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Considering a dyad as a dynamic system whose current state depends on its past state has allowed
researchers to investigate whether and how partners influence each other. Some researchers have also
focused on how differences between dyads in their interaction patterns are related to other differences
between them. A promising approach in this area is the model that was proposed by Gottman and Murray,
which is based on nonlinear coupled difference equations. In this paper, it is shown that their model
is a special case of the threshold autoregressive (TAR) model. As a consequence, we can make use of
existing knowledge about TAR models with respect to parameter estimation, model alternatives and model
selection. We propose a new estimation procedure and perform a simulation study to compare it to the
estimation procedure developed by Gottman and Murray. In addition, we include an empirical example
based on interaction data of three dyads.
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The notion of a dynamic system has become increasingly popular in psychology, both as
a metaphor and as a quantitative approach. Recently, there has been a burst of applications, for
instance in the study of development (Thelen & Smith, 1994; Van der Maas & Molenaar, 1992;
Van Geert & Van Dijk, 2002), self-regulation of behavior (Carver & Scheier, 1998), personality
(Shoda, Tiernan, & Mischel, 2002), addiction (Warren, Hawkins, & Sprott, 2003; Witkiewitz,
Van der Maas, Hufford, & Marlatt, 2007), grief (Bisconti, Bergeman, & Boker, 2004), psy-
chopathology (Granic & Hollenstein, 2003), and psychotherapy (Schiepek, 2003). In addition,
several leading journals have devoted special issues to the topic (Vallacher & Nowak, 1997;
Vallacher, Read, & Nowak, 2002), and in 1997 a new journal called Nonlinear Dynamics, Psy-
chology, and Life Sciences was started (Guastello, 1997).

Mathematically, a dynamic (or dynamical) system is a set of equations that expresses how
the state of a system (represented by one or more variables) changes as a function of its previ-
ous state. These equations may be deterministic or stochastic (Clayton, 1997), and they can be
defined in continuous time as differential equations, or in discrete time as difference equations.
A particularly useful application of dynamic system theory in psychological research concerns
the study of dyadic interactions: Representing each partner by one or more variables and measur-
ing them repeatedly over time allows the researcher to determine whether and how the partners
influence each other.
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Several researchers have emphasized the need for nonlinear models to study complex sys-
tems such as dyads (Chow, Ferrer, & Nesselroade, 2007; Gottman, Murray, Swanson, Tyson, &
Swanson, 2002; Van der Maas & Raijmakers, 2000; Olthof, Kunnen, & Boom, 2000). A promis-
ing nonlinear approach to dyadic interactions is the model proposed by Gottman and Murray
(GM model hereafter; Cook, Tyson, White, Gottman, & Murray 1995). This approach demon-
strated its merits when two studies showed that parameters obtained with the GM model from a
15 minute dyadic interaction were predictive of marital status and marital happiness three to six
years later (Cook et al., 1995; Gottman, Swanson, & Murray, 1999).

Apart from its usefulness in predicting divorce, the GM model has formed the basis for a
new form of couples therapy referred to as the Gottman Method Couples Therapy (Gottman,
Coan, Carrere, & Swanson, 1998; Schwartz Gottman, 2004). Moreover, research based on the
GM model has uncovered differences in the interaction patterns of homosexual dyads versus
heterosexual dyads, as well as differences between homosexual males and homosexual females
(Gottman, Levenson, Swanson, Swanson, Tyson, & Yoshimoto, 2003), which may have impor-
tant implications for effective couple’s therapy for homosexual couples. Gottman et al. (2002)
extended the GM model to triadic interactions for parents and their baby, which makes the model
suitable to study the transition of newlyweds to parenthood. In addition, the GM model has been
shown to work not only with behavioral data, but also with self-rating data and physiological
data, as well as combinations thereof (Gottman et al., 2002).

Although the emphasis in GM modeling has been on dyadic interactions, the applicability
of the GM model is in no way restricted to dyadic or observational data. That is, the GM model
could just as easily be used to investigate other dynamic systems in psychology, ranging from
emotion regulatory systems, to the reciprocal influence of physical aspects such as heart rate and
breathing.

However, there are some unresolved issues regarding parameter estimation and model selec-
tion that may forestall this model from becoming a popular dynamic system approach in psycho-
logical research. Therefore, the aim of the current paper is to solve what we consider the most
urgent issues. In the following section, we present the threshold autoregressive (TAR) model,
which is a nonlinear time series model. This is followed by a section in which we discuss the
GM model, its interpretation and use. In the third section, we show that the GM model is a spe-
cial case of the TAR model, and we formulate a number of TAR-based alternatives for the GM
model that may be useful in the study of dyadic interactions. In the fourth section, we discuss
the existing estimation procedure for the GM model, and suggest a new estimation procedure,
which we compare in the fifth section using a simulation study. The sixth section consists of an
empirical study in which we show how to select the best model from several alternatives. We end
this paper with a discussion of the GM model in across-dyad comparisons.

1. Tong’s Threshold Autoregressive Models

The TAR model, introduced by Tong and Lim (1980), consists of two or more (linear) AR
processes, which we refer to as regimes, and a switching mechanism that determines in which of
these regimes the system is at each occasion. This switching mechanism depends on the value
taken on by a manifest threshold variable. While the TAR model is nonlinear in time, it can be
thought of as a piece-wise linearization in state-space.

Let yt denote a TAR process, and let zt denote the threshold variable such that the value
that zt−d takes on determines in which regime yt is. The parameter d is referred to as the delay.
Let {R(m)} form a nonoverlapping partition of (−∞,∞), that is, R(m) = (τ (m−1), τ (m)] with
−∞ = τ (0) < τ (1) < · · · < τ(M) = ∞ (Fan & Yao, 2003), meaning there are M different regimes,
and M − 1 thresholds of interest, that is, τ (1) to τ (M−1). The variable yt is regressed on itself
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at previous occasions and on some exogenous variable xt at this occasion, and earlier occasions.
The regression coefficients, the residual variance, and the number of predictors (i.e., previous
values of yt and xt ), may all depend on the regime the system is in. Let I (zt−d ∈ R(m)) denote the
indicator function, which equals 1 if zt−d ∈ R(m), and is 0 otherwise. Then a general expression
of the TAR model is

yt =
M∑

m=1

{
α

(m)
0 +

P (m)∑

p=1

α(m)
p yt−p +

Q(m)∑

q=0

γ (m)
q xt−q + σ (m)εt

}
I
(
zt−d ∈ R(m)

)
, (1)

where εt is normally distributed with mean 0 and variance 1, P (m) indicates the maximum num-
ber of previous observations yt−p and Q(m) indicates the maximum number of previous obser-
vations xt−q that are used to predict yt in regime m.

Tong and Lim (1980) propose three options for the threshold variable zt . First, one can
use the outcome variable (i.e., yt = zt ), resulting in a self-exciting TAR model. This is a model
in which there is a feedback loop that governs the behavior of the system. It has been used in
psychological research by Warren (2002) and Warren et al. (2003) to model periods of relapse
and recovery in alcohol addicts and sex offenders. Second, one can use a different variable as the
threshold variable (possibly xt ), resulting in an open loop TAR system. A possible application
of this model could consist of considering day until menses as the threshold variable for mood.
Third, one can use two variables as each other’s threshold variable, such that xt is the threshold
variable for yt , and vice versa. Such bivariate systems are referred to as a closed loop TAR
systems (TARSC; Tong & Lim, 1980), and have been used to model predator-prey cycles. In
psychological research, TARSCs can be used to model the mutual effects of two variables that
make up a dynamic system together, for instance the two partners of a dyad.

2. Gottman and Murray’s Approach to Study Marital Interaction

To study the dyadic interaction of married couples, Gottman and Murray developed the
following procedure (Gottman et al., 2002). A couple is asked to have a conversation on a topic
that creates a conflict in their relationship. During this conversation they are videotaped and
their verbal and nonverbal behavior is scored according to the Specific Affect Coding System
(SPAFF; Gottman, McCoy, Coan, & Collier, 1996). At each second both partners are scored,
and the scores are then summed over 6 second intervals, resulting in a score for each partner
on a scale from −24 (implying extremely negative affect behavior), to 24 (implying extremely
positive affect behavior). Typically, a 15-minute conversation is used, resulting in a bivariate
series of 150 occasions (Gottman et al., 2002).

2.1. The GM Model

To model the interaction between wife and husband, Gottman and Murray proposed a pair
of coupled deterministic equations, one for the wife and one for the husband. Since these two
equations are essentially the same with just the partners’ roles reversed, only the equations for
the wife are presented here.1 The basic idea is that the wife’s current behavior Wt is a function of
her behavior at the previous occasion Wt−1 and her husband’s behavior at the previous occasion
Ht−1, such that

Wt = α0w + α1wWt−1 + IW (Ht−1), (2)

1The current equations are based on Gottman et al. (1999). Other presentations of the GM model contain a certain
asymmetry because it is based on turn of speech coding, rather than coding per time interval (e.g., Cook et al., 1995).
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FIGURE 1.
Functions representing the influence of the husband on his wife. The left shows the influence function A with γ −

w = 0.6 as
the slope of the negative part, and γ +

w = 0.3 as the slope of the positive part. On the right influence function B is depicted,
with negative threshold τ−

w = −2, negative level δ−
w = −3, positive threshold τ+

w = 3, and positive level δ+
w = 3.

where α0w is a constant, and α1w is a regression parameter by which the current wife’s behavior
can be predicted from her behavior at the previous occasion. It is assumed that 0 < α1w < 1, and
this parameter is referred to as the wife’s inertia, because the closer this parameter is to 1, the
more likely the wife is to maintain her behavior.

2.2. Influence Functions

The last term in (2), IW (Ht−1), represents the influence of the husband on his wife. Gottman
and Murray proposed two alternatives for this influence, which they coined the bilinear influence
function and the ojive (or ogive) influence function. However, to avoid confusion with the unre-
lated bilinear function known in time series literature (cf. Granger & Andersen, 1978), we will
refer to these influence functions as A and B in this paper. Both influence functions are illustrated
in Figure 1.

Influence function A is based on the idea that more extreme behavior of the husband has
a stronger influence on his wife. However, the strength of this influence depends on whether
he is positive or negative. For instance, the wife’s behavior may be more strongly affected by a
particular increase in the husband’s behavior when he is being negative than when he is being
positive. Hence, we distinguish between a negative regime and a positive regime and write

IW (Ht−1) =
{

γ −
w Ht−1 if Ht−1 ≤ 0,

γ +
w Ht−1 if Ht−1 > 0,

(3)

where the superscripts − and + refer to the negative and positive regime, respectively.
Influence function B is based on the assumption that influence of the behavior of the husband

on his wife is constant until his behavior passes some threshold. Based on the descriptions and
plots of this model in Gottman et al. (2002) and Murray (2002), we can express this model as

IW (Ht−1) =

⎧
⎪⎨

⎪⎩

δ−
w if Ht−1 ≤ τ−

w ,

0 if τ−
w < Ht−1 ≤ τ+

w ,

δ+
w if τ+

w < Ht−1,

(4)
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where τ−
w and τ+

w are the lower and upper thresholds, respectively. Thus, the influence function
is a step function consisting of three regimes: a negative regime (when Ht−1 ≤ τ−

w ), a neutral
regime (when τ−

w < Ht−1 ≤ τ+
w ), and a positive regime (when τ+

w < Ht−1). If the husband is
behaving (fairly) neutral, his wife is not affected by him, but when his behavior becomes more
positive or negative and passes one of the thresholds, it leads to a sudden change in the wife’s
behavior (i.e., δ−

w or δ+
w ).

2.3. Long-Term Behavior in the GM Model

Although Gottman et al. (2002) present the GM model as deterministic, they acknowledge
that in practice the behavior of a dyad is not deterministic. Hence, the model in (2) should be
extended to include a residual term εw,t , for which we may assume a normal distribution with
mean zero and variance σ 2

w . This residual can be thought of as a random shock that is given to the
system at occasion t , and which continues to affect successive behavior. For instance, the wife
could have some association or thought at occasion t that influences her affective behavior at this
occasion, but also at following occasions through the regression of Wt on Wt−1.

To determine the long-term behavior associated with the GM model, we need to determine
the nullclines of the wife and the husband first, that is, the functions that identify the values
for which there is no (expected) change in the wife’s or the husband’s behavior, respectively.
Gottman et al. (2002) have derived the nullclines for the deterministic model presented in (2) (see
Gottman et al., 2002, p. 136). The derivation of the nullclines for a model with random shocks
is given in the Appendix: It shows that these nullclines are the same as for the deterministic
GM model presented by Gottman et al. (2002), and are linear transformations of the influence
functions.

Nullclines can be thought of as functions in state-space, which is a two-dimensional space
with W and H as its axes. The current state of the system can be represented by a point in this two
dimensional space with coordinates {Wt,Ht }. Then the behavior of a system can be described as
the motion of this point in the state-space. Each of the nullclines divides the state-space into two
areas, which are characterized by different (expected) changes from one occasion to the next. In
Figure 2, an example of this is given. The nullcline of the wife (based on influence function B) is
depicted on the left and divides the state-space into two areas: an upper area that is characterized
by a movement downwards, and a lower area that is characterized by a movement upwards. The
length of the arrows indicates the amount of (expected) change from one occasion to the next.
Note that at the wife’s nullcline itself there is no (expected) movement in the vertical direction,
meaning the wife is in equilibrium. Similarly, the nullcline of the husband, depicted in the middle
plot of Figure 2, divides the state-space in an area on the left that is characterized by a movement
to the right, and an area on the right that is characterized by a movement to the left. At the
husband’s nullcline itself, there is no (expected) movement in the horizontal direction.

When the nullclines of the husband and the wife intersect, this identifies a point in which
both the husband and the wife are in equilibrium, which means the entire system is in equilib-
rium. These points are referred to as influenced steady states, and can be further distinguished
into stable steady states, which attract the system (meaning that in the neighborhood of this
equilibrium the system moves towards it), and unstable steady states that repel the system when
it gets close to them. This becomes clear from the plot on the right of Figure 2. In this plot,
the movements in the vertical direction (i.e., the wife) and in the horizontal direction (i.e., the
husband) are combined. It shows that the three intersection of the solid lines form stable steady
states, while the intersections of the dashed lines are unstable steady states.

The intersection of the wife’s nullcline with the y-axis is referred to as the uninfluenced
steady state of the wife because it identifies the wife’s equilibrium when her husband does not
influence her (i.e., IW (Ht−1) = 0). Similarly, the intersection of the husband’s nullcline with the
x-axis is the husband’s uninfluenced steady state. Influenced as well as uninfluenced steady states
have been used by Gottman and his colleagues to predict marital status and marital satisfaction.
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FIGURE 2.
State-space for influence function B. The arrows indicate the change over one time unit. The plot on the left shows the
nullcline of the wife, and the arrows show the change in the wife’s scores over one time unit. The middle plot includes
the nullcline of the husband, and the arrows show the change of the husband’s score over time. Combining these two
nullclines gives the plot on the right, and the arrows show the change of the system in the state-space over a single time
interval. It can be seen that there are five intersections that identify the equilibria of the system, three of which are stable
steady states that attract the system, and two of which are unstable steady states that repel the system.

3. GM Model as a TARSC and Some Useful Alternatives

It can be easily shown that the stochastic version of the GM model is a special case of the
general TARSC presented in (1). Let yt be the wife’s score, such that we can replace it by Wt in
(1), and let xt = zt be the husband’s score such that it can be replaced by Ht . For both versions of
the GM model, we let P (m) = 1 for all m (such that only the wife’s most recent behavior predicts
her current behavior), and d = 1 (such that regime-switching depends on the observation at the
previous occasion). In the presentation of the two versions of the GM model as TARSCs, we add
a subscript w to the parameters to indicate that these belong to the model of the wife (and may
differ from those of the husband).

For influence function A (see (3)) we let M = 2, such that there are two regimes. In addition,
we let Q(m) = 1 with γ

(m)
0w = 0 for all m (i.e., only Ht−1 is used in the prediction of Wt ). Because

α0w and α1w are fixed across both regimes, their regime index m is dropped. This gives us

Wt = α0w + α1wWt−1 +
2∑

m=1

{
γ

(m)
1w Ht−1 + εt

}
I
(
Ht−1 ∈ R(m)

w

)
, (5)

where R(m=1) = (−∞,0] and R(m=2) = (0,∞].
To obtain the GM model with influence function B (see (4)), we set M = 3. By fixing Q(m)

to zero and keeping α1w fixed across regimes, we get

Wt = α1wWt−1 +
3∑

m=1

{
α

(m)
0w + εt

}
I
(
Ht−1 ∈ R(m)

w

)
, (6)

where R
(m=1)
w = (−∞, τ−

w ], R
(m=2)
w = (τ−

w , τ+
w ], and R

(m=3)
w = (τ+

w ,∞]. The wife’s constant
α0w from (2) is now equal to the constant of the middle regime (i.e., α

(2)
0w ). Other constants in (6)

are the sum of the constant in (2) and the constant associated with either the negative or positive
regime in (4), that is, α

(1)
0w = α0w + δ−

w and α
(3)
0w = α0w + δ+

w .
Based on the general expression in (1), we can formulate many alternatives to the two ver-

sions of the GM model. Here we briefly touch upon a few alternatives, which could be of in-
terest for the study of dyadic interactions. First, a slightly more flexible version of the GM
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model with influence function A includes a freely estimated threshold, rather than fixing it to
zero, that is, R

(m=1)
w = (−∞,0] and R

(m=2)
w = (0,∞] is replaced by R

(m=1)
w = (−∞, τw] and

R
(m=2)
w = (τw,∞] such that the point at which the effect of the husband’s behavior on his wife

changes is not necessarily at his zero score.
Second, we could combine the two influence functions such that there is a step function (as

in Influence function B), but within each regime there is also an influence of the partner (as in
Influence function A), that is

Wt = α1wWt−1 +
3∑

m=1

{
α

(m)
0w + γ

(m)
1w Ht−1 + εt

}
I
(
Ht−1 ∈ R(m)

w

)
, (7)

with R
(m=1)
w = (−∞, τ−

w ], R
(m=2)
w = (τ−

w , τ+
w ], and R

(m=3)
w = (τ+

w ,∞]. This would imply that
while there are certain thresholds at which there is a sudden change in the amount of influence,
there may also be a more gradual effect of the husband’s behavior within a particular regime.

Third, the inertia parameter α1w could be allowed to differ across regimes, so that the ten-
dency of a person to remain in a certain state could differ, that is,

Wt =
3∑

m=1

{
α

(m)
0w + α

(m)
1w Wt−1 + εt

}
I
(
Ht−1 ∈ R(m)

w

)
. (8)

This implies that the wife is differently affected by her own affective behavior, depending on
the regime she is in. For instance, she may be more likely to be stuck in her affective behavior
when in the extreme regimes (i.e., have an inertia parameter closer to 1) than when in the neutral
regime.

Fourth, in the presentation above, the residual variance is identical across the regimes. We
can also allow this variance to vary across the regimes, which implies that in certain regimes the
person is allowed to be more sensitive to random environmental effects than in other regimes.

4. Parameter Estimation

We discuss two procedures for estimating the parameters of the GM model: (i) the existing
procedure proposed by Gottman and Murray; and (ii) a new estimation procedure based on adapt-
ing the estimation procedure for the TAR model. In what follows, we assume that the number of
regimes Mw , and the orders within each regime P

(m)
w and Q

(m)
w are known (for estimating the

number of regimes in TAR models, see Strikholm & Teräsvirta, 2006; for estimating the orders
within regimes, see De Gooijer, 2001).

4.1. Estimation Procedure Proposed by Gottman and Murray

The estimation procedure proposed by Gottman and Murray consists of two non-iterative
stages. During the first stage, the parameters α0w and α1w are estimated using the data points
{Wt,Ht−1 = 0}. Because by definition the influence function IW (Ht−1 = 0) = 0, (2) reduces to
Wt = αw + α1wWt−1 for these observations. Hence, estimating α0w and α1w becomes a simple
least squares problem (Gottman et al., 2002; Murray, 2002).

During the second stage, the parameters of the influence function are estimated, while the
parameter estimates α̂0w and α̂1w obtained in the first stage are held fixed. To this end, the
influence component is estimated by subtracting the estimated uninfluenced component from
the observation, that is,

ÎW (Ht−1) = Wt − (α̂0w + α̂1wWt−1). (9)
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Next, ÎW (Ht−1) is plotted against Ht−1 to determine which influence function (A or B) should
be used. If influence function A is considered, all the estimated influence components and their
associated observed values of the influencing partner {ÎW (Ht−1),Ht−1} are divided into cases
with Ht−1 < 0 and cases with Ht−1 > 0. Least squares estimates of γ −

w and γ +
w are obtained

through regressing ÎW (Ht ) on Ht in each regime separately. Obtaining estimates for influence
function B is slightly more complicated as it involves the estimation of two unknown thresholds.
Given a particular value of τ−

w , the estimated influences ÎW (Ht−1 < 0) are divided into those
with Ht−1 ≤ τ−

w (belonging to the negative regime) and those with Ht−1 > τ−
w (belonging to

the neutral regime). By estimating the means of both parts of this data, the residual sum of
squares can be estimated, which in turn can be used to find the optimal value of τ−

w . Similarly,
the positive threshold τ+

w and the constant of the positive regime δ+
w are estimated based on

finding the optimal partitioning of ÎW (Ht−1 > 0).2

4.2. A New Estimation Procedure

Since the GM model is a special case of the more general TAR model, we consider the
estimation procedure for the TAR model (e.g., Tong & Lim, 1980, pp. 257–258). However, in
order to constrain the constant α0w and the inertia α1w across all regimes, we employ a slightly
modified version of the standard TAR estimation procedure.

The model with influence function A contains only one threshold which is fixed at zero.
Based on Ht−1 we make two new variables: H̃1,t−1 which has score Ht−1 if Ht−1 < 0, and score
0 otherwise; and H̃2,t−1 which has score Ht−1 if Ht−1 > 0, and score 0 otherwise. Note that
when Ht−1 = 0 we have H̃1,t−1 = H̃2,t−1 = 0. Using these two new variables we can write

⎡

⎢⎢⎢⎢⎢⎣

W2

W3

W4

· · ·
WT

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎣

1 W1 H̃11 H̃21

1 W2 H̃12 H̃22

1 W3 H̃13 H̃23

· · ·
1 WT −1 H̃1,T −1 H̃2,T −1

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

α0w

α1w

γ −
w

γ +
w

⎤

⎥⎥⎥⎦ +

⎡

⎢⎢⎢⎢⎢⎣

ε2

ε3

ε4

· · ·
εT

⎤

⎥⎥⎥⎥⎥⎦
, (10)

and using this expression we can easily obtain the least squares estimates of all parameters (i.e.,
α0w , α1w , γ −

w , and γ +
w ) simultaneously.

In the model with influence function B, the unknown parameters include the thresholds τ−
w

and τ+
w . Given a particular set of threshold values, we first make two dummy variables D1,t and

D2,t to identify in which of the three regimes Wt falls: The scores D1,t = 1 and D2,t = 0 imply
that the system is in the negative regime (i.e., Ht−1 ≤ τ−

w ); the scores D1,t = 0 and D2,t = 1
imply that the system is in the positive regime (i.e., Ht−1 > τ+

w ); the scores D1,t = 0 and D2,t = 0
imply that the system is in the neutral regime (i.e., τ−

w < Ht−1 ≤ τ−
w ). We can write the following

regression equation

⎡

⎢⎢⎢⎢⎢⎣

W2

W3

W4

· · ·
WT

⎤

⎥⎥⎥⎥⎥⎦
=

⎡

⎢⎢⎢⎢⎢⎢⎣

1 W1 D12 D22

1 W2 D13 D23

1 W3 D14 D24

· · ·
1 WT −1 D1T D2T

⎤

⎥⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎣

α0w

α1w

δ−
w

δ+
w

⎤

⎥⎥⎥⎦ +

⎡

⎢⎢⎢⎢⎢⎣

ε2

ε3

ε4

· · ·
εT

⎤

⎥⎥⎥⎥⎥⎦
. (11)

2Note, however, that in this procedure two extra parameters are estimated. This is necessary because, when the
constant of the neutral regime is estimated, the thresholds are not known, and therefore it is not clear which observations
belong to the neutral regime. Hence, the constant of the neutral regime is estimated using only part of the observations
belonging to this regime, and the two extra parameters are constants for the influence components that belong to the
neutral regime. Obviously, these extra parameters should be close to zero.
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Using this expression, we can obtain the least squares estimates for the parameters α0w , α1w ,
δ−
w , and δ+

w , given the values for τ−
w and τ+

w . By varying the threshold values (and thus the
values on the dummy variables D1,t and D2,t ), we can determine the least squares estimates
of the threshold values as well as the least squares estimates of all the other model parameters
simultaneously.

4.3. Standard Errors

To make inferences based on the parameter estimates, either standard errors or confidence
intervals are essential. The estimation procedures described above consist of least squares esti-
mation, and hence we can obtain the least squares standard errors for the parameter estimates.
It is to be expected that the standard errors for the constant αw0 and the inertia parameter αw1

obtained with the existing estimation procedure will be larger than those obtained with the new
estimation procedure because the latter uses all data to estimate these parameters, while the ex-
isting method only uses part of the data (i.e., those cases for which Ht−1 = 0). For the other
parameters, we do not expect differences in standard errors across the two methods.

It is important to note that neither estimation procedure results in a standard error (or con-
fidence interval) for the estimated threshold parameters of influence function B (note that in
influence function A the threshold is fixed at zero). The reason for this is that the model is esti-
mated using linear regression, conditional on the threshold values. Then, by determining the sum
of least squares of each possible combination of threshold values, we can determine the threshold
values that minimize the sum of least squares.

The sampling distribution of the threshold parameters is nonstandard and depends on nui-
sance parameters such that simple inferential procedures are not available, unless one makes
further assumptions (Hansen, 1997; Kapetanios, 2003). There are two alternatives for obtaining
a confidence interval for threshold parameters. First, one can make use of (nonparametric) boot-
strapping to construe the sampling distribution of the threshold parameters empirically. However,
the dependency of the data require the use of block resampling or block subsampling techniques
(Politis, 2003). Gonzalo and Wolf (2005) used a block subsampling method based on Politis and
Romano (1994), and concluded that the number of occasions should be at least 500 to obtain
valid confidence intervals for the threshold parameter in a TAR model. They did not investigate
how large the sample size should be in case of two thresholds (i.e., for a three regime models),
although it is likely to be larger than that needed for one threshold. A second alternative con-
sists of Bayesian estimation (Chen, 1998). This approach is less likely to require large sample
sizes than the block sampling techniques. The resulting empirical approximation of the posterior
distribution of the threshold parameter can be used to determine a credibility interval for this
parameter. We return to this issue in the discussion.

5. Simulation Studies

To compare the two estimation procedures discussed above, we perform a number of simu-
lation studies using R. We specifically focus on: (a) the mean point estimates ¯̂x as an indication
of whether the estimators are biased; (b) the sampling standard deviations SDx̂ to determine
which estimation procedure is more efficient; (c) the mean standard errors ¯SEx , which should
be a good indication of the sampling standard deviation; and (d) the root mean squared errors
RMSE= {( ¯̂x − x)2 + SD2

x̂
}1/2, which is the root of the squared bias and the variance of an esti-

mator. In addition, we investigate whether the standard error gives a good indication of the actual
sampling standard deviation.
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5.1. Influence Function A

We chose the parameter values in the GM model with influence function A based on the
empirical results reported by Cook et al. (1995) for what they called a validating couple and a
hostile-detached couple. Because the results were very similar, we only report the results for the
validating couple here (results for the hostile-detached couple are available on request from the
first author). Such a couple’s influence function is characterized by a positive slope when the
spouse scores above zero as well as when (s)he scores below zero (i.e., γ −

w , γ +
w , γ −

h , and γ +
h

are all larger than zero). We simulated series of 150 and 300 occasions of a validating couple,
representing a 15 minute and a 30 minute conversation, respectively. For both time lengths, 500
replications were simulated and then analyzed with the two estimation procedures.

From the results presented in Table 1, it can be seen that the two estimation procedures per-
form about equally well with regard to the average point estimate ¯̂x, but that the new method
performs better considering the efficiency, as can be concluded from the smaller sampling stan-
dard deviation SDx̂ . This is also reflected by the larger RMSEs for the existing estimation proce-
dure. Although the efficiency increases as the length of the series increases, the new procedure
keeps outperforming the existing estimation method. Moreover, the existing method gives aver-
age standard errors that are half the size of the actual sampling standard deviation, meaning that
inferences based on these estimates and standard errors will be overly optimistic. In contrast,
the average standard error obtained with the new method is a reasonable representation of the
corresponding sampling standard deviation.

5.2. Influence Function B

We simulated a GM model with influence function B and parameters that are similar to those
obtained from stable couples reported by Gottman et al. (1999). Simulation results obtained with
different parameter values were again quite similar and are therefore not reported here (available
on request from the first author). We simulated 500 replications of 150 occasions, and another
500 replications of 300 occasions. The results are given in Table 2.

Comparing the average point estimate ¯̂x to the parameter values used for simulation, we
observe more biasedness than in the previous simulation study. Especially the positive threshold
and the constant of the positive regime for the husband are biased, although the bias decreases
as T increases from 150 to 300. The reason for this bias is that given these parameter values,
the husband is not very likely to switch to the positive regime. Since very few observations came
from this regime (especially in the shorter series), it is difficult to obtain proper estimates of the
parameters associated with this regime.

Again, the sampling standard deviations SDx̂ show that in general the alternative estimation
procedure is more efficient than the existing one. In addition, the average standard error is a
reasonable representation of the corresponding sampling standard deviation for most parameters
in the alternative method. An exception is formed by the constants of the positive regimes of both
the husband and the wife, but these results improve as T increases indicating that this is again
related to a lack of observations within a particular regime. In contrast, the average standard
errors obtained with the existing method for the constants of the negative and the positive regimes
of both the husband and the wife are serious underestimates of the actual sampling standard
deviations, and these do not improve much as T increases. This implies that inferences based
on these standard errors will be overly optimistic. Comparing the RMSEs from both procedures
leads to the conclusion that overall the new estimation procedure performs better than the existing
procedure.

5.3. Conclusion

In sum, it can be concluded that both estimation procedures perform equally well in terms
of unbiasedness, but that the new estimation procedure leads to more reliable estimates, as can
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FIGURE 3.
Empirical data represented in state-space for three dyads. At each time point both partners have a score, which can be
indicated as a point in state space. By connecting consecutive points over time, the current plots were created. Because
the observations were made on a discrete scale, we added a small amount of noise to these data so that it becomes clearer
how many observations are made at each point.

be concluded from the smaller sampling standard deviations. In addition, in comparison to the
existing estimation method, the new estimation procedure results in standard errors that more
closer resemble the actual sampling standard deviations. This implies that inferences based on
the new estimation procedure will be more accurate than when using the existing method.

6. Empirical Illustration

Three couples were recruited at the University of Amsterdam: two heterosexual intimate
couples, and a couple of female friends. Each couple engaged in three conversations: a neutral
conversation (e.g., about what they have been doing in the past few days), a negative conversa-
tion (e.g., about being critical of each other), and a positive conversation (e.g., planning a trip
together). The purpose of having three different conversations is that the data are likely to cover
more of the state-space than if only one kind of conversation is held. This increases the pos-
sibility of obtaining enough observations from all existing regimes such that their parameters
can be accurately estimated. Each conversation lasted for 15 minutes, and between subsequent
conversation there was a 3 minute “cool-off” period after which the experimenter introduced the
following conversation topics. Couples were allowed to choose their own topic from a list of
possibilities offered by the experimenter, or to suggest a topic themselves.

Both partners were videotaped, and verbal and nonverbal behavior was coded for each
spouse separately. A modified version of Gottman’s SPAFF coding system was used which in
combination with 2-second intervals resulted in a scale from −12 to 12. We analyzed the data of
all three conversations simultaneously because we assume that, although the conversations may
take place in different parts of the state-space, together they cover a large area of the state-space
for this couple.3

We consider a variety of models, which are presented in Table 3 for the first partner (we
refer to this partner as the wife: again the spousal’s models are the same with only the roles of
the partners reversed). All of these models can be thought of as special cases of the more general

3Since we do not expect the dependency between conversation to be the same as within a conversation, we do not
model the first measurement occasion of any of the three conversations. That is, we only use the first observations of each
conversation as a predictor and threshold variable of the second observation, but we do not consider it as a realization of
the dependent variable.
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expression

Wt =
Mw∑

m=1

{
α

(m)
0w + α1wWt−1 + γ (m)Ht−1 + σ (m)εt

}
I
(
Ht−1 ∈ R(m)

w

)
, (12)

which in turn is a special case of the TAR model specified in (1).
The first model is related to the GM model with influence function A, and is obtained from

(12) by having Mw = 2, α
(m)
0w = α0w , and α

(m)
1w = α1w . In contrast to the actual GM model with

influence function A, we do not fix the threshold at zero, but estimate it as a free parameter. Two
versions of this model are considered: a model with equal residual variances in both regimes, and
a model with differing residual variances (see Table 3, models 1a and 1b).

The second model is based on the GM model with influence function B, and is obtained
from the more general model in (12) by letting γ

(m)
w = 0 for all m. We consider both Mw = 2

and Mw = 3; the latter is the actual GM model with influence function B (with α
(2)
0w = α0w ,

α
(1)
0w = α0w +δ−

w , and α
(3)
0w = α0w +δ+

w ). Again we consider these models both with equal residual
variances and unequal residual variances across the regimes (see models 2a and 2b in Table 3,
respectively).

The third model can be thought of as a combination of the two influence functions proposed
by Gottman and his colleagues. It consists of a step function as in influence function B, but within
each regime the partner’s score is included as it is in influence function A. It is obtained from the
general expression in (12) by having Mw = 2 and Mw = 3. Again we look at models with equal
and with unequal residual variances (see models 3a and 3b in Table 3).

Extended simulations studies have shown that the Bayesian Information Criterion (BIC;
Schwarz, 1978) is an appropriate measure for determining the number of regimes of a TAR model
(Gonzalo & Pitarakis, 2002; Strikholm & Teräsvirta, 2006).4 Hence, we make use of the BIC to
decide which of the models described above is the most appropriate for the data of the 3 dyads.
In Table 3, the BIC for each person is given, with the smallest BIC value printed in italics. It can
be seen that for all individuals the model based on influence function B with unequal residual
variances is most appropriate, with either two or three regimes. Hence, we can conclude that a
step function is most appropriate to describe the influence of one partner on the other, and that
the partner’s score does not help to further predict the observations within the regimes.

In Table 4, the parameter estimates and corresponding standard errors for the most appro-
priate model per person are presented. In addition, the proportion of explained variance (R2) is
given.5 Based on the parameter estimates, we determined the nullclines for each of the couples,
and depicted these in Figure 4. From this it can be seen that Dyad 1 and Dyad 3 have only one
influenced stable steady state, while Dyad 2 has two influenced stable steady states (which are
very close to each other). All these influenced stable steady states are positioned in the positive
quadrant, meaning that all three dyads are attracted toward a positive way of interacting with
each other. This is not surprising, as these were nonclinical couples (i.e., they were not seeking

4Using the log likelihood ratio test for nested models is not an option here because this statistic has an unknown
distribution when comparing a model with M regimes to a model with M + 1 regimes, unless the thresholds are known
in advance (e.g., Chan & Tong, 1990). The reason for this is that the M th threshold is a nuisance parameter that is absent
under the null hypothesis.

5In time series analysis models, there are no fit statistics such as in regression analysis or structural equation model-
ing to evaluate a model. The reason for this is that the quality of a time series models consists of not only explaining as
much variance as possible using previous observations, but also explaining as much of the covariance between observa-
tions at different occasions. One way to think about a time series is that it is a single draw from a T -variate distribution,
and one can actually model a time series as such using structural equation modeling that allow raw data likelihood op-
timization (see Hamaker, Dolan, & Molenaar, 2003). However, because the number of “variables” (i.e., occasions) is
larger than the number of cases (i.e., n = 1), it is not possible to estimate the saturated model, and as a result it is not
possible to compute a chi-square test statistic.
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TABLE 4.
Results for three dyads.

dyad partner α0 α1 δ− δ+ τ− τ+ R2

1 1 0.53 (0.06) 0.68 (0.02) – 0.93 (0.22) – 7 0.51
2 0.21 (0.15) 0.73 (0.02) 0.05 (0.17) 0.74 (0.17) 0 2 0.61

2 1 0.19 (0.04) 0.77 (0.02) – 0.16 (0.08) – 1 0.60
2 0.25 (0.04) 0.73 (0.02) – 0.26 (0.09) – 1 0.55

3 1 0.30 (0.07) 0.75 (0.02) −0.15 (0.07) 0.16 (0.16) 0 3 0.61
2 0.18 (0.05) 0.77 (0.02) −0.12 (0.05) 0.15 (0.10) 0 3 0.64

Note: Parameter estimates obtained with a nonparametric bootstrap procedure for the constant α0, the inertia
α1, steps δ− and δ+ of the negative and positive regime, respectively, thresholds τ− and τ+. Standard
errors are given in parentheses. The proportion of explained variance is also given in the last column. For
individuals that were identified by a model with only two regimes, these are referred to as the neutral and
positive regime.

FIGURE 4.
Nullclines for the three dyads based on the models in Table 4. Vertical lines belong to partner 1 and divide the state space
into a left area in which there is a tendency to move to the right (i.e., an increase in positive affective behavior of partner
1), and a right area in which there is a tendency to move to the left (i.e., a decrease in positive affective behavior of
partner 1). Horizontal lines belong to partner 2 and divide the state-space into an area above the nullcline in which there
is a tendency to move down (i.e., a decrease in positive affective behavior of partner 2), and an area below the nullcline
in which there is a tendency to move upwards (i.e., an increase in positive affective behavior of partner 2). Intersections
of the nullclines indicate attractors, that is, states to which the system is attracted.

help). Moreover, the uninfluenced steady states are all positive, meaning that these individuals
are likely to behave positively when the partner does not influence them. Finally, all inertia para-
meters lie between 0.68 and 0.77, meaning that all individuals are characterized by a fairly strong
tendency to remain in a particular state.

7. Discussion

The aim of this paper was to tackle some unresolved issues regarding parameter estimation
and model selection in the context of the GM model. Through showing that the GM model is
a special case of the TAR model, a new estimation procedure was proposed, which proved to
be superior to the existing method in that it leads to more efficient estimates, and to standard
errors that represent the actual sampling standard deviation quite well. In addition, recognizing
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that the GM model is a TAR model allowed us to make use of existing knowledge from the
TAR literature regarding model selection, which we illustrated in the empirical example. Finally,
placing the GM model in the class of TAR models makes it easy to formulate alternative models,
such as the ones we considered in our illustration.

While some of the most spectacular results obtained with the GM model come from making
cross-dyadic comparisons (e.g., Cook et al., 1995; Gottman et al., 1999), we have not focused
on this issue in the current paper. Obviously, before cross-dyadic comparisons can be made,
the researcher has to decide on the actual model at the within-dyad level, and consequently we
chose to focus on solutions for problems associated with this cardinal first step. However, a few
comments about cross-dyadic comparisons are in place here.

To compare dyads and to determine whether certain characteristics of the interaction patterns
are predictive of, for instance, future marital status and satisfaction, Gottman and his colleagues
have embraced the following procedure. First, they estimate the parameters of the GM model for
each dyad separately using their two-stage procedure discussed earlier in this paper, and subse-
quently they use these parameter estimates and functions thereof (i.e., the uninfluenced and influ-
enced steady states), as variables in a cross-dyadic comparison. These cross-dyadic comparisons
may consist of computing correlations between the dyadic features and various outcome vari-
ables (such as marital satisfaction and health, see Cook et al., 1995), or of performing ANOVAs
on the parameter estimates using group membership (e.g., together, separated or divorced) as the
independent variable (e.g., Gottman et al., 1999).

This approach, however, ignores the fact that there are differences in the precision with
which the dyadic parameters have been estimated. One way to improve this approach is to make
use of shrinkage estimators (also known as empirical Bayes estimators). Shrinkage estimators
are often used in meta-analyses, in which parameters from different studies are combined, while
differences in precision are also taken into account (cf. Normand, 1999; Stijnen, 2000). However,
to obtain shrinkage estimators, standard errors are needed for all parameters. This poses a prob-
lem for TAR models, as the current estimation procedures do not generate standard errors for the
threshold parameters. Moreover, it is difficult to determine the standard errors of quantities that
are functions of model parameters, such as the influenced and uninfluenced steady states.

A more sophisticated approach to combining the information of multiple dyads consists of
developing a multilevel model based on the GM model and its extensions. Clearly, cross-dyadic
comparisons fit within the framework of multilevel modeling, in which repeated measures are
nested within dyads. Since TAR models are closely related to change-point models (cf. Tsay,
1998, p. 1189), multilevel extensions of the latter could prove useful for this purpose (see Wang
& McArdle, 2008).

Appendix

The GM model with random shocks can be expressed as

Wt = α0w + α1wWt−1 + IW (Ht−1) + ewt , (13)

where ewt is normally distributed with mean zero and variance σ 2
w . The wife’s nullcline is the

function where her behavior is in equilibrium, meaning that her expected behavior does not
change. To find this function, we first write

E[Wt ] = E
[
α0w + α1wWt−1 + IW (Ht−1) + ewt

]

= α0w + α1wE[Wt−1] + IW (Ht−1).
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Making use of the fact that (if the wife’s behavior is in equilibrium), E[Wt ] = E[Wt−1], we can
write

α0w + IW (Ht−1) = E[Wt ] − α1wE[Wt−1]
= (1 − α1w)E[Wt ],

and we thus obtain

E[Wt ] = α0w + IW (Ht−1)

1 − α1w

.

The latter expression shows that the nullcline is a linear transformation of the influence function,
so that it will have the same shape as the influence function. Similarly, the nullcline for the
husband, for which E[Ht ] = E[Ht−1], can be expressed as

E[Ht ] = α0h + IH (Wt−1)

1 − α1h

.

Open Access This article is distributed under the terms of the Creative Commons Attribution Noncommercial License
which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and
source are credited.
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