLK, then B(K U {it*}, 1; v) denotes a PBD B{K U {it}, 1; v) which contains 
a unique block of size k and if k G K, then a B(K U {&*}, 1; v) is a PBD 
B(K, l;v) containing at least one block of size k. We shall sometimes refer 
to a GDD (X, £ , # ) as a £-GDD if |£| G K for every block 5 G # ; and 
\i Q — {Gi, G2, . . . , G„}, we may represent the group-type of the K-GDD by 
the ordered «-tuple T = (m\,m2,...,mn), where |G/| = m,. Where there is no 
danger of confusion, the type of the A -̂GDD will be represented as a multiset 
using the "exponential" notation. 
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The following four lemmas are well-known (see [17]), where the PBDs are 
obtained from truncated TDs or finite planes. 

LEMMA 4.5. If a T(k + 1,1; m) exists and 0 ^ t ^ m, then 

km + t € B(k, k + 1, m, t*). 

In particular, the conclusion holds for a prime power m^ k. 

LEMMA 4.6. If a T(k + 1,1 ; m) exists and 0 S t ^ m, then 

km + t+\ e 5 ( ^ , H l , m + l , r + l ) . 

LEMMA 4.7. If m is a prime power and 1 ^ k û m — 1, then for 0 ^ u Ik m 
and 0 fk v ^ m, we have 

km + u + v G B(k,k + \,k + 2,m,u,v). 

LEMMA 4.8. If m is a prime power and 1 ^ k ^ m, then for 0 fk t tk m — k, 
we have 

km + t £B(k,k+ \,(k + t)*,m). 

There are some useful generalizations of Lemma 4.6 which employ the tech­
nique of adding a set of fixed ("infinite") points to a GDD. The following lemma 
is contained in [37]. 

LEMMA 4.9. Let K be a set of positive integers and s 2̂  0. Suppose there 
exists a K-GDD of type T — (m\, #22,..., mn). 

(a) If a PBD B(K U {s*}, \\rm + s) exists for \ Ik i Ik n, then, for each i, 
v + s e B(K U {(mi + s)*}), where v = £ 1 ^ * m,-. 

(6j / / a PBD £ ( £ U {s*}, 1; /W| + 5) exwtt /or 1 ^ / ^ n - 1, f/ten v + 5 E 
B(K U {(/*„ + *)*}), where v = £ 1 ^ m,. 

For some of our recursive constructions of PBDs and GDDs, we shall make 
use of Wilson's "Fundamental Construction" (see [45]). We define a weighting 
of a GDD (X, Q, <B ) to be any mapping w : X —> Z+ U {0}. We present a brief 
description of Wilson's construction relating to GDDs below. 

CONSTRUCTION 4.10. (Fundamental Construction) Suppose that (X,Q,<B) is 
a "master" GDD and let w : X —• Z+ U {0} be a weighting of the GDD. For 
every x G l , let Sx be w(x) "copies" of x. Suppose that for each block B G *B, 
a GDD 

[\JSx,{Sx:x€B},Aa\ 
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is given. Let 

x* = \jsxi 
x<EX 

Ç* = \\JSx:Geç\,and 
[xeG J 

Be® 

Then(X%g\(B*) is a GDD. 

We shall also make use of the concept of an incomplete transversal design 
(introduced by Horton [19]). 

Definition 4.11. An incomplete transversal design T(k, \\n) — T(k, \\m) is 
a quadruple (X,Ç ,9-( ,<3) satisfying the following properties: 

(i) X is a set of cardinality kn, 
(ii) Ç = {G( : 1 ^ / ^ £} is a partition of X into k groups of size n, 
(iii) Of = {Hi : 1 S / ^ £}, where each /// Ç G, and |//,| = m, for 1 S i ^ Jfc, 
(iv) $ is a set of n2 — m2 blocks of size k, each of which intersects each 

group in a point, and 
(v) each pairset {x,y} of points from distinct groups, such that at least one 

of JC, y is in Ui^/^(G/ — Hi), is contained in a unique block of # . 
For our purposes, we shall only need the following construction which comes 

from [44]. 

LEMMA 4.12. Suppose the following exist: a T(k1 l;ra), a T(k, l;ra + 1), a 
T(k + 1,1; t) and 0 ^ u ^ t. Then there exists a T(k, \\mt + u) — T(k, 1; u). 

The following construction is referred to as the singular indirect product 
construction (see, for example, [35-37]). 

THEOREM 4.13. Let K be a set of positive integers and u G K. Suppose that 
v,w and a are integers such that 0 ^ a û w ^ v; and suppose the following 
designs exist: 

(1) a T(u, 1; v — a) — T(w, 1; w — a), 
(2) a PBD B(K U {w*}, 1; v), and 
(3) a PBD B(K, 1; u(w -a) + a). 
Then u{v -a) + a E B(K). 

For the convenience of the reader and future reference, we shall state some 
of the fairly well-known fundamental results which will be used in the next 
section of this paper. The interested reader may wish to refer to the appropriate 
references that are provided. 

THEOREM 4.14. (see [17]) A B(411; v) exists if and only ifv = 1 or 4(mod 12). 
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THEOREM 4.15. (see [18]) A resolvable £ ( 4 , 1 ; v) exists if and only if v = 
4(mod 12). 

THEOREM 4.16. (see [17]) A 5 (5 ,1 ; v) exists if and only ifv = 1 or 5(mod 20). 

THEOREM 4.17. (see [10]) If v = 2(mod 6) and v ^ 14, then there exists a 
{4}-GDD of group-type 2V/2. 

THEOREM 4.18. (see [10]) Ifv = 5(mod 6) and v ^ 23, then there exists a 
{4}-GDD of group-type 2(v-5)/25l. 

THEOREM 4.19. (see [9, 43]) A 7(5, l;m) exists for all positive integers m with 
the exception of m = 2, 3,6, and possibly excepting m — 10. 

THEOREM 4.20. (see [9]) A 7(8, l;m) exists for all integers m > 76. 

We shall also make use of the following basic lemmas. 

LEMMA 4.21. If a T(k + 1, l ;m) exists and 0 ^ t ^ m, then there exists a 
{k,k + 1}-GDD of group-type mktl. In particular, the conclusion holds for all 
prime powers m^ k. 

Proof. Delete m — t points from one group of the T(k + 1, \\m). 

LEMMA 4.22. If a T(k + 2, \;m) exists, then for 0 ^ w, v ^ m, there exists a 
{k,k+ l ,£ + 2}-GDD of group-type mkulvl. 

Proof In a 7 ( ^ + 2 , 1 ; m) delete m — u points from one group and m — v points 
from another group. 

LEMMA 4.23. If a T(k + 1,1; m) exists and 0 û t è k+\, then there exists a 
{k,k + 1, r*}-GDD of group-type mf(m — 1)*+1~'. In particular, the conclusion 
holds for all prime powers m ^ k. 

Proof. In a T(k + 1,1 ; m) delete k + 1 — t points from one block. 

LEMMA 4.24. Ifn ^ 12 and n = 0or 3(mod 12), then there exists a {4}-GDD 
of group-type 3n/3. 

Proof. If n = 0 or 3(mod 12), then there exists a Z?(4, 1; n + 1) by Theorem 
4.14. In a 5 ( 4 , 1 ; n + 1), we delete one point x from the design. In the resulting 
PBD # ({3 ,4} , 1; n), we consider those blocks from which x has been expunged 
as groups of our desired GDD. 

5. The spectrum of (yx • y)y — x. In this section, we shall investigate the 
spectrum of the identity (yx • y)y = x, briefly J((yx • y)y — x). We have already 
mentioned that the identity {yx • y)y = x is equivalent to (y - xy)y = x7 and it is 
also conjugate equivalent to the identities (y • yx)y = x and (yx • x)y — x. 

In Example 3.9, we are essentially guaranteed the existence of a constant 
C such that for all n > C, there exists an idempotent quasigroup of order n 
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satisfying the identity (yx • y)y — x. In our investigation of J((yx • y)y = x), our 
main objective will be to find a concrete upper bound for C. We shall need the 
notion of a quasigroup with "holes", and so we present the following définition 
which comes from [12]. 

Definition 5.1.. Let P = {Si,£2, • • • ,Sn} be a partition of a set S(n ^ 2). A 
partitioned incomplete Latin square (briefly PILS) having partition P, is an \S\ 
by \S\ array L indexed by S satisfying the following properties: 

(1) a cell of L either contains an element of S or is empty, 
(2) the subarrays indexed by S/ x S/ are empty, for 1 ^ / ^ n (we shall refer 

to these subarrays as holes), 
(3) the elements occurring in row (or column) s of L are precisely those in 

S — Si, where s G S/. 
The type of L is the multiset {|Si|,..., |Sn |}. We use the exponential notation 

lWl 2M2... to describe the type of a PILS, where there are ut holes of size /, / ^ 1. 
The type of a (partial) quasigroup corresponding to a PILS will be the same 
as the type of the PILS. In particular, an idempotent quasigroup of order n is 
equivalent to a quasigroup of type \n. 

The following example will be quite useful in some of our constructions of 
this section. 

Example 5.2. Let S = {0,1,2,3,4,5,6,7}, then (S,*) defined below is a 
quasigroup of type 24, where the partition is formed by Si = {0,4},S2 = {1,5}, 
S3 = {2,6}, andS4 = {3,7}. 

* 0 1 2 3 4 5 6 7 
0 7 3 5 2 1 6 
1 7 0 4 6 3 2 
2 3 0 1 5 7 4 
3 5 4 1 2 6 0 
4 6 5 2 3 7 1 
5 2 7 6 3 4 0 
6 1 3 0 7 4 5 
7 6 2 4 1 0 5 

Figure. 1. Quasigroup of type 24. 

Before proceeding, we wish to remark that the interested reader may wish 
to refer to [6, 7, 12, 42] for the more general concept of MOLS with holes 
(HMOLS) and conjugate orthogonal Latin squares with holes (HCOLS). In par­
ticular, the quasigroup of type 24 in Fig. 1 can be associated with a (3, 2, 1) 
(and (3, 1, 2))-HCOLS (24). 

In what follows, we shall call a commutative quasigroup satisfying the identity 
(yx • y)y = x a C ̂ -quasigroup. Note that a C3-quasigroup necessarily satisfies 
the identity (xy • y)y — x, which we have already investigated in [2, 5]. 
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Example 5.3. (a) The cyclic group of order 3 is a C3-quasigroup. 
(b) The quasigroup of order 4 given in Example 3.5 is a C3-quasigroup. 
(c) Let Q = Z7 and define the binary operation (*) on Q by x * y — 4x + 

4y(mod 7), then it is readily verified that (g, *) is an idempotent C3-quasigroup 
of order 7. 

We shall make use of the following fact from Example 5.2. 

LEMMA 5.4. There exists a C^-quasigroup of type 24. 

We need some basic lemmas regarding quasigroups with holes. Once again, 
constructions using GDDs play an important role. The following lemma is fairly 
obvious. 

LEMMA 5.5. Suppose that (X.Ç.'B) is a GDD of group-type hn
{
xh% ...hn

k
k. 

Suppose that for each block B G *B, it is possible to define a binary operation 
o(B) on B such that (B,o(B)) is an idempotent model of the identity u(x,y) = 
v(x,y). Then there exists a quasigroup of type h^h^ . . . hn

k
k satisfying the identity 

u(x,y) = v(x,y). 

The idea of using idempotent models of the identity u(x,y) = V(JC, v) on the 
blocks of the GDD in Lemma 5.5 can be extended to the use of quasigroup with 
holes (see, for example, [12, Lemma 2.2]). It is therefore possible to obtain the 
following generalization of Lemma 5.5. 

LEMMA 5.6. Suppose that {X^Q 1
(B) is a GDD and let w be a weighting of 

the GDD. Suppose for each block B G *B, there is a quasigroup of type w(B) 
satisfying the identity u(x,y) = v(x, y). Then there exists a quasigroup of type 

l^2w(x):Geg\ 
KxEG J 

satisfying the identity u(x,y) = v(x,y). 

The following two lemmas are analogous to Theorems 3.11 and 3.12. 

LEMMA 5.7. Suppose there exists a quasigroup of type h^h^2... hn
k
k satisfying 

the identity u(x,y) — v(x,j). Suppose also there exists a quasigroup of order 
h[ satisfying the identity u(x,y) — v(x,y) for \ û i fk k. Then there exists a 
quasigroup of order n satisfying the identity 

u(x,y) — v(x,y) where n— 2 . nini-

Proof We can fill in each hole of size ///, 1 ^ / ^ k, with a quasigroup of 
order hi satisfying the identity u(x,y) — v(x,y) so that the resulting quasigroup 
satisfies the identity u(x,y) = v(x,y). 
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LEMMA 5.8. Suppose there exists a quasigroup of type h^h^2... hn
k
k satisfying 

the identity u(x,y) — v(x,y). Suppose that p ^ 1 and, for 1 ̂  / ^ k, there is a 
u(x,y) — v(x,y)-quasigroup of order ht+p containing a common subquasigroup 
of order p. Then there exists a quasigroup of order n+p satisfying 

u(x,y) = v(*,y), where n — V , nini-
Xûiûk 

Proof. The proof is similar to that of Theorem 3.12. 

We shall now obtain some C3-quasigroups of various types, using some of 
the fundamental results of Section 4. 

LEMMA 5.9. Ifv= 4(mod 12) and v ^ 16, then there exists a C^-quasigroup 
of type %vI*. 

Proof. If v = 4(mod 12) and v ^ 16, then Theorem 4.15 guarantees the 
existence of a {4}-GDD of group-type 4V/4. We apply Lemma 5.6, giving each 
point of this GDD weight 2 and using C3-quasigroups of type 24 for the desired 
result. 

LEMMA 5.10. Ifv = 2(mod 6) and v ^ 14, then there exists a C^-quasigroup 
of type 4V/2. 

Proof If v = 2(mod 6) and v è 14, then Theorem 4. 17 guarantees the 
existence of a {4}-GDD of group-type 2V/2. We give each point of this GDD 
weight 2 and using C3-quasigroups of type 24, the result follows. 

LEMMA 5.11. Ifv = 5(mod 6) and v ^ 23, then there exists a C^-quasigroup 
oftypeA{v-5)l2m\ 

Proof. If v = 5(mod 6) and v ^ 23, then there exists a {4}-GDD of group-
type 2(v_5)/251 by Theorem 4.18. We then apply Lemma 5.6, by giving each 
point of this GDD weight 2 and using CVquasigroups of type 24. 

LEMMA 5.12. If v = 0 or 3(mod 12) and v â 12, then there exists a C3-
quasigroup of type 6V/3. 

Proof If v = 0 or 3(mod 12) and v ^ 12, then there exists a {4}-GDD of 
group-type 3V/3 by Lemma 4.24. We then give each point of this GDD weight 
2 and apply Lemma 5.6 using CVquasigroups of type 24 for the desired result. 

We are now in a position to present some important consequences of Lemmas 
5.9-5.12. 

LEMMA 5.13. For all n = %(mod 24), there exists an idempotent quasigroup 
of order n satisfying the identity (yx • y)y = x and containing a subquasigroup 
of order 8. 

Proof If n — 8, then there exists an idempotent quasigroup of order 8 sat­
isfying (yx • y)y = x by Example 3.1. If n ^ 32, then we can write n = 2v 
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where v = 4(mod 12) and v ^ 16. Now Lemma 5.9 guarantees the existence of 
a C3-quasigroup of type 8V/4. We then apply Lemma 5.7 (with hi — 8) to obtain 
the desired result, by filling in the holes. 

LEMMA 5.14. For all n = 5(mod 12), there exists an idempotent quasi group 
of order n satisfying the identity (yx • y)y = x. Moreover, for all such n, with 
the possible exception of n = 17, the quasi group contains a sub quasigroup of 
order 5. 

Proof. For n G {5,17}, the result is contained in Example 3.1. For n ^ 29, 
let n = 2v +1 so that we have v = 2(mod 6) and v ^ 14. We then apply Lemma 
5.10 to obtain a C3-quasigroup of type 4V/2, and using this result, we finally 
apply Lemma 5.8 (with hi = 4 and p — 1) to obtain the desired result. 

LEMMA 5.15. For all n = \\{mod 12), there exists an idempotent quasigroup 
of order n satisfying the identity (yx • y)y — x. Moreover, for all such n ^ 47, 
the quasigroup contains subquasigroups of orders 5 and 11. 

Proof If n G {11,23,35}, then the result is contained in Examples 3.1 and 
3.3. For n ^ 47, let n — 2v +1 so that v = 5(mod 6) and v ^ 23. We then apply 
Lemma 5.11 to obtain a C3-quasigroup of type 4(v-5)/2101, and finally we apply 
Lemma 5.8, using p — 1, to get the stated result. 

LEMMA 5.16. For all n = 1 or 1(mod 24), there exists an idempotent C3-
quasigroup of order n. For all such n^l, the quasigroup contains a subquasi-
group of order 7. 

Proof The case n = 1 is trivial, and for n — 1 we refer to Example 5.3(c). If 
n è 25, we let n = 2v + 1 so that we have v = 0 or 3(mod 12) and v S 12. By 
Lemma 5.12, there exists a C3-quasigroup of type 6V/3 and we can then apply 
Lemma 5.8 (with hi — 6 and p = 1) to obtain the desired result. 

Before we proceed to obtain some more general results, we wish to remark that 
a C3-quasigroup of type h^h^ ...hn

k
k corresponds to a (3,2,1) (and (3,1,2))-

HCOLS (h^h^ .--hi") (see, for example, [6, 7]). In particular, the results of 
Lemmas 5.9, 5.10 and 5.12 provide constructions of (3, 2, 1) (and (3, 1, 2))-
conjugate orthogonal symmetric Latin squares with equal-sized holes. 

For our other recursive constructions which follow, it will be convenient to 
summarize the results of Lemmas 5.14 and 5.15 in the following lemma. Note 
that the quasigroup of order 35 in Example 3.3 contains subquasigroups of orders 
5 and 7. 

LEMMA 5.17. For all n = 5(mod 6), n G J((yx • y)y = x) holds. For all such 
n, with the exception of n— 11 and possibly excepting n G {17,23}, there is an 
idempotent (yx • y)y — x— quasigroup containing a subquasigroup of order 5. 

We also have the following useful result. 

LEMMA 5.18. For all n = 1 or 5(mod 20), there exists an idempotent quasi­
group satisfying the identity (yx • y)y — x such that every 2-element generated 
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subquasigroup is of order 5. 

Proof. For all n = 1 or 5(mod 20), there exists a £(5,1; n) by Theorem 4.16. 
Since there is an idempotent model of (yx-y)y = x of order 5, the result follows 
immediately by applying Theorem 3.7. 

For our main recursive constructions, we require the following lemmas. 

LEMMA 5.19. Suppose a T(8, l;m) exists and 0 ^ t ^ m. Let n = 1m + t. 
Then n G 5(7, 8, m, t*)> and if there is an idempotent model of (yx • y)y — x of 
orders m and t, there is an idempotent model of (yx • y)y = x of order n. 

Proof The proof follows by applying Lemma 4.5 with k — 7 and then apply­
ing Theorem 3.7, using the fact that there are idempotent models of (yx -y)y = x 
of orders 7 and 8. 

LEMMA 5.20. Suppose a T(8,1; m) exists and 0 û t S m. Let n = lm + t+\. 
Then n G#(7,8,#z+1,^+1), and if there are idempotent models of(yx-y)y — x 
of orders m + 1 and t + 1, there exists an idempotent model of (yx • y)y — x of 
order n. 

Proof First apply Lemma 4.6 with k — 1 and then apply Theorem 3.7. 

LEMMA 5.21. Suppose m ^ 7 is a prime power and 0 S t ^ m — 7. Let 
n = 1m + t. Then n G 5(7, 8, (7 + 0% #0, and if there are idempotent models of 
(yx my)y — x of orders 1 + t and m, there is an idempotent model of (yx -y)y = x 
of order n. 

Proof. We apply Lemma 4.8 with k — 1 and then apply Theorem 3.7. 

LEMMA 5.22. Suppose a T(8,1; m) exists and 0 ^ t ^ m. Then there exists a 
{7, 8}-GDD of group-type m7t{. If there are models of (yx • y)y = x of orders 
m and t, then there is a model of (yx • y)y — x of order n = 1m +1. 

Proof. First apply Lemma 4.21 with k — 1. Then apply Theorem 3.11, using 
the fact that there are idempotent models of (yx • y)y = x of orders 7 and 8. 

We are now in a position to proceed with our construction of idempotent 
models of the identity (yx • y)y — x and, more generally, our investigation of 
J((yxy)y = x). For our construction of idempotent models of (yxy)y = x, it will 
be convenient for us to treat the cases of odd orders and even orders separately. 
We shall commence with the case of odd orders. The following result will be 
particularly useful. 

LEMMA 5.23. For all odd integers n, where 1 ^ n ^ 137, with the excep­
tion of n — 3 and the possible exception of n G {9, 13,15,39,51,75,87,99}, 
there exists an idempotent quasigroup of order n satisfying the identity 
(yx-y)y =x. 

Proof The case n — 3 is an obvious exception. Apart from the possible 
exceptions stated in the lemma, Example 3.1 and Lemmas 5.16-5.21 will take 
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care of the other orders, except for n G {33,69,91,93,111,115,135}. For n G 
{115,135}, we apply Theorem 3.2 with 115 = 5.23, and 135 = 5.27. For 
n G {33,93}, we apply Theorem 3.4 with 33 = 8(5-l)+l , and 93 = 23(5-l)+l. 
For n = 69, we adjoin a set of 17 "infinite" points to the 17 parallel classes of a 
resolvable 5(4,1;52) to obtain 69 G 5(5,17) and then apply Theorem 3.7. For 
n = 91, we have 91 G 5(7) (see, for example, [17]) and we apply Theorem 3.7. 
For n = 111, we adjoin one infinite point to the groups of a 7(5,1;22) to get 
111 G #(5,23) and then apply Theorem 3.7. This completes the proof of the 
lemma. 

In what follows, we shall make use of Lemma 5.23 in our applications of 
Lemmas 5.19-5.22. For convenience, we shall let T\ — {1, 3 ,5 , . . . , 51,53} — 
{3,9,13,15,39,51}, and observe that there is an idempotent model of (yx-y)y = 
x of order n for all n G 7i. 

LEMMA 5.24. For all odd integers n è 589, there exists an idempotent quasi-
group of order n satisfying the identity (yx • y)y — x. 

Proof We shall consider the residue classes of n modulo 42. First of all, 
note that Theorem 4.20 guarantees the existence of a 7(8, \\m) for all integers 
m > 76. If n ^ 589 is odd and n ^ 1,25,37(mod 42), then we can express n 
in the form n = 1m + t + 1, where m = 4(mod 6), m ^ 82,0 ^ f ^ m, and 
t + 1 G T\, so that n G 5(7,8,m + l,f + 1) by Lemma 5.20. Moreover, since 
m + 1 = 5(mod 6) and t + 1 G T\, we are in addition guaranteed the existence 
of an idempotent quasigroup of order n satisfying (yx • y)y = x, by applying 
the results of Lemmas 5.17 and 5.23. If n = 1 (mod 42), then we can write 
n = 1m + 8, where m = 5(mod 6) and m ^ 77, so that n G 5(7,8, m) and, 
by Lemma 5.19, there is an idempotent model of (yx • y)y = x of order n. If 
n = 25(mod 42), we can express n = 7m+32, where m = 5(mod 6) and m ^ 77, 
such that n G 5(7,8, m, 32). Since there is an idempotent model of (yx -y)y — x 
of orders m and 32 from Lemmas 5.13 and 5.17, we obtain an idempotent model 
of order n. Finally for the case n = 37(mod 42), we first obtain a {7, 8}-GDD 
of group-type m732l, where m = 0(mod 6) and m ^ 78. We then use the fact 
that there is an idempotent model of (yx • y)y — y of order m + 5 containing 
a subquasigroup of order 5 by Lemma 5.17. By applying Theorem 3.13, with 
p = 5, we then obtain an idempotent model of (yx -y)y = x of order n — 7m+37. 
This essentially completes the proof of the lemma. 

In view of Lemmas 5.23 and 5.24, we shall now focus our attention on the 
existence of idempotent models of (yx -y)y = x of order n, 139 ^ n ^ 587. For 
the most part, our solutions will come from Lemmas 5.19 and 5.21. However, 
we do require some special constructions to complete our task. 

LEMMA 5.25. There exists an idempotent quasigroup of order 139 satisfying 
the identity (yx • y)y — x. 

Proof. First of all, there are C3-quasigroups of types 64 and 65 from Lemma 
5.12. Next, from a 7(5,1;5) we delete 2 points from one group to obtain a 
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{4,5}-GDD of group-type 5431. We then give all points of this GDD weight 6, 
and using C3-quasigroups of types 64 and 65, we apply Lemma 5.6 to obtain 
a C3-quasigroup of type (30)4(18)1. Finally, we apply Lemma 5.8, with p = 1, 
to obtain an idempotent model of (yx • y)y = x of order 139, using idempotent 
models of orders 19 and 31. 

LEMMA 5.26. There exists an idempotent quasigroup of order 153 satisfying 
the identity (yx • y)y = x. 

Proof First of all, there is a (yx -y)y — .x-quasigroup of type 84 from Lemma 
5.9. Also, by taking the direct product of an idempotent quasigroup of order 5 
satisfying the identity (yx • y)y = x with any quasigroup of order 8 satisfying 
(yx-y)y = x, we readily obtain a (yx-y)y = x-quasigroup of type 85 (by removing 
the 5 disjoint subquasigroups of order 8 from the main diagonal). Next, from a 
7(5,1;4) we remove one point to obtain a {4,5}-GDD of group-type 443 ! . We 
then give all points of this GDD weight 8, and using (yx • y)y = x-quasigroups 
of types 84 and 85, we apply Lemma 5.6 to get a (yx • y)y — x-quasigroup of 
type (32)4(24)1. Finally, we apply Lemma 5.8, with/? = 1, to get an idempotent 
quasigroup of order 153 satisfying the identity (yx • y)y — x, using the fact that 
there are idempotent models of orders 25 and 33. 

LEMMA 5.27. / / « G {159,163}, then there exists an idempotent quasigroup 
of order n satisfying the identity (yx • y)y = x. 

Proof If we remove one point from a 5(5,1; 21), we obtain a {5}-GDD of 
group-type 45. Similarly, in a 5(5,1; 25) we remove one point to obtain a {5}-
GDD of group-type 46. In all but one group of a 7(6,1; 7), we give the points 
weight 4. In the last group we give x points weight 4, where 0 â x ^ 7, and 
give the remaining points weight 0. Using {5}-GDDs of group-types 45 and 46, 
we obtain a {5}-GDD of group-type (28)5(4x)\ where 0 ^ x ^ 7. In particular, 
if x = 3, we have a {5}-GDD of group-type (28)5(12)1. To this GDD we can 
adjoin 7 infinite points to obtain 159 G B (5,7,19*) by applying Lemma 4.9 with 
35 - 5 • 7 G 5(5,7). If x = 4, we obtain a {5}-GDD of group-type (28)5(16)1 

and by adjoining 7 infinité points to this, we obtain 163 G 5(5,7,23*). The 
result then follows from Theorem 3.7. 

LEMMA 5.28. There exists an idempotent quasigroup of order 195 satisfying 
the identity (yx • y)y = x. 

Proof From a {5}-GDD of group-type 46, we readily obtain a (yx - y)y — 
x-quasigroup of type 46 by applying Lemma 5.5. The direct product of an 
idempotent quasigroup of order 7 satisfying the identity (yx • y)y = x with a 
quasigroup of order 4 satisfying (yx • y)y — x will give rise to a (yx • y)y — x-
quasigroup of type 47. In a 7(7,1;7), we remove two points from a group to 
obtain a {6,7}-GDD of group-type 6751. We then give all points of this GDD 
weight 4 and using (yx • y)y — x-quasigroups of types 46 and 47, we apply 
Lemma 5.6 to get a (yx -y)y — x-quasigroup of type (24)7(20)1. Finally, we now 
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introduce 7 new points, and observe the fact that there is an idempotent model 
of order 31 satisfying the identity (yx -y)y = x and containing a subquasigroup 
of order 7 in addition to the fact that there is an idempotent model of order 27 
satisfying (yx • y)y — x. We then obtain an idempotent model of (yx • y)y — x 
of order 195 by following a similar approach to that outlined in the proof of 
Theorem 3.13. 

LEMMA 5.29 For every odd integer n, 139 ^ n ^ 587, there exists an idem-
potent quasi group of order n satisfying the identity (yx • y)y = x. 

Proof For the most part, solutions can be obtained from the applications of 
Lemmas 5.19 and 5.21 provided in Table 1. In Table 1, we have expressed n in 
the form n = 1m +1 where m is a prime power exceeding 17 or m = 56. Note 
that for all such ra, a T(8,1; m) exists by Theorem 4.4. If m is odd, we choose t 
to be even in the specified interval, and we apply Lemma 5.19 if t G {8,32} and 
Lemma 5.21 otherwise. If m is even, then we choose t to be odd in the specified 
interval and apply Lemma 5.19. Note that Lemma 5.13 guarantees idempotent 
models of (yx • y)y = x for orders 8, 32 and 56, and also 64 = 8 • 8 G #(8). The 
few odd orders not covered in Table 1, with the exception of 147 and 259, are 
taken care of by Example 3.1 and Lemmas 5.16-5.18, 5.25-5.28. For the values 
147 and 259, we can apply Theorem 3.2 by using 147 = 7-21 and 259 = 7 • 37. 
This completes the proof. 

Combining Lemmas 5.23, 5.24 and 5.29, we obtain 

THEOREM 5.30. For every odd integer n ^ 1, with the exception of n = 3 
and the possible exception of n G {9,13,15,39,51,75,87,99}, there exists an 
idempotent quasi group of order n satisfying the identity (yx - y)y = x. 

From the result of Theorem 5.30, we can easily prove 

THEOREM 5.31. For every odd integer n^ 1, n G J((yx • y)y — x) holds. 

Proof. In view of Theorem 5.30, we need only show that 

{3,9, 13,15, 39, 51,75, 87,99} C J((yx • y)y = x). 

The case n= 3 is trivial and is taken care of in Example 5.3(a). For n G 
{9,15,51,75,87,99}, we apply Theorem 3.2, using 9 = 3-3 , 15 = 3-5,51 = 
3 • 17,75 = 3 • 25,87 = 3 • 29, and 99 = 3 • 33. For the case n = 13, let Q = Z13 

and (*) be a binary operation defined on Q by 

x * y — 3x + 3_y(mod 13). 

Then it is readily checked that (2,*) is a C3~quasigroup of order 13. Finally, 
for n = 39, we apply Theorem 3.2 with 39 = 3 • 13. 
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TABLE 1 

Applications of Lemmas 5.19 and 5.21 

n — 1m + t m t 

743 19 10 

169-177 23 8-16 

179 25 4 

183-193 25 8-18 

197-209 27 8-20 

211-225 29 8-22 

227-241 31 10-24 

243-255 32 19-31 

267-289 37 8-30 

291 41 4 

295-321 41 8-34 

323-337 43 22-36 

339-369 47 10-40 

371-377 49 28-34 

379^113 53 8-42 

415-129 56 23-37 

431-455 59 18-42 

457-469 61 30^42 

471-485 64 23-37 

487-511 67 18-42 

513-539 71 16-42 

543-561 71 46-64 

563-595 79 10-42 

We shall now turn our attention to models of the identity (yx - y)y — x of 
even orders. As in the case of odd orders, we shall for the most part construct 
idempotent models. We shall make use of the result contained in Theorem 5.30 
in our applications of Lemmas 5.19-5.22. For convenience, we shall let 

72 = {1 ,3 ,5 , . . . , 39,41}-{3,9,13,15, 39}, 

and note that there is an idempotent model of (yx - y)y = x of order n for all 
n eT2. We need the following fact (see [9]). 

LEMMA 5.32. There exists a 7(8, \\m) for all integers m = \ or 5(mod 6), 
where m ^ 59. 

LEMMA 5.33. For all even integers n ^ 428, there exists an idempotent quasi-
group of order n satisfying (yx • y)y — x. 

Proof. We shall consider the residue classes of n modulo 42. If n ^ 428 
is even and n ^ 2, 6, 8, 32, 38(mod 42), then we can express n in the form 
n = 7m + t, where m = 5(mod 6), m ^ 59, 0 ^ t ^ m and t G T2. Hence 
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n G 5(7,8, m, i) by Lemma 5.19, and we are also guaranteed the existence 
of an idempotent model of (yx • y)y = x of order n. If n ^ 428 is even and 
n = 2,6,8,32,38(mod 42), then we can express n in the form n — lm+t, where 
m = l(mod 6), m ̂  61, 0 ^ f ^ m and f E 72. We then obtain n G 5(7, 8, m, t) 
by Lemma 5.19 and, using the fact there are idempotent models of (yx -y)y = x 
for all orders m = l(mod 6) where m ^ 61, we also obtain an idempotent model 
of order n. 

We are now left with the task of investigating the existence of models of 
(yx - y)y = x of even orders n < 428. It is fairly obvious that there can be 
no model of the identity (yx • y)y — x of order 2 or 6, and it is easy to check 
that there is no idempotent model of (yx • y)y = i o f order 4. In what follows, 
we shall show that there are idempotent models of (yx • y)y — x for all even 
orders n ^ 8 with at most 48 possible exceptions, of which 174 is the largest. For 
convenience and future reference, we shall denote this set of possible exceptions 
by E, where 

E = {10,12,14,16,18,20,22,24,26,28,30, 34,38,42,44,46, 

52,58,60,62,66,68,70,72,74,76, 86,90,94,96,98,100, 

102,106,108,110,114,116,118,122,132,142,146,154, 

158,164,170,174}. 

At this point, it is worth recalling that Lemma 5.13 provides us with idem-
potent models of (yx • y)y — x of all orders n = 8(mod 24). For most of the 
other even orders, we shall apply Lemmas 5.19 and 5.21. As in the case of odd 
orders, we require some special constructions. 

LEMMA 5.34. If n G {36,40,48}, then n G 5(5, 8) and there exists an idem-
potent quasi group of order n satisfying the identity (yx -y)y — x and containing 
sub quasi group s of orders 5 and 8. 

Proof. For n = 36, we take a 7(5,1;7) and adjoin an infinite point to the 
groups to obtain 36 € 5(5,8). A 7(5,1;8) gives 40 G 5(5,8). As we have 
indicated in the proof of [1, Theorem 3.5], 48 G 5(5,8). The conclusion follows 
by applying Theorem 3.7. 

LEMMA 5.35. / / n G {50,92}, then n G 5(7,8) and there is an idempotent 
quasi group of order n satisfying (yx • y)y — x. 

Proof. We adjoin an infinite point to the groups of a 7(7,1;7) to get 50 G 
5(7, 8). For n = 92, we first observe from [17] that there exists a {7}-GDD of 
group type 713. We then adjoin an inifinite point to the groups of this GDD to 
obtain 92 G 5(7,8). The conclusion follows from Theorem 3.7. 

LEMMA 5.36. If n G {112,120}, then n G 5(7,8) and there exists an idem-
potent quasi group of order n satisfying (yx • y)y = x. 
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Proof. First of all, there exists a resolvable 5(8, 1 ; 120) from [39]. By deleting 
one block from this design, we obtain 112 G 5(7,8). The result follows from 
Theorem 3.7. 

LEMMA 5.37. If n e {148,156,160,250,252,256,274}, then there exists an 
idempotent quasigroup of order n satisfying (yx • y)y — x. 

Proof. If n G {148,156,274}, we apply Theorem 3.4, using the equations 
148 = 5(36 - 8) + 8, 156 = 5(32 - 1) + 1, and 274 = 7(40 - 1) + 1. For the 
remaining values of n, we apply Theorem 3.2, using 160 = 5 • 32, 250 = 5-50, 
252 = 7 • 36, 256 = 8 • 32. 

LEMMA 5.38. There exists an idempotent quasigroup of order 188 satisfying 
the identity (yx • y)y — x. 

Proof. In all groups but one of a T(6,1; 9) we give the points weight 4. In the 
last group, we give two points weight 4 and give the remaining points weight 0. 
Using {5}-GDDs of group-type 45 and 46, we obtain a {5}-GDD of group-type 
(36)5(8)1. Consequently, 188 G 5(5,8,36) C 5(5,8). We then apply Theorem 
3.7 for the desired result. 

LEMMA 5.39. There exists an idempotent quasigroup of order 202 satisfying 
the identity (yx • y)y = x. 

Proof. From Lemma 4.21, there exists a {7,8}-GDD of group-type 
(25)7(19)1, since a T(8,1; 25) exists. If we apply Theorem 3.4 using the equation 
33 = 8(5 — 1) + 1, then we obtain an idempotent quasigroup of order 33 which 
contains subquasigroups of orders 5 and 8, assuming we use idempotent models 
of orders 5 and 8. Using the additional fact that we have an idempotent model 
of (yx - y)y — x of order 27, we can then apply Theorem 3.13, with p = 8, to 
obtain an idempotent quasigroup of order 202 satisfying (yx • y)y = x. 

LEMMA 5.40. There exists an idempotent quasigroup of order 254 satisfying 
the identity (yx • y)y = x. 

Proof. In Lemma 4.23, we take m — 32, k — 1 and t — 5 to get a {7, 8,5*}-
GDD of group-type (32)5(31)3. We then adjoin one infinite point to the groups of 
this GDD to obtain a PBD 5({5,7,8,32,33}, 1; 254). The desired result follows 
from Theorem 3.7. 

LEMMA 5.41. There exists an idempotent quasigroup of order 258 satisfying 
the identity (yx • y)y = x. 

Proof. The direct product of an idempotent quasigroup of order 7 satisfying 
(yx • y)y — x with one of order 3 will give rise to a (yx • y)y = x-quasigroup 
of type 37. Similarly, using an idempotent quasigroup of order 8 satisfying 
(yx ' y)y — x w e c a n get a (yx • y)y — x-quasigroup of type 38. From Lemma 
4.21, we can obtain a {7,8}-GDD of group-type 11791. In this GDD, we give all 
points weight 3 and using (yx -y)y — jc-quasigroups of types 37 and 38 we thus 
obtain a (yx • y)y = x-quasigroup of type (33)7(27)1 by applying Lemma 5.6. 
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The result then follows from Lemma 5.7 by filling in the holes with idempotent 
quasigroups of orders 27 and 33 satisfying (yx • y)y — x. 

LEMMA 5.42. If n G {262,268}, then there exists an idempotent quasigroup 
of order n satisfying the identity (yx • y)y = x. 

Proof We shall apply Theorem 4.13 to obtain suitable PBDs and then apply 
Theorem 3.7. We first deal with the case n = 262. By applying Lemma 4.12 
with k = 5, m = 7, t = 7, and u — 3, we obtain an incomplete TD 7(5,1; 52) — 
7(5,1; 3). We next apply Theorem 4.13 using K = {5,7, 8,17}, u = 5, v = 54, 
w = 5, and a = 2. Note that from Lemma 4.5 we have 54 = 7-7+5 G BÇ1,8,5*), 
and u(w - a) + a = 17. We thus obtain 262 = 5(54 - 2) + 2 G £(5,7, 8,17). 
For the case n — 268, we first obtain an incomplete TD 7(5,1; 53) — 7(5,1; 4) 
by applying Lemma 4.12 with k = 5, m = l,t — 1 and u — 4. We then apply 
Theorem 4.13 using K = {5,7,8,23}, u — 5, v = 56, w = 7, and a = 3. Note 
that 56 = 7 • 8 G £(7, 8) and u(w-a) + a = 23. Thus 268 = 5(56 - 3) + 3 G 
5(5,7,8,23). The result then follows from applying Theorem 3.7 in both cases. 

LEMMA 5.43. There exists an idempotent quasigroup of order 300 satisfying 
the identity (yx • y)y = x. 

Proof. From Lemma 4.22, there exists a {5,6,7}-GDD of group-type 
(12)57161, using the existence of a 7(7,1; 12) (see [17]). Now there are 
(yx -y)y — *-quasigroups of types 45,46 and 47 (see, for example, the proofs of 
Lemmas 5.27 and 5.28). Hence in this GDD, we can apply Lemma 5.6, by giving 
all points weight 4, to obtain a (yx • y)y — x-quasigroup of type (48)5(28)1(24)1. 
Finally, we can apply Lemma 5.8 with p = 8, and using the fact that there 
are idempotent quasigroups of orders 32, 36 and 56 satisfying (yx • y)y — x 
and containing a subquasigroup of order 8, we obtain an idempotent model of 
(yx • y)y = i o f order 300. 

We are now in a position to prove the following: 

LEMMA 5.44. For all even integers n, where 8 ^ n ^ 426 and n £ E, there 
exists an idempotent quasigroup of order n satisfying the identity (yx • y)y = x. 

Proof Most of the solutions can be obtained from the applications of Lemmas 
5.19 and 5.21 provided in Table 2. In Table 2, we have expressed n in the form 
n — lm +1 where m ^ 7 is a prime power or m — 57. Note that for all such 
m, we are guaranteed the existence of a 7(8, l;m) (see, for example, [9]). If m 
is odd, we choose t to be odd in the specified interval and apply Lemma 5.1.9. 
If m is even, we choose t to be even in the specified interval and apply Lemma 
5.21. The even orders n which are not covered by Table 2 are taken care of by 
Lemmas 5.13, 5.34-5.43. 

Combining Lemmas 5.33 and 5.44, we have proved the following theorem: 

THEOREM 5.45. For all even integers n ^ 2, with the exception ofn€ {2,4,6} 
and the possible exception of n G F, there exists an idempotent quasigroup of 
order n satisfying the identity (yx • y)y = x. 
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TABLE 2 

Applications of Lemmas 5.19 and 5.21 

n = Im + t m t 

54 7 5 

64 8 8 

78 11 1 

82-84 11 5-7 

88 11 11 

124-126 17 5-7 

130 17 11 

134 19 1 

136 17 17 

138-140 19 5-7 

144 19 11 

150-152 19 17-19 

162 23 1 

166-168 23 5-7 

172 23 11 

176 25 1 

178-184 23 17-23 

186 25 11 

190 27 1 

192-200 25 17-25 

204 29 1 

206-216 27 17-27 

218 31 1 

220-232 29 17-29 

234-248 32 10-24 

260 37 1 

264-266 37 5-7 

270 37 11 

276-296 37 17-37 

298 41 11 

302 43 1 

304-324 41 17-37 

326-338 43 25-37 

340 47 11 

342 43 41 

346-366 47 17-37 

368-380 49 25-37 

382 53 11 

384-388 49 41-45 

390-408 53 19-37 

410 57 11 
412^20 53 41-49 

422-436 57 23-37 
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In order to complete our investigation of J((yx • y)y — x), we shall present 
constructions for nonidempotent models of the identity (yx • y)y = x for all but 
8 of the orders n E E. Most of these constructions will utilize Theorems 3.2 
and 3.4 and Lemma 5.22. However, there are a few special cases to be treated. 

LEMMA 5.46. If n G {46,62,74,90,114,118}, then there is a model of the 
identity (yx • y)y = x of order n. 

Proof In [17] it is shown that 46 E B{5,7,8,4*), which is equivalent to the 
existence of a {5,7,8}-GDD of group-type 14241. We can then apply Theorem 
3.11 to get a model of (yx • y)y = x of order 46. For n = 62, we first apply 
Lemma 4.23 with k — 7, m — 8 and t — 5 to obtain a {5,7, 8}-GDD of group-
type 8573. We then apply Theorem 3.12, with p = 1, to obtain a model of 
(yx - y)y = x of order 62. For n = 74, we first apply Lemma 4.21 to obtain a 
{7,8}-GDD of group-type 9781. We then use the fact that there is a model of 
(yx -y)y = x of order 12, which contains a subquasigroup of order 3, by taking 
the direct product of models of orders 3 and 4, and apply Theorem 3.13, with 
p = 3, to get a model of (yx -y)y — x of order 74. For n — 90, we apply Lemma 
4.21 to get a {7,8}-GDD of group-type l l ^ 1 . Next, from the singular direct 
product construction of Theorem 3.4, we obtain a model of (yx • y)y — x of 
order 16 = 5(4 — 1) + 1 which contains a subquasigroup of order 5, by using 
C3-quasigroups of orders 3 and 4 and an idempotent (yx-y)y = x-quasigroup of 
order 5. Using our GDD, we can then apply Theorem 3.13, with p = 5, to get 
a model of {yx • y)y = x of order 90. For the case n = 114, we delete one point 
from a 7(5,1; 23) to obtain a {5,23}-GDD of group-type 42322!. Now Theorem 
3.4 gives us a model of (yx • y)y = x of order 22 = 7(4 — 1) + 1, and we can 
then apply Theorem 3.11 to get a model of (yx • y)y — x of order 114. Finally, 
for n — 118, we first delete one point from a T(5,1; 8) to get a {5,8}-GDD of 
group-type 487*. Using the direct product construction, we obtain (yx -y)y — x-
quasigroups of types 35 and 38 and using these, we give all points of the GDD 
weight 3 to obtain a (yx • y)y = x-quasigroup of type (12)8(21)1. We then apply 
Lemma 5.8 with p = 1 to obtain a model of (yx • y)y — x of order 118. Note 
that the quasigroups of orders 13 and 22, which we have previously constructed, 
each contain at least one idempotent. This completes the proof of the lemma. 

We are now in a position to prove 

LEMMA 5.47. For all integers n E E, with the possible exception of n E 
{10,14,18,26,30,38,42,158}, there exists a quasigroup of order n satisfying 
the identity (yx • y)y = x. 

Proof. The proof is contained in Lemma 5.46 and Table 3. In Table 3, 
solutions are provided by the specified equations for the order n and appro­
priate applications of Theorems 3.2 and 3.4, and Lemma 5.22. 

Combining Theorem 5.45 with Lemma 5.47, we have essentially proved the 
following theorem. 
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THEOREM 5.48. For all even integers n ^ 2, with the exception of n E 
{2,6} and the possible exception of n G {10,14,18,26,30,38,42, 158}, n G 
J((yx • y)y — x) holds. 

We can summarize the results of Theorems 5.30 and 5.45 as follows: 

THEOREM 5.49. For every integer n ^ 1, with the exception of n G {2, 3, 4, 
6} and the possible exception of n G EU {9, 13, 15, 39, 51, 75, 87, 99}, there 
exists an idempotent quasigroup of order n satisfying the identity (yx • y)y = x 
and which defines a 2-fold perfect loosely resolvable (v,A ,̂ 1)-MD with block 
sizes at least three in K. 

Summarizing our investigation of the spectrum of the identity (yx • y)y = x, 
we combine Theorems 5.31 and 5.48. 

THEOREM 5.50. J((yx -y)y = x) contains every integer n â 1, with the excep­
tion of n G {2,6} and the possible exception of n G {10, 14, 18, 26, 30, 38, 42, 
158}. 

TABLE 3 

Applications of Theorems 3.2, 3.4 and Lemma 5.22 

Equation for n Authority Equation for n Authority 

12 = 3-4 Theorem 3.2 94 = 7-13 + 3 Lemma 5.22 

16 = 4-4 Theorem 3.2 96 = 8- 12 Theorem 3.2 

20 = 4 • 5 Theorem 3.2 98 = 7-13 + 7 Lemma 5.22 

22 = 7(4— 1)+ 1 Theorem 3.4 100 = 4 • 25 Theorem 3.2 

24 = 3 • 8 Theorem 3.2 102 = 7-13+11 Lemma 5.22 

28 = 4 • 7 Theorem 3.2 106 = 7-15 + 1 Theorem 3.4 

3 4 = 11(4- 1)+1 Theorem 3.4 108 = 4 • 27 Theorem 3.2 

44 = 4 • 11 Theorem 3.2 110 = 5-22 Theorem 3.2 

52 = 4-13 Theorem 3.2 116 = 4-29 Theorem 3.2 

5 8 = 19(4- 1)+1 Theorem 3.4 122 = 7-17 + 3 Lemma 5.22 

60 = 4-15 Theorem 3.2 132= 11 • 12 Theorem 3.2 

66 = 7 • 9 + 3 Lemma 5.22 142 = 7-19 + 9 Lemma 5.22 

68 = 4-17 Theorem 3.2 146 = 7- 19+13 Lemma 5.22 

70 = 7 • 9 + 7 Lemma 5.22 154 = 7 - 2 1 + 7 Theorem 3.4 

72 = 8 • 9 Theorem 3.2 164 = 4-41 Theorem 3.2 

76 = 4-19 Theorem 3.2 170 = 7-23 + 9 Lemma 5.22 

86 = 7 - 1 1 + 9 Lemma 5.22 172 = 4 • 43 Theorem 3.2 

In concluding this section, the author would like to remark that the existence 
of idempotent models of (yx -y)y = x of orders 9 and 13 appears to be very much 
in doubt. Most certainly, the existence of such models would greatly simplify 
the investigation carried out in this section and substantially reduce the number 
of possible exceptions in Theorem 5.49. We also wish to point out that 2-
fold perfect loosely resolvable (v,^T, l)-MDs have been associated with a more 
extensive class of quasigroups than that described in Theorem 5.49 (see, for 
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example, [3, 4, 21]). However, the constructions presented in this section should 
be of interest in their own right. For example, apart from being associated 
with HCOLS as mentioned earlier, a C3-quasigroup of type h"1^2 ..-hn

k
k can 

be associated with a partial resolvable Mendelsohn triple system, where the 
deficiency of a parallel class is essentially one of the "holes" of the partial 
C3-quasigroup. 
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