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In this work, smoothed particle hydrodynamics (SPH) is employed to investigate
the segregation evolution in granular flows. We first provide the Lagrangian
description-based governing equations, including the linear momentum conservation and
the segregation–diffusion equation. Then the hybrid continuum surface reaction scheme
is introduced to formulate the concentration-related inhomogeneous Neumann boundary
condition on the free and wall surfaces. We follow a two-stage strategy to advance
boundary particle searching and normal direction identification. Moreover, C1 consistency
is considered based on the Taylor series to obtain accurate segregation flux gradient along
the boundary. Our SPH model is validated with a shear box experiment. The model is then
applied to investigate the segregation mechanism in bidisperse-sized granular flows in a
rotating drum.
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1. Introduction

Granular aggregates of various geometric configurations like size, shape or surface
roughness are prone to segregation when sheared, shaken or vibrated, which is called
particle segregation. This can be found in nature, industries and even our daily life, e.g. wet
snow avalanche (Bartelt & McArdell 2009), debris flow (Iverson 1997), pharmaceutical
and chemical processes (Khakhar, McCarthy & Ottino 1997; Ottino & Khakhar 2000;
Schlick et al. 2015b), and the so-called ‘Brazil nut effect’ in our kitchens (Rosato
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et al. 1987; Gajjar et al. 2021). In some cases, this effect is desirable by segregation
or classification (Jiang et al. 2021). However, in many other processes aiming for a
homogeneous blend, the resulting non-uniformity is usually undesirable and should be
eliminated . To this end, it is of practical significance to have better understanding of the
de-mixing process (Trewhela, Gray & Ancey 2021b; Xu et al. 2021).

Many factors are deemed responsible for particle segregation, including convection
(Ehrichs et al. 1995), fluidization (Schröter et al. 2006), clustering (Mullin 2000), and
gravity-driven segregation. Among these, the last is recognized as the most dominant
mechanism (Yang et al. 2021). The gravity-driven segregation is subject to the variance in
the density or grain size. The former is intuitive and easily understandable, i.e. the particles
with smaller density float to the top, while the heavier particles sink to the bottom due to
the buoyancy effect. In contrast, the size-driven segregation is less straightforward and
involves two processes. The first phase is termed kinetic sieving (Drahun & Bridgwater
1983). At this stage, the large particles will relocate under shearing and give rise to
some gaps, through which the small grains can penetrate downwards easily. Subsequently,
all particles are leveraged to its adjacent layer due to the imbalance in contact forces
on an individual grain. This process is named squeeze expulsion and believed to be
size-insensitive (Savage & Lun 1988). As time marches, the fine particles cluster at the
bottom of the granular body, while the large ones tend to appear at the top, leading
to the final inhomogeneous particle configuration. Due to its dominant role in particle
segregation, the size-driven mechanism has attracted much attention. A comprehensive
review on particle segregation in dense granular flows was provided recently by Gray
(2018), which is highly recommended for readers interested in this topic.

Gray & Thornton (2005) proposed a continuum-transport-based theoretical framework
for the segregation-driven shallow granular free-surface flow. This approach starts from
the mass and momentum conservation equations for each constituent, and introduces the
percolation velocity using the interaction drag between phases. Later, Gray & Chugunov
(2006) extended this theory to include the diffusion effect. This model is applied widely,
and is capable of predicting qualitatively or quantitatively the results from experiments
or simulations in various configurations, such as plug (Thornton, Gray & Hogg 2006),
annular shear (May et al. 2010) and chute (Wiederseiner et al. 2011). However, as an
analytical method, it needs some presumptions of the flow kinematics for simplification,
limiting its applicability to the specific flow configurations. Another approach on this
topic goes to the particle scale simulation using discrete models such as the discrete
element method (DEM) (Brandao et al. 2020). The DEM captures each particle trajectory
in simulation, thus providing microscopic insight into the problem. For example, Thornton
et al. (2012) studied the relation between the segregation Péclet number (ratio of the
segregation velocity to diffusion) and the particle-size ratio in a bidisperse mixture.
Fry et al. (2018) investigated the effect of the confining pressure on segregation of
granular material. The DEM is also used to determine some macroscopic quantities
for the continuum models (Fan et al. 2014; Tunuguntla, Weinhart & Thornton 2017).
Despite the insight of such DEM simulations for the size-driven particle migration,
however, the notorious high computation cost limits the applicability of the DEM to
small-scale granular flow modelling. Thus it is of urgency to develop a generic method
based on fundamental flow dynamics without the limitation of the system configuration
and problem scale.

Continuum-model-based numerical methods are often used in computational fluid
dynamics and computational solid mechanics for large-scale problems ascribed to their
outstanding calculation efficiency. In the field of polydisperse granular simulation, two
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theoretical frameworks can be found. One is based on the mixture theory, which takes
multisized granular media as spatially overlapped continua specified with different particle
sizes, and introduces the source term such as the drag force in the momentum conservation
equations to mimic the interplay between different constituents. Within this framework,
Huang, Kao & Kuo (2013) studied the solid–solid–gas three-phase particle segregation in
a rotating drum using the Eulerian continuum approach. The other framework, adopted
in this study, regards the particle aggregates as a single-phase system with varying
concentration of constituents, and brings in the convective–diffusive transport equation
governing the evolution of the concentration. More works have been conducted with the
latter method, as the transport equation has been well studied in the multidisperse granular
flow problem (Liu, Gonzalez & Wassgren 2018; Yang et al. 2021). For instance, Barker
et al. (2021) implemented two-way coupling of segregation–diffusion–advection equations
with partially regularized incompressible μ(I) rheology, and investigated numerically the
inclined slope flow and square rotating drum in OpenFOAM. However, it is found that
most of these studies adopt hybrid grid-based numerical methods, such as the combination
of the Eulerian finite-element method (FEM) and the finite difference method, with the
former updating the velocity information, whereas the latter solves the transport equation.
Consequently, several drawbacks are inherent in such procedures due to the nature of the
Eulerian grids, including (1) the difficulty in obtaining the temporal evolution of the field
variables on a fixed particle, (2) the high computational cost and inaccuracy in tracking
the free surface of the granular flow, and (3) cumbersomeness to treat irregular or complex
geometries. Also, the mixed numerical methods have often complex formulations and are
difficult to implement. To overcome these disadvantages, we present a mesh-free solver
based on the smoothed particle hydrodynamics (SPH) in the current study.

The SPH method is a Lagrangian particle-based mesh-free method that is suitable for
problems involving large deformation and free-surface flows like the granular flow to
be discussed in this study, because (1) it can avoid the instability caused by the large
deformation or grid distortion in the conventional grid-based methods, and (2) no effort is
needed to track the free surface thanks to the inherent property as a Lagrangian method.
Initially, SPH was invented to solve problems in astrophysics in the 1970s (Gingold &
Monaghan 1977; Lucy 1977). After almost half a century of development, it has been used
in various walks of science and engineering, including cardiovascular medicine (Zhang
et al. 2021), porous media flow (Peng et al. 2017), high-explosive explosion (Liu et al.
2003), the food industry (Harrison et al. 2014), and geohazard prediction (Fourtakas &
Rogers 2016). In the past decades, SPH is also widely used in simulating the granular
avalanche and debris flow. Despite the success of this method in multiple disciplines,
the explicit time integration scheme adopted in SPH leads to low computation efficiency,
in particular when it comes to large-scale three-dimensional problems. Fortunately, the
locality property of this method makes it quite suitable for parallel computation. In this
study, the GPU acceleration solution empowered by an NVIDIA generic graphic card will
be adopted due to its better accessibility, availability and affordability compared with CPU
clusters that are usually used in supercomputers.

In the remainder of this paper, the mathematical framework of the size-driven particle
segregation will be developed, followed by the introduction of the constitutive model for
the granular aggregates, in § 2. Then a brief introduction to the SPH formulation will
be given in § 3. Section 4 describes the proposed hybrid continuum surface reaction
scheme, which is necessary for realizing the inhomogeneous Neumann boundary condition
for each granular constituent. In § 5, the developed solver is examined with the shear
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L S F

Figure 1. Schematic diagram of a bidisperse granular assembly, in which L, S and F refer to large grains,
small grains, and interstitial fluid, respectively.

box experiment conducted by Van der Vaart et al. (2015). In § 6, the proposed SPH
model is applied to investigate the segregation dynamics in a rotating drum filled with
a bidisperse-sized granular assembly. Finally, some conclusions are summarized in § 7 to
close the study.

2. Mathematical framework

The bidisperse granular assembly consists of three domains, i.e. the space occupied by the
large grains (L), the small ones (S), and the interstitial fluid (F), as shown in figure 1. The
volume fractions for each constituent are φL, φS and φF, with the superscript denoting
the corresponding phase. In this study, the interstitial fluid is air, and its effect on the
particle-size segregation is ignored. Since the concern lies in the evolution of the local
grain distribution, the following volumetric concentration is introduced as an indicator to
reflect the particle-size segregation:

CX = φX

φL + φS , (2.1)

where X = L, S, representing the specific grain size. The volume concentration is CX ∈
[0, 1], and the two extremes CX = 0 or 1 denote the full segregation. Based on the above
concentration definition, the following constraint holds everywhere of the calculation
domain:

CL + CS = 1. (2.2)

2.1. Granular flow model
Within the framework of continuum mechanics, the governing equations dictating a
granular flow include the mass conservation

dρ
dt

= −ρ∇ · u, (2.3)

and the linear momentum conservation
du
dt

= 1
ρ

∇ · σ + g. (2.4)

Here, d( · )/dt = ∂( · )/∂t + u · ∇( · ) is the material derivative, ρ represents the bulk
density; u is the velocity vector; σ denotes the stress tensor; and g refers to gravity, which
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is the most common external body force in granular flows. In this work, the granular
mass is assumed incompressible, i.e. the bulk density ρ remains constant, so (2.3) can
be deactivated.

Often, granular flow is considered within hydrodynamics by Navier–Stokes equations,
in which the non-Newtonian viscosity is deployed to describe the behaviour of granular
material (Gilberg & Steiner 2020). However, such a model is incompatible with the
solid-like behaviours of the granular mass in the quasi-static state (Yang et al. 2021).
Therefore, we use a regularized μ(I)-rheology-based elastoplastic model in this study
(Zhu, Peng & Wu 2022a). Details will be presented in § 2.3.

2.2. Segregation–diffusion model
To close the governing equations for the segregation dynamics of a bidisperse system, we
need the so-called segregation–diffusion equation proposed by Gray & Chugunov (2006),
which is formulated initially in the Eulerian framework. In this work, we first propose the
following Lagrangian description:

dCS

dt
= −CS ∇ · u − ∇gQ + ∇ · (D ∇CS). (2.5)

In this equation, ∇g denotes the gradient along the direction of gravity;

Q = VF (2.6)

denotes the segregation flux, with V the segregation velocity, and F the segregation
function, whose specific expression will be given subsequently; and D ∇CS is the diffusion
flux, with D the diffusivity. The segregation velocity V and diffusivity D have similar
scaling relations with the shear rate magnitude γ̇ and average grain diameter davg such
that (Savage & Dai 1993; Hajra & Khakhar 2002)

D = χDγ̇ d2
avg, V = χV γ̇ davg. (2.7a,b)

Here, χD and χV are material coefficients; γ̇ = √
2ė : ė (with : denoting the tensor inner

product), where ė = ε̇ − ε̇v I represents the deviatoric strain rate, with ε̇ = 0.5(u ∇ + ∇u)
and ε̇v = tr(ε̇)/3 (with tr( · ) denoting the trace), and I is the identity tensor: davg =
dSCS + dLCL with d referring to the grain diameter. It should be noted that (2.7a,b)
are indeed simplified, as both segregation velocity and diffusivity are found to rely on
many other factors, such as frictional coefficient, inertial number, lithostatic pressure and
grain radius ratio (Fry et al. 2019; Bancroft & Johnson 2021; Trewhela, Ancey & Gray
2021a). Also, in some studies, V and D are taken as constants, resulting in consistent
agreement with experimental data (Van der Vaart et al. 2015; Yang et al. 2021). Therefore,
the effect of using constant or functional forms of V and D will be discussed in § 5.
From (2.5), we can identify three factors that influence the temporal evolution of the local
concentration of the small-size grain on a material point. The first term on the right-hand
side of (2.5) reflects the contribution from the volume change, while the second accounts
for the particle-size segregation, and the last for diffusive remixing. As mentioned above,
this study is restricted to the incompressible granular flow, so that the first term on the
right-hand side in (2.5) can be disregarded. Since the unity condition, i.e. (2.2), holds
everywhere, and only CS is utilized in the rest of the paper, the superscript is omitted for
brevity.

977 A47-5

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

99
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.995


C. Zhu, C. Peng and W. Wu

0.25

0.20

0.15

0.10

0.05

0 0.2 0.4 0.6 0.8 1.0

C

F

A = 1.0, κ = 0

A = 1.6, κ = 0.89

Figure 2. Quadratic and cubic segregation functions.

We proceed to consider the segregation function in (2.5). The following quadratic
segregation function is used in a number of studies (Dolgunin & Ukolov 1995; Gray &
Thornton 2005; Fan et al. 2014):

F = C(1 − C). (2.8)

Equation (2.8) is also named the symmetric flux function as it is symmetric about C = 0.5,
where both large and small grains have equal but opposite segregation flux. Despite its
success in modelling segregation, the quadratic form may sometimes deviate from reality.
For instance, Golick & Daniels (2009) observed that the downward penetration of a small
grain through a bidisperse matrix in an annular ring shear cell is faster than the rising of a
large grain through the same matrix. Likewise, the percolation rate is observed noticeably
lower for a large intruder migrating through a dissimilar granular matrix in a shear box
than for a small intruder (Trewhela et al. 2021a). Based on the experimental observation,
Gajjar & Gray (2014) proposed the asymmetric flux model

F = AC(1 − C)(1 − κC), (2.9)

where the parameter κ ∈ [0, 1) controls the degree of asymmetry. The constant A is chosen
to ensure that the maximum flux is the same as for the symmetric flux function. Two
sets of parameters A and κ (i.e. A = 1.0, κ = 0 and A = 1.6, κ = 0.89) are utilized in
this study, and the corresponding segregation functions are demonstrated schematically
in figure 2. Notice that (2.9) reduces to (2.8) in the case A = 1 and κ = 0. Also, in the
case of asymmetric segregation flux, the cubic relation between F and C can lead to
remarkable errors if (2.9) is substituted directly into (2.5) within the SPH framework. This
is due to the complexity of high order between the segregation flux Q and coordinates. A
detailed explanation is presented in Appendix A. For a better approximation, we modify
the segregation–diffusion equation as

dC
dt

= −VF ∇gC − F ∇gV + ∇ · (D ∇C), (2.10)

in which F = ∂F/∂C = A(3κC2 − 2(1 + κ)C + 1).
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2.3. Regularized μ(I)-rheology-based elastoplastic model
In this subsection, the regularized μ(I)-rheology-based elastoplastic model with
Drucker–Prager yield surface, first put forward in Zhu et al. (2022a), is introduced briefly
for the sake of self-containment. This model is featured with the pressure-dependent yield
function written as

f ( p, J2) =
√

J2 − kμp, (2.11)

where p = tr(σ )/3 is the hydrostatic pressure; J2 = 0.5s : s represents the second invariant
of the deviatoric stress s = σ − pI; and kμ is the constitutive parameter related to the
Mohr–Coulomb model through

kμ = 3μ√
9 + 12μ2

, (2.12)

in which μ is the frictional coefficient. In the standard Drucker–Prager model, μ is
constant, which is valid for granular materials in quasi-static state. However, under the
fast-shear condition, the frictional coefficient is found to be dependent on the local
pressure level and shear rate magnitude with the so-called μ(I) relation (Jop, Forterre
& Pouliquen 2006)

μ(I) = μs + (μd − μs)/(I0/I + 1). (2.13)

Here, I = γ̇ davg/
√

p/ρs is the so-called inertial number; μs and μd denote the static and
dynamic frictional coefficients, bounding the lower and upper limits; and I0 is a material
parameter. Equations (2.11)–(2.13) are the major ingredients of the μ(I) rheology-based
elastoplastic model for granular materials.

However, (2.13) contains the potential numerical singularity in the case of zero shear
rate, γ̇ = 0. Also, the μ(I) relation is found to be well-posed for intermediate inertial
numbers, but ill-posed for both low and high inertial numbers, which could result in a
resolution-dependent simulation result or numerical instability (Barker et al. 2015). For
restoring the well-posedness, the μ(I) relation should be modified, or some regularization
techniques such as non-local theory should be utilized (Dsouza & Nott 2020). In this study,
the following regularized μ(I) relation based on the penalty scheme is adopted (Zhu et al.
2022a):

μ(I) = μs + (μd − μs)γ̇

I0

√
p/(ρsd2

avg)+
√
γ̇ 2 + λ2

, (2.14)

where λ is the regularization parameter, and λ = 0.001 is taken in this study following the
suggestion in Zhu et al. (2022a). The non-associated flow rule is employed in this study
with the potential function

g( p, J2) =
√

J2, (2.15)

which is consistent with the incompressible flow assumption. As a result, the final stress
rate could be given explicitly as

σ̇ = ω̇σ − σ ω̇ + 2Gė + Kε̇v I − λ̇G√
J2

s. (2.16)

In this equation, ω̇ = 0.5(u ∇ − ∇u) is the spin tensor. The first and second terms in
(2.16) come from the Jaumann stress rate, which ensures the objectivity of the constructed
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constitutive equation; ė and ε̇v are the deviatoric and volumetric strains, respectively, in
which ė = ε̇ − ε̇v I , with the strain rate ε̇ = 0.5(u ∇ + ∇u) and ε̇v = tr(ε̇)/3. Also, G and
K are the shear and bulk moduli, respectively; s = σ − pI , denoting the deviatoric stress;
and λ̇ is the plastic multiplier, which can be written as

λ̇ = 3kμKε̇v + (G/
√

J2)s : ε̇

G
. (2.17)

A brief introduction to the derivation of (2.16) within the elasto-perfect plastic theoretical
framework is provided in Appendix B, where more details are accessible.

2.4. One-step return-mapping algorithm
With the specific yield criterion and potential function introduced above, and the generic
plasticity theory, one can update the stress state provided that the strain rate is given. Here,
a variety of schemes exist, but we consider only the so-called one-step return-mapping
algorithm due to its accuracy and efficiency (de Borst 1993; Zhu et al. 2022a), which
originates from the features of the Drucker–Prager-model-based elasto-perfect plasticity
(de Borst 1991; Zhu, Peng & Wu 2021). Details for the algorithm are presented in
Appendix C.

3. SPH formulation

3.1. SPH approximation
Two key steps are involved in the SPH approximation to an arbitrary field function f (x),
i.e. the kernel approximation and the particle approximation. The former step starts from
the identity

f (x) =
∫
Ω

f (x′) δ(x − x′) dx′, (3.1)

in which Ω is the integral domain containing x, and δ(x − x′) represents the Dirac delta
function. If we replace δ(x − x′) with a smoothing kernel function, then (3.1) can be
rewritten as

f (x) .=
∫
Ω

f (x′)W(x − x′, h) dx′. (3.2)

In the kernel function W(x − x′, h), h is the smoothing length defining the influence
domain of a particle. Some requirements or properties for the kernel function should
be satisfied for a better performance, including the unity, compact support and positivity
(for more details, see Liu & Liu 2003, 2010). Various kernel functions have been used
in the literature, such as the Gaussian kernel (Gingold & Monaghan 1977), the cubic
B-spline function (Monaghan & Lattanzio 1985), the higher-order (quartic and quintic)
splines (Morris 1996), and the Wenland function class (Wendland 1995). Among them,
the Wendland C2 kernel is employed in this study due to its computational convenience
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and the capability to prevent pairing instability (Dehnen & Hossam 2012), which reads

W = αd

{
(1 − q/2)4(2q + 1), 0 ≤ q ≤ 2,
0, q > 2,

(3.3)

where αd is a constant, taking the value 7/(4πh2) in two dimensions, and 21/(16πh3) in
three dimensions, and q = r/h is the non-dimensional distance between points x and x′,
with r = ‖x − x′‖.

When the field function in (3.2) is replaced by its spatial derivative, we can get the
following expression by using integration by parts:

∇f (x) .=
∫
Ω

f (x′)∇xW(x − x′, h) dx′, (3.4)

where ∇x represents the gradient with respect to x. The kernel approximation of the
diffusion term in (2.5) has the expression

∇(g(x)∇f (x)) =
∫
Ω

[g(x)+ g(x′)][ f (x)− f (x′)]
x − x′

‖x − x′‖2 · ∇xW(x − x′, h) dx′.

(3.5)

Details of the mathematical deduction of this equation are presented in Appendix D.
Hitherto, we have constructed the integral representations of the field function, its
derivative, and the diffusion term in the governing equations. The second step is to conduct
the particle approximation, at which stage discrete particles will be used to replace the
continuous domain, and the integral representations will be converted as summations over
all the particles in the support domain such that

f (xi)
.=

n∑
j=1

f (xj)Wijmj/ρj, (3.6)

∇f (xi)
.=

n∑
j=1

f (xj)∇iWijmj/ρj, (3.7)

{∇(g(x)∇f (x))}i =
n∑

j=1

[g(xi)+ g(xj)][ f (xi)− f (xj)]
xij

‖xij‖2 + η2 · ∇iWijmj/ρj, (3.8)

where the subscripts i and j denote the target particle and the neighbouring particles in the
support domain; n means the total particle number within the support domain of particle i;
xij = xi − xj; η = 0.1h acts as a clipping constant to keep the denominator non-zero; Wij
is short for W(xij, h); and ∇iWij short for ∇xiW(xij, h).

3.2. The SPH discretization of governing equations
By applying (3.6)–(3.8), one can obtain the SPH formulation for the momentum
conservation equation as

dui

dt
=

n∑
j=1

mj

(
σ i

ρ2
i

+ σ j

ρ2
j

+Πij

)
∇iWij + g. (3.9)

In (3.9),Πij denotes the artificial viscosity, which is a common stabilization scheme in the
SPH theory to damp out unphysical numerical oscillations. In this study, the formulation
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proposed by Monaghan (1992) is adopted, reading

Πij =
⎧⎨
⎩
αΠcsh
ρ̄ij

uij · xij

‖xij‖2 + 0.01h2 , uij · xij < 0,

0, uij · xij ≥ 0,
(3.10)

in which αΠ is a constant coefficient, taken as 0.1 in this study (Bui et al. 2008); cs is
the sound velocity; ρ̄ij = 0.5(ρi + ρj) is the average density of particles i and j; and uij =
ui − uj. The specific terms related to stress in (3.9) come from the identity

∇σ

ρ
= ∇ ·

(
σ

ρ

)
+ σ

ρ2 ∇ρ. (3.11)

The pairwise SPH form of the momentum equation, i.e. (3.9), ensures the action–reaction
principle and is stable in the calculation, thus gaining high popularity. Note that SPH
suffers from the short-length-scale-noise problem, which could lead to unrealistic stress
perturbations (Nguyen et al. 2000; Monaghan 2012). To regularize the stress field, the
Shepard filter scheme is adopted every so many steps (Nstep = 30 in this study) to
reproduce the linear variation of stress fields, reading

σ new
i =

∑
σjWij∑
Wij

. (3.12)

Likewise, the SPH formulation for the segregation–diffusion equation should be written
as

dC
dt

= −
n∑

j=1

mj

ρj
(ViFiCij + FiVij)

g
‖g‖ · ∇iWij

+
n∑

j=1

mj

ρj
(Di + Dj)Cij

xij

‖xij‖2 + η2 · ∇iWij, (3.13)

where Cij = Ci − Cj and Vij = Vi − Vj. A similar process for the strain rate tensor and
spin tensor gives

ε̇ = 1
2

⎛
⎝ n∑

j=1

uij ⊗ ∇iWijmj/ρj +
n∑

j=1

∇iWij ⊗ uijmj/ρj

⎞
⎠, (3.14)

ω̇ = 1
2

⎛
⎝ n∑

j=1

uij ⊗ ∇iWijmj/ρj −
n∑

j=1

∇iWij ⊗ uijmj/ρj

⎞
⎠, (3.15)

where uij = ui − uj. The inclusion of ui is because of the identity

n∑
j=1

ui ⊗ ∇iWijmj/ρj = 0. (3.16)

One benefit of the adoption of the velocity difference uij in (3.14)–(3.15) is the restoration
of O(h) convergence on the free surface (Colagrossi, Antuono & Le Touzé 2009).
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3.3. Time stepping
The SPH forms of the governing equations are solved numerically using explicit
time integration schemes. In this work, we employ a second-order predictor–corrector
integrator (Zhu et al. 2022a). At the predictor step, the physical variables at the midpoint
of the calculation step are evaluated with

Xn+0.5 = Xn + Γ n�t, (3.17)

in which X goes through position x, velocity v, stress σ and concentration C, and Γ =
dX/dt is the material time derivative of X. At the corrector step, the final value at the end
of the calculation step is obtained with

Xn+1 = Xn + Γ n+0.5�t. (3.18)

Here, Γ n+0.5 is determined with Xn+0.5 from the predictor step. Note that the time step�t
used in the time integration is limited by the CFL condition

�t = χCFL × min
(√

h/amax,
h
cs

)
, (3.19)

where χCFL is the CFL coefficient, taken as 0.1 in this study, and amax denotes the
maximum acceleration among all material particles.

3.4. Numerical implementations
The proposed SPH model is developed based on our in-house code LOQUAT, an
open-source SPH solver (Peng et al. 2019). In each calculation step, four subroutines
are executed serially, including (1) nearest neighbouring particle searching, (2) boundary
treatment, (3) particle interaction, and (4) time integration. Boundary treatment refers to
the fulfilment of specific boundary conditions, which will be illustrated in detail in § 4.
Particle interaction in this work means that the SPH approximation of the material time
derivative of velocity and concentration from the support domain, i.e. (3.9) and (3.13). The
introduction to time integration was presented in the previous subsection. Here, we focus
mainly on the illustration of the first subroutine.

An SPH particle interacts only with its nearest neighbouring particles (NNP) located
within the influence domain, so the prerequisite of SPH computations is identifying these
particles. This process is referred to as nearest neighbouring particle searching (NNPS)
in the literature. A naive strategy is to conduct the calculation of all pairwise distances
between particles i and j. Particle j is found to belong to the support domain of particle
i provided that the distance is less than 2h. However, this method would be prohibitively
expensive for large-scale problems, as the computational burden of such an operation is
of order O(N2). Therefore, various alternatives have been proposed to improve search
efficiency. Typical examples include the Verlet neighbour list, cell-linked list and tree
searching algorithms (Liu & Liu 2003; Viccione, Bovolin & Carratelli 2008).

Among all the approaches, this study adopts the cell-linked list scheme to advance
NNPS. The first step in implementing this algorithm is to cover the whole calculation
domain with a virtual square lattice mesh whose length is equal to 2h, as shown in figure 3.
Each cell is indexed by α, β and γ according to its position. With this background grid, all
SPH particles can be binned into the corresponding cells. From figure 3, we can find that
the support domain is encircled by the neighbour cells so that NNPS can be confined to the
M particles from these cells. As a result, the neighbour search operation is scaled down to
the order O(MN). The cell-linked list scheme needs to store all particles in each cell, which
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SPH particles

Target particle i

NNP

Support domain

Neighbour cells

2h

α – 1 α + 1

γ + 1

γ – 1

γ

α

Figure 3. Sketch of the virtual square lattice mesh.

Wall surface ∂ΩW

Free surface ∂ΩF

ΩI

ΩI  Interior domain

ΩF  Free surface domain

ΩW  Wall surface domain

Ωf  Free surface vicinity region

Ωw  Wall surface vicinity region

ΩF

ΩW
Ωw

Ωf

Figure 4. Sketch of a granular flow with a free surface and rigid wall boundary.

is memory-consuming. Green (2010) proposed a modification by sorting all the particles
according to their associated cell index, thus only the beginning and ending particle
indexes are necessary for each cell. This modified cell-linked list not only consumes less
memory, but also has a high data accessing rate since all information is stockpiled in
memory serially.

4. Boundary conditions

4.1. Kinematic and dynamic boundary condition
A proper formulation of boundary conditions for SPH is crucially important to achieve
physically meaningful and quantitatively correct results (Adami, Hu & Adams 2012).
However, the implementation of boundary conditions in SPH is far from trivial and is
often regarded as a major weakness compared to the FEM, thus identified as one of the
grand challenges (Vacondio et al. 2021). For instance, in a rotating drum, two boundary
conditions are concerned, i.e. a free surface and rigid wall boundary, as shown in figure 4.
One distinct advantage of the SPH method is the intrinsic fulfilment of the kinematic and
dynamic boundary conditions on the free surfaces (Colagrossi et al. 2009; Lyu & Sun
2022).

On the rigid wall boundaries, the dummy particle scheme, initially proposed for fluid
flow (Adami et al. 2012), and later modified for geomaterials (Peng et al. 2019; Zhan
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Rigid wallSupporting domain
Material particle

Dummy particle

Truncated supporting domain

2h

Figure 5. Dummy particle scheme for the rigid wall boundary.

et al. 2019; Zhu et al. 2022b), is employed for modelling the rigid wall boundary due
to its accuracy and efficiency for regular boundary geometries (Valizadeh & Monaghan
2015). As shown in figure 5, at the beginning of the simulation, several layers of dummy
particles (depending on the ratio of smoothing length to the initial particle spacing, i.e.
h/�r) are arranged outside the calculation domain. The fictitious particles participate in
the interaction if they are located in the support domain of the material particles. However,
unlike the internal particles, whose field variables are updated according to the governing
equations, the necessary information of the dummy particles is extrapolated from those
material particles close to the boundary (named boundary particles, hereafter). For a
non-slip boundary condition, the following extrapolation scheme is applied:

ud = 2uw −

n∑
m=1

umWdmVm

n∑
m=1

WdmVm

, (4.1)

where the subscripts d and m refer to dummy and material, respectively, and uw represents
the prescribed velocity of the rigid wall. In the scenario of a free-slip boundary, the
procedure remains the same with (4.1) for the normal component of the velocity vector,
while the tangential part is modified as follows:

un
d = 2un

w −

n∑
m=1

un
mWdmVm

n∑
m=1

WdmVm

,

uτd =

n∑
m=1

uτmWdmVm

n∑
m=1

WdmVm

,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.2)
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where the superscripts n and τ represent the normal and tangential directions. To avoid the
particle penetration through the rigid wall, the dummy particles are assigned the following
stress (Adami et al. 2012; Peng et al. 2019):

σ d =

n∑
m=1

σmWdmVm + I ◦
n∑

m=1

mmg ⊗ rdmWdm

n∑
j=1

WdmVm

, (4.3)

in which ◦ denotes the Hadamard product, and rdm = rd − rm.

4.2. Inhomogeneous Neumann boundary condition
The above section presents the procedure for achieving the kinematic and dynamic
boundary conditions. We proceed to show strategies on how to realize the
concentration-related boundary conditions.

Provided that there is no concentration flux of small particles across the boundary, the
mathematical expression can be written as follows (Gray & Chugunov 2006):

n ·
(

Q
g

‖g‖ + D ∇C
)

= 0, ∀x ∈ ∂Ω, (4.4)

in which n denotes the normal vector on ∂Ω pointing towards Ω . Equation (4.4)
reveals that the segregation and diffusion fluxes have identical magnitude but opposite
direction along the normal of the boundary. After some mathematical manipulations, an
inhomogeneous Neumann boundary condition about C can be reached as follows:

D
∂C
∂n

= f (C) = −VF
n · g
‖g‖ , ∀x ∈ ∂Ω. (4.5)

Here, V and F denote the segregation velocity and segregation functions (cf. (2.6)).

4.2.1. Continuum surface reaction scheme for solid boundaries
It is challenging to enforce the inhomogeneous Neumann boundary condition within the
SPH framework directly. Following the spirit of the continuum surface reaction (CSR)
method (Ryan, Tartakovsky & Amon 2010), the inhomogeneous Neumann boundary
condition can be replaced by the homogeneous Neumann boundary condition and a
volumetric source term added into the segregation–diffusion equation (Wang et al. 2019),
reading

∂C
∂n

= 0, ∀x ∈ ∂Ω, (4.6)

dC
dt

= −VF ∇gC − F ∇gV + ∇(D ∇C)+ q. (4.7)

The implementation of the homogeneous Neumann boundary condition in SPH can be
enforced by assuming that the virtual and concerned material particles have identical
concentrations, i.e. Cj = Ci (Wang et al. 2019), which is achieved intrinsically with the
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SPH modelling of particle-size segregation in granular flows

SPH form of the Laplace operator adopted in (3.13). The last term on the right-hand side of
(4.7), i.e. q, is the volumetric source term, which is related to f (C) through the expression

q = −f (C)
∫
Ωs

[n(x)+ n(x′)] · ∇xW(x − x′, h) dx′, (4.8)

where the integral domain Ωs (as seen in figure 5) denotes the missing support truncated
by the boundary. The SPH approximation to (4.8) is

qi = −f (Ci)
∑
j∈Ωs

(ni + nj)∇iWijVj. (4.9)

Here, the normal vectors at points i and j, i.e. ni and nj, are evaluated with

ni =

∑
j∈Ω∪Ωs

(ci − cj)∇iWijVj

∣∣∣∣∣∣
∑

j∈Ω∪Ωs

(ci − cj)∇iWijVj

∣∣∣∣∣∣
, (4.10)

where c represents a colour function whose value is 0 for the material particles, and 1
for the fictitious particles. However, the CSR scheme introduced above is found only with
first-order accuracy, thus errors could arise near the boundary (Pan et al. 2017). To remedy
this, a degenerate function ψd is introduced, and the segregation–diffusion equation is
modified as (Wang et al. 2019)

dC
dt

= −VF ∇gC − F ∇gV + ∇(ψdD ∇C)+ q, (4.11)

where ψd can be specified with

ψd(x) =

⎧⎪⎨
⎪⎩

1, x ∈ Ω,
0, x ∈ ∂Ω,
−1, x ∈ Ωs.

(4.12)

The corresponding SPH form of the Laplace operator in (4.11) can be given as

∇(ψdD ∇C) =
n∑

j=1

mj

ρj
(ψ̃diDi + ψ̃djDj)Cij

xij

‖xij‖2 + η2 · ∇iWij, (4.13)

where ψ̃d represents the smoothed counterpart of ψd, defined as

ψ̃di =

∑
j∈Ω∪Ωs

ψdjWijVj

∑
j∈Ω∪Ωs

WijVj
. (4.14)
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4.2.2. Hybrid CSR scheme
The conventional CSR (CCSR) scheme introduced above evaluates physical fields based
on the missing support domain, e.g. (4.9) and (4.10). This can be achieved trivially on
the rigid wall boundary, i.e. ∂ΩW , where the missing support domain is supplemented by
the fictitious particles. However, the implementation on the dynamic free surface will be
troublesome, particularly when the geometry is irregular. To fulfil (4.6) on the free surface,
we put forward a modified CSR (MCSR) scheme that can avoid introducing additional
fictitious particles because the SPH approximation to the volumetric source term (q) and
degenerate function (ψ̃d) is carried out using the material particles.

This new variant has the same boundary condition and governing equation as (4.6) and
(4.11), but with the following kernel approximation to the volumetric source term:

q = 2 f (C)n(x) ·
∫
Ω

∇xW(x − x′, h) dx′. (4.15)

Correspondingly, the SPH approximation to q is

qi = 2 f (Ci)
∑
j∈Ω

ni ∇iWijVj. (4.16)

Here, ni is evaluated with

ni =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
j∈Ω

∇iWijVj

∣∣∣∣∣∣
∑
j∈Ω

∇iWijVj

∣∣∣∣∣∣
, i ∈ ΩF,

∑
j∈ΩF

∇iWijVj

∣∣∣∣∣∣
∑
j∈ΩF

∇iWijVj

∣∣∣∣∣∣
, i ∈ Ωf .

(4.17)

In this equation, ΩF denotes the subset consisting of free surface particles, and Ωf
indicates the particles in the vicinity of the free surface, as shown in figure 4. The
procedure to identify these particles will now be presented. The smoothed degenerate
function has the expression

ψ̃di = 2
∑
j∈Ω

WijVj − 1. (4.18)

Note that the volumetric source term should vanish (i.e. qi = 0) for the material particles
with full support domain (i.e. ΩI in figure 4). This is satisfied intrinsically within the
CCSR scheme as the approximation to q is based on the fictitious particles. However, the
MCSR scheme employs the material particles, so non-zero value always appears due to
the distorted particle distribution, especially for a granular flow with large deformation.
One effective strategy to mitigate this issue is to restrict the MCSR scheme to only those
material particles in the vicinity of the free surface (i.e.ΩF andΩf in figure 4). To achieve
this, the following boundary particle searching algorithm is proposed.
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Type I

Type II

Type III
Calculation domain Ω

ΩF

ΩW

Ωf
Ωw

ΩI

T
h

h
π/4

Boundary ∂Ω

Outermost cells

Figure 6. Sketch of the boundary particle detection scheme.

Step 1, identifying the surface particles (i.e.ΩF,ΩW in figure 4). In this step, the surface
detection scheme proposed by Marrone et al. (2010) is adopted with some optimization.
In the optimized version, a rough-refining two-stage strategy is used to advance the
searching. First, those non-empty virtual cells are divided into three categories. Type I
is the outermost layer, featured with some empty neighbour cells. Type II is the second
outermost layer, which are intermediate neighbour cells of Type I. The remaining cells,
i.e. the interior ones, consist of Type III. Since the lattice mesh has length 2h, we can
conclude that all the particles located in Type I cells could have truncated support. In
comparison, particles in Type III cells have complete support. In this manner, Type II cells
can be regarded as transitional regions, as some particles in Type II cells will have full
support in Ω , while the rest do not. Accordingly, we can reduce the further searching in
the next stage to only those particles from Type I cells. Subsequently, the surface particles
are detected from the potential candidates by searching the so-called ‘umbrella-shaped’
region, as sketched in figure 6. A concerned particle will be considered as a surface particle
if the ‘umbrella-shaped’ region is particle-free, i.e.

� j ∈ {xj | |xij| ≥ √
2h and |xjT | < h},

� j ∈
{

xj | |xij| <
√

2h and xij · xiT >

√
2

2
|xij| h

}
.

⎫⎪⎬
⎪⎭ (4.19)

Step 2, determining the surface vicinity particles (i.e. Ωf , Ωw in figure 4). One can
observe from figure 6 that the surface vicinity particles come from Type I or II cells,
thus the searching operation is also of a small amount compared to the total SPH particle
number. In this work, an SPH particle is considered a free-surface vicinity particle (i.e.
xi ∈ Ωf ) when the following condition is satisfied:

min{|xij| | xj ∈ ΩF} < 2h −�r. (4.20)

The identification of Ωw is based on its definition, i.e.

Ωw := {xi | ∃xj ∈ Ωs, but xi /∈ ΩW}. (4.21)

In practice, CCSR is used for particles in domains ΩW and Ωw, while MCSR is used for
those in domainsΩF andΩf . This implementation scheme is named the hybrid continuum
surface reaction (HCSR) method in this study. Note that the identification of ΩW and Ωw
is unnecessary within the framework of CCSR, but indispensable for obtaining accurate
segregation flux at the boundary ∂Ω , which will be introduced in the next subsection for
the whole boundary particles.
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θ θ

Figure 7. Experimental set-up of the shear box in Van der Vaart et al. (2015).

4.3. Accurate approximation to the segregation flux gradient
The SPH approximation of the segregation flux gradient adopted in (3.13) has C1

consistency at the interior particles, but this level of accuracy is infeasible at the boundary
particles due to the particle deficiency. The mirroring technique with antisymmetric
extension of C and V can restore the C1 consistency close to the boundaries (Macia
et al. 2011). However, this method needs to introduce virtual particles around the boundary
∂Ω , which is difficult for implementation when the boundary has an irregular shape, as
discussed earlier. In this study, we employ the approach proposed by Liu & Liu (2011)
to obtain the accurate approximation with C1 consistency for ∇gC and ∇gV in (2.10).
Details can be found in Appendix B. This method needs only the information from material
particles, thus avoiding introduction of fictitious particles. Note that this technique is
restricted to boundary particles (Ω −ΩI). For the interior particles (ΩI), the standard
SPH approximation, i.e. (3.13), is used for obtaining the segregation flux gradient.

5. Validation

Van der Vaart et al. (2015) investigated experimentally the particle segregation in a shear
box that was 51 mm deep, 37 mm wide, and filled with bidisperse glass beads to height
H = 87 ± 3 mm, as shown in figure 7. In the initial configuration, the lower half are
large beads with diameter dL = 8 mm, underlying the small beads with dS = 4 mm. The
side walls oscillate at a consistent pace with periodic shear γ (t) = γ0 sin(ωt) and period
T = 13 s, thus remaining parallel all the time. The maximum inclination of the side wall
throughout the experiment is ±30◦, giving a maximum grain displacement amplitude
B = Hγ0. This benchmark, which can be modelled as a one-, two- or three-dimensional
problem, is an excellent choice for examining the proposed SPH model. In this section,
we conduct a two-dimensional simulation with the prescribed velocity to validate the
effectiveness of the proposed HCSR scheme and the capability of the SPH method to
reproduce the particle segregation evolution.

The concentration of the small grains is initialized as

C(0, z) =
{

0, 0 ≤ z/H ≤ 0.5,
1, 0.5 < z/H ≤ 1.

(5.1)
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Free surface particles

Wall surface particles

Free surface vicinity particles Interior particles

Fictitious particlesWall surface vicinity particles

(a) (b) (c)

Figure 8. Boundary particle identification in the HCSR method at (a) t/T = 0.25, (b) t/T = 0 or 0.5, and
(c) t/T = 0.75.

Also, (4.6) is applied to all boundaries. Note that the previous numerical studies prefer
to adopt the constant segregation velocity and diffusivity rather than the functional forms
(Van der Vaart et al. 2015; Yang et al. 2021). In this study, both the constant and functional
forms of V and D are adopted to demonstrate the capability of the developed numerical
method.

5.1. Constant segregation velocity and diffusivity
In this subsection, both segregation velocity and diffusivity are assumed constant,
following the practice in Van der Vaart et al. (2015). The obtained concentration
distributions at various time instants are compared with experimental observations from
Van der Vaart et al. (2015), and the numerical prediction using the pdepe routine of
MATLAB subject to the same initial and boundary conditions. In MATLAB calculation,
this problem is simplified as a one-dimensional problem with (2.5) as the governing
equation, and the domain is discretized with 201 nodes. Here, we regard the MATLAB
calculation result as a first-principles benchmark. Consistent with Van der Vaart et al.
(2015), the geometry and time are normalized by the height H and the period T ,
respectively. A series of tests shows that the best agreement between the segregation
time (the critical time to reach steady state) and the initial small-particle concentration is
obtained with the following constant non-dimensional segregation velocity and diffusivity
(Van der Vaart et al. 2015):

[V]const = VconstT/B = 3.0 × 10−2,

[D]const = DconstT/B2 = 1.01 × 10−3.

}
(5.2)

Therefore, these values are applied in this study.
The physical model in SPH simulation is partitioned with �r = 0.01H, which accounts

for 4000 material particles and 858 fictitious particles. We first examine the performance
of the HCSR method on the boundary particle searching and the normal direction
identification, which is presented in figures 8 and 9. It is found that the boundary particles
are identified accurately and classified at all three typical time instants. Also, the majority
of the normal vectors are perpendicular to the boundaries, as expected. The satisfactory
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(a) (b) (c)

Figure 9. Normal direction on the boundary particles at (a) t/T = 0.25, (b) t/T = 0.5 or 1.0, and
(c) t/T = 0.75.
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Figure 10. Temporal evolution of the concentration of small glass beads. (a) Experimental observation from
Van der Vaart et al. (2015). (b,c) The SPH predictions with symmetric and asymmetric segregation flux,
respectively. (d,e) Vertical distributions of concentration C at three specific time instants from SPH prediction
(lines) and MATLAB solution (symbols) with symmetric and asymmetric segregation flux.

behaviour of the HCSR method indicates its capability in the boundary treatment, and
gives us confidence in further segregation analysis.

The experimental results show that the small beads migrate faster than the large ones, as
seen by the asymmetric vertical distribution of the concentration C for the first 20 periods
in figure 10(a). The symmetric segregation flux fails to reproduce this feature, which is,
however, well captured by the asymmetric scheme (figures 10b,c). As the segregation
continues, a relatively homogeneous mixture is found between t/T = 20 and t/T = 40.
Afterwards, a reversed distribution pattern of C starts to evolve, i.e. small beads are
enriched at the bottom, compared to large ones at the top of the granular assembly. Finally,
an equilibrium state is reached under the common effect of gravity-driven segregation
and diffusion-induced remixing after t/T = 60. Figures 10(d,e) present close agreement
between the SPH prediction and MATLAB calculation at three specific time instants for
both segregation flux schemes. All curves in figure 10(d) pass through and are symmetric
about the centre point (z/H,C) = (0.5, 0.5). In comparison, relatively irregular patterns
are observed in figure 10(e) with asymmetric segregation flux. The good consistency
between the SPH prediction and the experimental observation as well as the MATLAB
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Figure 11. Consistency test for the proposed SPH method with the MATLAB pdepe calculation result as
benchmark. Curves represent the concentration distribution at t/T = 80 with the asymmetric segregation flux
scheme.

calculation result demonstrates the capability of the proposed SPH model, particularly the
effectiveness of the HCSR method on boundary condition treatment.

The convergence performance is another key concern for a newly developed solver.
Figure 11 presents the concentration distribution at t/T = 80 in the case of asymmetric
segregation flux with four resolution levels (�r/H = 0.005, 0.01, 0.02 and 0.04). Good
agreement is observed between MATLAB calculation and the numerical predictions for
all resolution levels. Even the coarsest partition scheme, i.e. �r = 0.04H, with only 25
material particles in the height direction, gives a reasonable prediction. Furthermore,
as the partition becomes finer, the SPH prediction converges rapidly to the MATLAB
calculation result. The convergence property of the proposed SPH method can be observed
quantitatively from the values of the mean absolute error (MAE) and root mean square
error (RMSE) with the following expressions:

MAE =

n∑
i=1

|CSPH
i − CMATLAB

i |

n
, (5.3)

RMSE =

√√√√√√
n∑

i=1

(CSPH
i − CMATLAB

i )2

n
. (5.4)

Both MAE and RMSE of the concentration error against the MATLAB results are plotted
in figure 12, with satisfactory order of convergence 1.25.

5.2. Varying segregation velocity and diffusivity
In this subsection, the functional forms of segregation velocity [V] and diffusivity [D] will
be employed to demonstrate the capability of the developed SPH model. To do this, [D]
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Figure 12. The error of concentration at t/T = 80.

and [V] in this subsection are assumed to have the following expressions:

[D] = γ̇

γ̇m

(
davg

d̄

)2

[D]const, [V] = γ̇

γ̇m

davg

d̄
[V]const, (5.5a,b)

where γ̇m = 2ωγ0/π denotes the shear rate averaged over one complete cycle; d̄ =
(dS + dL)/2 is introduced for non-dimensionalization, and its effect on the simulation
result will be discussed; [D]const = 1.01 × 10−3 and [V]const = 3.0 × 10−2 are kept the
same as in the previous subsection. Substituting (2.7a,b) into (5.5a,b), the specific
expressions and values of χD and χV can be derived as

χD = B2[D]const

T γ̇md̄2 = 0.0307, χV = B[V]const

T γ̇md̄
= 0.11. (5.6a,b)

The value of χD obtained here is comparable with previous reports (for instance, χD ≈
0.053 in Bridgwater (1980), χD ≈ 0.022 in Hsiau & Shieh (1999), and χD ≈ 0.042 in Fry
et al. (2019)). Substituting χV = 0.11 into (5.5a,b) leads to

V = 0.11γ̇ davg = 0.11 ∼ 0.22γ̇ dS, (5.7)

which is in line with the experimental observation (Schlick et al. 2015a)

V = 0.26γ̇ dS log
(

dL

dS

)
. (5.8)

The initial conditions are aligned with (5.1), and the whole domain is discretized with
�r = 0.01H.

The temporal evolution of particle-size segregation in the shear cell is presented in
figure 13, which shows the concentration distributions for both the whole duration and five
typical time instants. Also, three cases with different d̄ values are reproduced numerically,
namely, d̄ = dS, (dS + dL)/2 and dL. From figure 13, it is observed clearly that with a
greater d̄, the particle segregation develops at a much slower pace. For instance, the cases
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Figure 13. SPH predictions of the shear cell experiment with functional forms of segregation velocity V and
diffusivity D: (a–c) d̄ = 4, 6, 8 mm; (d–h) concentration distribution along the height at t/T = 20, 40, 60, 80,
120.

with d̄ from the smallest to the greatest reach the equilibrium state after approximately 40,
60 and 80 periods, respectively. This feature could also be verified from the concentration
distributions in figures 13(d– f ). Despite the fastest segregation evolution, it is found that
the numerical simulation with d̄ = 4 mm has the most pronounced discrepancy to the
complete inverse grading at the equilibrium state, as shown by the slope of the curves at
the mid-height of the shear cell in figure 13(h). Moreover, when comparing figures 13(a–c)
to the temporal development of small-particle concentration from the experiment, i.e.
figure 10(a), we find that numerical prediction with intermediate value d̄ = 6 mm has the
best match among all three cases. Furthermore, this value also generates the result with an
approaching agreement to the numerical simulation with constant [V] and [D].

The above findings indicate the significance of the parameters [D] and [V] on the particle
segregation evolution. On one hand, the segregation velocity [V] with a smaller d̄ would be
greater, and the particle segregation would evolve at a faster pace as a result. On the other
hand, the concentration distribution at the steady state is determined by the ratio between
the non-dimensional segregation velocity and diffusivity, i.e. the Péclet number, such that

Pe = [V]
[D]

= d̄[V]const

davg[D]const . (5.9)

This equation implies a stronger segregation relative to the diffusion at the steady state
with a greater d̄, which explains the concentration distribution in figure 13(h).

Figure 14 shows the time series of the depth-averaged concentration of small particles
from theoretical calculation, experimental data and numerical simulations. In this case, the
upper and lower halves of the column are filled with large and small particles, respectively,
thus leading to the initial depth-averaged concentration equal to 0.5. Theoretically, this
value should be constant throughout the numerical simulation as the granular material is
assumed incompressible here, as shown by the scatters in figure 14. The experimental
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Figure 14. Temporal evolution of the depth-averaged concentration of small particles.
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Figure 15. Schematic diagram for the initial configuration of a rotating drum.

data are quite close to the theoretical values except for a maximum relative error of
approximately 10 % showing up at t = 20T , which could be due to the measurement
error from the refractive index matched fluid technique (Trewhela et al. 2021a). In
comparison, good agreement is observed between the theoretical value and the results
from SPH simulations for all four cases. This satisfactory match examines solidly the
effectiveness of the proposed HCSR scheme in realizing the inhomogeneous Neumann
boundary condition.

6. Application

A rotating drum is a widely used facility in various walks of industry, such as the chemistry
sector, food processing and building engineering. In this section, the proposed SPH model
is applied to simulate the granular segregation of a size-bidisperse aggregate in a rotating
drum, whose initial set-up is illustrated in figure 15. Here, the filling level is Rf , which is
defined as the ratio of the initial filling depth of the granular bed to the drum diameter,
i.e. (H + R)/2R, with R the radius and H the distance from the drum centre (point O) to
the free surface (point A) – positive when A is above O, otherwise negative. Table 1 lists
the necessary parameters for the numerical simulation. Two configurations – that is, equal
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Physical quantities Symbols Values Physical quantities Symbols Values

Drum radius R 35 mm Young’s modulus E 10 MPa
Large grain diameter dL 0.5 mm Poisson’s ratio ν 0.3
Small grain diameter dS 0.25 mm Static frictional coefficient μs 0.382
Bulk density ρ 1500 kg m−3 Dynamic frictional coefficient μd 0.682
Intrinsic density ρs 2500 kg m−3 Reference initial number I0 0.279

Table 1. Input data for simulating a rotating drum.

–1.2 kPa 0 kPa

(b)(a) (c)

Figure 16. The vertical stress (σzz) distribution in the case of a rotating drum at t = 0.01 s with (a) no
stabilization scheme, (b) artificial viscosity, and (c) the Shepard filter scheme.

volume (EV) and equal number (EN) for small and large grains – are considered in the
simulation. The filling levels are 59.1 % and 42 % in the case of EN and EV, respectively,
while the rotating speed ω = 5 rpm is kept the same. This problem has already been
studied by Yang et al. (2021) with both the DEM and Eulerian FEM, thus it is a good
choice for comparison analysis with this study. Thus all practices utilized in Yang et al.
(2021) are followed here except for the strategy of determining the segregation velocity
and diffusivity. Note that (5.8) is used in Yang et al. (2021), and the diffusivity D is
taken as a ratio of segregation velocity such that D = 2dSV . However, this study employs
(2.7a,b) with the two coefficients χV = 0.11 and χD = 0.0307 as detailed in the previous
section. Before proceeding, we demonstrate the capability of the Shepard filter scheme
on stress regulation. The rotating drum is reproduced numerically without a stability
scheme, with only artificial viscosity, and with only the Shepard filter scheme. The stress
distributions (σzz) from the three tests are depicted in figure 16. In this figure, noticeable
stress perturbations are observed in the case without any treatment and with only the
artificial scheme. In comparison, the vertical stress distribution from the simulation with
the Shepard filter scheme is found in a rational manner. Therefore, the Shepard filter
scheme is important for obtaining a reasonable stress field.

6.1. Kinematic analysis
The steady velocity field for the granular flow in a rotating drum is illustrated in figure 17.
The flat surfaces for both EV and EN symbolize the typical rolling mode. This is consistent
with the Froude number (Fr = ω2R/g) criterion, i.e. the rolling mode occurs when 10−4 <
Fr < 10−2 (Fr = 9.79 × 10−4 in this case). Under this mode, the whole granular bed can
be divided into two regions by a rigid body limit, such as the orange dashed curves in
figure 17. In the literature, the area above the rigid body limit is termed the active zone, and
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Figure 17. Velocity field for the granular flow in a rotating drum at t = 20 s in cases (a) EV and (b) EN.
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Figure 18. Shear rate for the granular flow in a rotating drum at t = 20 s in cases (a) EV and (b) EN. Here,
RBL and MSS are short for rigid body limit and maximum shearing surface, respectively.

the remaining area is termed the passive zone. In the passive zone, the granular material
moves as a rigid body together with the drum. On the contrary, the grains in the active
zone flow significantly faster than those from the underlying zone, and experience dramatic
shearing.

In this case, both segregation velocity (V) and diffusivity (D) are varied and proportional
to the shear rate (γ̇ ). Therefore, it is of considerable importance to analyse the global
distribution of the shear rate, which is shown in figure 18. Here, rigid body limits similar
to those in figure 17 are identified. We can find that in the passive zone, both EV and
EN cases present almost zero shear rates, revealing the rigid motion of granular material
as mentioned above. With a further step, the active zone is divided into two layers,
respectively named as the upper active zone and the lower active zone in this study,
separated by the maximum shearing surface, as shown by the white dotted line in figure 18.
The shear rate in the upper active zone increases along the direction of gravity, while it
decreases in the lower active zone. This division is useful for the segregation analysis,
which will be given in the next subsection. For a better understanding, the shear rate
distribution against the normalized mid-chord depth d̄mc (cf. figure 17 for location) is
drawn in figure 19. In both cases, the four curves are close to each other, indicating the
steady-state flow condition.

Comprehensive analysis of the granular flow has been conducted in our previous work
(Zhu et al. 2022a), where both the inside and surface velocity fields of the grain assembly
are presented. In this study, we focus on the discrepancy between the single-phase model
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Figure 19. Shear rate along the mid-chord for the cases (a) EV and (b) EN, at four time instances.
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Figure 20. Velocity profile along the mid-chord of the granular bed in the case of EV at (a) t = 20 s,
(b) t = 30 s and (c) t = 40 s. The scattered points are from the DEM simulation, while the dashed line
represents the Eulerian FEM prediction from Yang et al. (2021).

adopted here and dual-constituent granular assembly in the real world. To achieve this,
the velocity magnitude distributions along the mid-chord of the granular bed for both EV
and EN cases are given in figures 20 and 21, aiming to demonstrate the capability of the
proposed SPH model to reproduce properly the kinematic information of the granular flow
in the rotating drum. A noticeable discrepancy between the velocity profiles from this
study and Yang et al. (2021) is observed in figures 20 and 21. In general, the SPH scheme
gives a greater prediction to the velocity near the free surface than the Eulerian FEM.
In comparison, high consistency among the results from all three methods is observed in
the passive zone. When taking the DEM data as benchmark, an error analysis shows that
SPH and the Eulerian FEM give similar accuracy. For instance, at t = 40 s, the MAE is
equal to 0.42 and 0.43 cm s−1 for the Eulerian FEM and SPH results, respectively, in the
case of EV, but 0.29 and 0.17 cm s−1 in the case of EN. The deviation in the numerical
reproduction probably originates from the different numerical schemes adopted by the two
studies. In the work of Yang et al. (2021), the granular flow is modelled with the Eulerian
FEM, the drum is taken as a Lagrangian structure immersed in the Eulerian domain, and
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Figure 21. Velocity profile along the mid-chord of the granular bed in the case of EN at (a) t = 20 s,
(b) t = 30 s and (c) t = 40 s. The scattered points are from the DEM simulation, while the dashed line
represents the Eulerian FEM prediction from Yang et al. (2021).

the concentration information is updated with the finite difference method. In comparison,
only one numerical method, i.e. SPH, is used in the current work for all aspects. Also,
Yang et al. (2021) adopts the immersed boundary method and the volume of fraction
technique to realize the frictional contact boundary condition, which could lead to mass
loss in simulation. In this study, the drum wall is simply assumed to be non-slip, and the
Lagrangian nature of the SPH method ensures the mass conservation throughout the whole
simulation. With regard to the computational cost, SPH usually can achieve a calculation
efficiency with two orders using a consumer-level GPU card ascribed to its parallelism
when compared to the similar numerical code run on a CPU card (Zhan et al. 2019). The
authors’ previous work shows that the calculation efficiency is improved approximately
100 times when comparing the time consumption of the SPH model from this study and
that of the Eulerian FEM. More details can be found in Zhu et al. (2022a) for readers with
an interest in computation efficiency.

The previous study (Zhu et al. 2022a) reveals that the bed profile will remain stable after
a half circulation in the rolling regime, indicating the formation of a steady-state velocity
field. This explains the consistent velocity distribution along the mid-chord for all three
time instants from both the SPH and Eulerian FEM predictions in figures 20 and 21, as
the rotation rate in this case is fixed at 5 rpm. In comparison, an increment is observed
in terms of the surface velocity obtained from the DEM simulation. For instance, in the
case of EV, the surface velocity ascends from around 6 cm s−1 at t = 20 s to 7 cm s−1 at
t = 40 s. The reason for this change could be twofold. One reason is that the flow layer
will dilate due to the strong shearing. On the other hand, some grains on the free surface
will collide and bounce into the air due to the inadequate resistance from the underlying
granular bed, showing some gas properties. Therefore, an advanced constitutive model
dictating the shear dilatancy and gas-like behaviour of the granular material is needed
for a more precise prediction, but this is out of the scope of this study. In addition, the
numerical result from the DEM simulation shows an almost identical velocity distribution
between the small and large grains, which means that the segregation-induced percolation
is negligible compared to the mean velocity. Therefore, the single-phase model adopted
in this study can capture the kinematic information accurately. In general, both qualitative
and quantitative satisfactions are achieved by the SPH model.
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Figure 22. Boundary particle searching and classification in a rotating drum for cases (a) EN and (b) EV.

(b)(a)

Figure 23. Normal direction of the boundary particles in a rotating drum for cases (a) EN and (b) EV.

6.2. Segregation evolution
The correct implementation of the HCSR scheme is the prerequisite for predicting
precisely the segregation evolution. Likewise, in this subsection, we first demonstrate
the capability of the proposed HCSR scheme on boundary particle searching and normal
direction identification in case of the rotating drum, which is shown in figures 22 and
23. Here, the geometry of the granular bed is more complex than that in the shear cell
problem as the kinematic information is updated according to the momentum equation.
Notwithstanding, the HCSR scheme still performs well with both EN and EV cases.

Figures 24 and 25 present snapshots of the grain-size distribution for EV and EN cases
from both DEM and SPH simulations, and are in good agreement with one another.
In this case, particle segregation happens mainly in the active zone, where grains are
subjected to severe shearing. When flowing through the active zone, the small grains
migrate downwards and enrich the lower active zone, while the large grains float to the free
surface and concentrate there. After entering into the passive zone, the granular materials
rotate clockwise like a rigid body to the other side of the rigid body limit, and restart
the segregation process in the active zone again. Such circulation repeats until reaching
the dynamic equilibrium between the segregation and diffusion effects. The predictions
for the concentration along the mid-chord from DEM and SPH are given in figure 26,
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t = 5 s t = 10 s t = 20 s t = 40 s

t = 5 s t = 10 s t = 20 s t = 40 s

C
10

Figure 24. Snapshots of grain distribution from the DEM (upper images, reprinted from Yang et al. 2021)
and SPH (lower images) for the EV case. In the DEM, red and green particles denote large and small grains,
respectively, while C represents the concentration of small grains in SPH.

t = 5 s t = 10 s t = 20 s t = 40 s

t = 5 s t = 10 s t = 20 s t = 40 s

1

C
0

Figure 25. Snapshots of grain distribution from the DEM (upper images, reprinted from Yang et al. 2021)
and SPH (lower images) for the EN case. In the DEM, red and green particles denote large and small grains,
respectively, while C represents the concentration of small grains in SPH.

from which we can find qualitative agreement between the results from these two methods.
The discrepancy could originate from the following three aspects. First, as pointed out in
Yang et al. (2021), the concentration profile obtained from the DEM simulation will be
influenced by the sample size (i.e. the specific area to calculate the average concentration)
to a great degree. Second, the constitutive model that dictates the mechanical behaviour
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Figure 26. Concentration along the mid-chord in the cases (a) EV and (b) EN. The scattered points represent
the result from the DEM, and the solid lines denote the SPH prediction.
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Figure 27. Temporal evolution of global concentration for small grains.

of granular materials plays a key role in kinematics, which will influence the segregation
evolution through the shear rate. In this study, the simple μ(I) elastoplasticity is employed
to model the size-bidisperse granular assembly. This model could reproduce the major
features, but some key aspects are missing, such as the shear dilatancy and the gas-like
behaviour of the granular materials on the free surface. Therefore, a more advanced
constitutive model is necessary for a better simulation result. Last, but not least, the
parameters V and D are two key players in particle-size segregation, but have complex
scaling laws with multiple factors (Trewhela et al. 2021a). In this study, (2.7a,b) is indeed
simplified, and the coefficients χD and χV are calibrated from the oscillatory shear cell
test.

Figure 27 presents the temporal evolution of the system-wide concentration for small
grains. In the cases EV and EN, the initial concentration is 0.5 and 0.11, respectively.
These two values should stay constant due to the incompressibility assumption adopted
in this study, as the scatters demonstrate in figure 27. Good consistency is found between
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Figure 28. Concentration rate distribution along the mid-chord for the EN case at (a) t = 5 s, (b) t = 10 s,
(c) t = 20 s and (d) t = 40 s, with Ċ1, Ċ2 and Ċ3 representing the contributions from −F ∇gV , −VF ∇gC and
∇(D ∇C).

the results from the SPH simulation and theory in both cases. In comparison, a slight
divergence is observed in the EV case. The accuracy of the proposed HCSR scheme
depends on the source term q. According to (4.16), the key issue is to obtain the accurate
normal vectors calculated with (4.10). In this process, some error will take place, and the
discrepancy will be magnified by the value of the inhomogeneous Neumann boundary
condition f (C). As seen in figure 23, the majority of the calculated normal vectors are
accurately perpendicular to the boundary, while on the free surface, the disorder can be
found locally. This is believed to be the origin of the difference between the simulation
and theory results. On the other hand, the concentration C on the free surface is much
smaller in the case of EN than EV (see figure 26), leading to the inhomogeneous Neumann
boundary condition f (C), of less significance for the former than the latter. This explains
the better agreement in the EN case, as shown in figure 27. Therefore, higher accuracy
is achievable with an improved algorithm for calculating the normal directions of those
boundary particles, which deserves further study in the future. Nevertheless, satisfactory
performance on concentration conservation is observed in the current proposed method.

In the following, we analyse the segregation mechanism behind the concentration
evolution. From (2.10), we can find that a dynamic equilibrium will be reached finally
under the effect of segregation and diffusion. In particular, two factors promote the particle
segregation: the vertical gradients of concentration ∇gC, and the segregation velocity
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Figure 29. Concentration rate distribution along the mid-chord for the EV case at (a) t = 5 s, (b) t = 10 s,
(c) t = 20 s and (d) t = 40 s, with Ċ1, Ċ2 and Ċ3 representing the contributions from −F ∇gV , −VF ∇gC and
∇(D ∇C).

∇gV . The latter takes no effect when the segregation velocity is assumed constant, such
as in the benchmark problem in § 5.1. In comparison, ∇gV rather than ∇gC triggers the
segregation in the rotating drum as the concentration is globally homogeneous at the initial
stage. Figures 28 and 29 illustrate the spatial distribution of the concentration rate along
the mid-chord and its three components caused by −F ∇gV , −VF ∇gC and ∇(D ∇C),
denoted as Ċ1, Ċ2 and Ċ3.

(1) Effect of vertical gradient of segregation velocity, −F∇gV . It is observed that Ċ1
plays the dominant role in the concentration evolution, particularly at the beginning such
as at t = 5 s. In figure 28, Ċ1 ascends monotonically from a negative point on the free
surface to the peak value as d̄mc increases, and then plummets to zero at approximately
d̄mc = 0.24, after which Ċ1 = 0 holds until the drum wall. Also, both the starting point
and the peak value rise as the segregation proceeds. The reason for the change is twofold.
On the one hand, the velocity field after t = 5 s reaches the steady state, and the radial
shear rate γ̇ appears quadratic (figure 19), leading to the constant distribution of ∇gV
along the mid-chord. On the other hand, as the segregation develops, the concentration
C decreases in the upper active zone and increases in lower part, leading to the smaller
segregation function F in the upper active zone and greater F in the lower active zone.
A similar change is found in the EV case, but Ċ1 decreases in both zones. This difference
originates from the fact that the initial concentration is 0.5 in the EV case, while it is 0.11
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in the EN case. As a result, the segregation function F in the EV case drops in the whole
active zone as the segregation develops.

(2) Effect of vertical gradient of concentration, −VF∇gC. The effect of Ċ2 is
initially insignificant compared to Ċ1, but its contribution becomes more pronounced as
segregation develops, due to the increasing vertical concentration gradient ∇gC in the
active zone. As time proceeds, Ċ2 approaches a quadratic distribution as γ̇ does, indicating
the dominant influence of shear rate in Ċ2. Here, F is another key factor determining the
magnitude of Ċ2. Due to the application of the symmetric form of the segregation function
here, F = 0 holds when C = 0.5. As a result, Ċ2 shrinks to zero near d̄mc = 0.1 in the EV
case, as shown in figure 29. Furthermore, the sign of Ċ2 is determined by F since both V
and ∇gC are positive in most parts of the active zone.

(3) Effect of diffusion, ∇(D ∇C). First, an apparent drop in Ċ3 is observed on the free
surface as time proceeds. This is ascribed to the fact that the source term q in (4.7) will
become insignificant when C gets close to zero or unity. A minor role is played by Ċ3 in
the remaining active zone during the whole process. This is because the effect of Ċ3 in
figures 28 and 29 could be understood approximately as the description of the curvature of
the concentration distribution along the mid-chord. From figure 26, it is found that in the
active domain, the concentration distribution is quite close to being linear. Therefore, the
diffusion effect, in general, is insubstantial. Note that in this simulation, only 40 seconds
are reproduced and the steady state has not been reached yet. Otherwise, the magnitude of
the segregation and diffusion should be equal but opposite.

7. Conclusions

This work proposes a continuum-based numerical method within the SPH framework,
providing a novel approach to studying particle segregation in a bidisperse-sized granular
system. The particle assembly is taken as single phase with varying concentration for
each constituent, and the segregation evolution is governed by the segregation–diffusion
equation. The developed SPH model is first examined with a benchmark problem, a
shear box, and performs well, with excellent agreement with the experimental result.
Then a detailed numerical investigation is conducted to explore the particle segregation
mechanism in the granular flow in a rotating drum, with some key conclusions as follows.

(i) The spatially varying shear rate, which determines the segregation velocity and
diffusivity, triggers the particle segregation in the rotating drum from the continuum
perspective.

(ii) The particle segregation takes place mainly in the active zone, where granular
material experiences severe shearing, while the grains in the passive zone move
together with the drum as a rigid body.

(iii) The vertical gradient of segregation velocity plays the dominant role in the particle
segregation, particularly at the beginning of the whole process.
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Figure 30. Numerical predictions for ∇gQ with concentration in the quadratic distribution: (a) indirect SPH
approximation; (b) direct SPH approximation.

Appendix A

In this appendix, we explain why the indirect SPH formulation (2.10) outperforms the
original version (2.5) in terms of accuracy. As mentioned in the main text, the segregation
flux could have complex spatial distribution. For simplicity, assume that the segregation
velocity V(C(x)) is constantly equal to 1, so the segregation flux could be reduced as
Q(x) = F(C(x)). Without loss of generality, the asymmetric flux model is adopted with
A = 1.33 and κ = 0.89. As we proceed, the concentration distribution is assumed to be
quadratic in coordinate z such that

C(z) = 4z(1 − z). (A1)

As a result, with the explicit expressions of the segregation flux, ∇gQ is derivable
analytically. On the other hand, ∇gQ could also be obtained with the SPH method. The
final results for ∇gQ from the analytical solution and the two SPH approximation schemes
are drawn in figure 30, where the root mean square errors between the numerical and
analytical methods are also provided. From the figure, a better agreement between the
numerical and analytical solutions is observed for the indirect scheme than the direct one,
indicating the superiority of the indirect SPH approximation scheme over the direct one
regarding calculation accuracy, which is also revealed intuitively by the RMSE data.

Notice that the analysis above is made upon two simplifications, i.e. (i) the segregation
velocity is assumed constant, and (ii) the concentration distribution is no more complex
than the cubic function. Considering this, it is foreseeable that the error induced by the
direct SPH approximation to ∇gQ in a realistic segregation simulation would be more
pronounced than the mathematical example shown here.

Appendix B

In this appendix, a brief introduction to deriving (2.16) within the elasto-perfectly plastic
theoretical framework is presented. For a granular material that is located at the yield
surface, the following equation holds:

f (σij) = 0. (B1)
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Therefore one can get

ḟ = ∂f
∂σij

σ̇ij = 0. (B2)

Within the plasticity theory, the relation between the stress increment and the elastic strain
is dictated by Hooke’s law as

σ̇ij = Dijklε
e
kl = Dijkl(ε̇kl − ε̇

p
kl). (B3)

In this equation, the superscripts e and p denote the elastic and plastic parts. The plasticity
theory usually assumes that the plastic strain rate (or increment) can be determined by the
so-called flow rule, reading

ε̇
p
ij = λ̇ ∂g

∂σij
. (B4)

Substituting (B3) and (B4) into (B2) yields the generic expression for the plastic multiplier
λ̇ such that

λ̇ =
∂f
∂σij

Dijklε̇kl

∂f
∂σij

Dijkl
∂g
∂σij

. (B5)

To this end, (2.16) is derivable once the expressions for the yield and plastic potential
functions, i.e. (2.11) and (2.15), are substituted into (B3) and (B5).

Note that the brief introduction to the plasticity theory provided here is mainly for the
readership from the fluid community. More details are available from plasticity theory
books (e.g. Yu 2007).

Appendix C

The one-step return mapping scheme as introduced in § 2.4 starts with the elastic
prediction at the beginning of a specific time step n, as follows:

�σ = (ω̇σ − σ ω̇ + 2Gė + Kε̇v I)�t, (C1)

where �t is the time step, which is given in § 3.3. Afterwards, the yield criterion will be
checked. When the predicted stress σ ∗ = σ n +�σ is located within the yield surface, i.e.
f (σ ∗) ≤ 0, the whole loading process is elastic, and the new stress can be updated directly
with σ n+1 = σ ∗. Otherwise, a correction procedure will be activated to pull the stress
point back to the yield surface, as the flowchart in figure 31 shows (where the variables
with superscript ∗ are related to the predicted stress state). With the updated stress state as
the input data for the next time step, the calculation loop can proceed until the end of the
simulation.

Appendix D

In this appendix, the mathematical deduction for the kernel approximation of the diffusion
term, i.e. (3.5), will be presented.
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σn+1 = σ∗

 f ∗ > 0?
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σ∗ =  σn + �σ

f ∗ =  f (σ∗)
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σn   �εn

σn+1 = sn+1 – pn+1I

Output data

σn+1

No

Yes

Correction

sn+1 = (�J2
∗ – f ∗/�J2

∗
)s∗

pn+1 =  p∗

Figure 31. Flow chart of the one-step return-mapping algorithm for the elasto-perfectly plastic model with
Drucker–Prager yield criterion.

Based on Taylor’s theorem, the right-hand side of (3.5) can be rewritten as
∫
Ω

[2g(x)− ∇g(x) ·�x′]
[
∇f (x) ·�x′ − 1

2
�x′T Hf (x)�x′

]
�x′

‖�x′‖2 · ∇xW(�x′, h) dx′,

(D1)
where�x′ = x − x′, and Hf (x) denotes the Hessian of f evaluated at x with the following
specific form:

Hf (x) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2f
∂x2

∂2f
∂x ∂y

∂2f
∂x ∂z

∂2f
∂y ∂x

∂2f
∂y2

∂2f
∂y ∂z

∂2f
∂z ∂x

∂2f
∂z ∂y

∂2f
∂z2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (D2)

There are 144 terms in (D1) for a three-dimensional problem if we expand it as
polynomials. This seems of high complexity, but can be simplified greatly if we take
advantage of the odd and even properties.

First, we notice that g(x), �x′T Hf (x)�x′ and �x′ · ∇xW(�x′, h) are even functions
of �x′, while both ∇g(x) ·�x′ and ∇f (x) ·�x′ are odd. Consequently, the following
identities hold:∫

Ω

[2g(x)∇f (x) ·�x′]
�x′

‖�x‖2 · ∇xW(�x′, h) dx′ = 0, (D3)

∫
Ω

[∇g(x) ·�x′�x′T Hf (x)�x′]
�x′

2‖�x′‖2 · ∇xW(�x′, h) dx′ = 0. (D4)
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Therefore, (D1) can be reduced as

−
∫
Ω

[g(x)�x′T Hf (x)�x′ + ∇g(x) ·�x′ ∇f (x) ·�x′]
�x′

‖�x′‖2 · ∇xW(�x′, h) dx′.

(D5)
For the sake of clarity, (D5) is rewritten in index notation:

−
∫∫∫ [

g(xl)
∂2f
∂xi ∂xj

�x′
i�x′

j + ∂g
∂xi

∂f
∂xj

�x′
i�x′

j

]
�x′

k
�x′

m�x′
m

∂W
∂x′

k
dx′

1 dx′
2 dx′

3, (D6)

where x with roman subscripts (= 1, 2, 3) denotes the Cartesian coordinates, and the
Einstein summation convention is adopted. In the following, we will prove that∫∫∫

�x′
i�x′

j�x′
k

�x′
m�x′

m

∂W
∂x′

k
dx′

1 dx′
2 dx′

3 =
{

0, i /= j,
−1, i = j.

(D7)

There are two cases when i /= j, i.e. i /= j /= k and k = i /= j (or k = j /= i). The integrand
in (D7) is asymmetric over�x′

i and�x′
j in the former condition, and an odd function about

�x′
k and�x′

j (or�x′
i) in the latter, so its integral is null. The next step is to validate that the

left-hand side of (D7) is equal to minus unity when i = j. For this purpose, the left-hand
side of (D7) is first rewritten in spherical coordinates:∫∫∫

�x′2
i
∂W
∂ρ

ρ sinϕ dρ dθ dϕ. (D8)

Here, the origin of the spherical coordinate system is located at point x, and the conversion
formulas between the Cartesian and spherical coordinates are

�x′
1 = ρ sinϕ cos θ,

�x′
2 = ρ sinϕ sin θ,

�x′
3 = ρ cosϕ,

⎫⎪⎬
⎪⎭ (D9)

with the following restrictions on the coordinates:

ρ ∈ [0, 2h],

θ ∈ [0, 2π],

ϕ ∈ [0,π].

⎫⎪⎬
⎪⎭ (D10)

Substituting (D9) into (D8) yields the same equation for i = 1, 2, 3, as follows:∫ 2h

0

4
3

πρ3 ∂W
∂ρ

dρ. (D11)

Notice that due to the compact support condition of the kernel function, we have∫ 2h

0
d
(

4
3

πρ3W
)

=
∫ 2h

0

4
3

πρ3 ∂W
∂ρ

dρ +
∫ 2h

0
W d

(
4
3

πρ3
)

= 0. (D12)

The second term in the middle of this equation is indeed the unity condition of the kernel
function, indicating that its value is 1. Finally, it is verified that (D11) is equal to minus
unity.
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Substituting (D7) into (D6) yields

g
∂2f
∂xi ∂xi

+ ∂g
∂xi

∂f
∂xi
. (D13)

This expression is exactly the index notation form of the left-hand side of (3.5).

Appendix E

This appendix presents the derivation of SPH approximation for ∇gC and ∇gV with C1

consistency. In the following, the symbol X will be used to represent C and V . The process
starts with the Taylor series as follows:

X(x′) = X(x)− ∇X(x) ·�x′ + O(h2). (E1)

Multiplying by W(�x′, h) or ∇Wx(�x′, h) on both sides of (E1), and integrating over
domain Ω , gives [

B1
B2

]
=
[

C11 C12
C21 C22

] [
X(x)

∇X(x)

]
, (E2)

with

B1 =
∫
Ω

X(x′)W(�x′, h) dx′, (E3)

B2 =
∫
Ω

X(x′)∇Wx(�x′, h) dx′, (E4)

C11 =
∫
Ω

W(�x′, h) dx′, (E5)

C12 = −
∫
Ω

�x′ W(�x′, h) dx′, (E6)

C21 =
∫
Ω

∇Wx(�x′, h) dx′, (E7)

C22 = −
∫
Ω

∇Wx(�x′, h)⊗�x′ dx′. (E8)

Note that the remainder is neglected during the process. In (E2), only X(x) and ∇X(x) are
the unknowns, as the integrals are deterministic for an arbitrary point x. Thus the number
of unknowns is consistent with the order of the equation set, which is a solvable problem.
The particle approximation of (E3)–(E8) is

B1 =
∑
j∈Ω

X(xj)Wijmj/ρj, (E9)

B2 =
∑
j∈Ω

X(xj)∇iWijmj/ρj, (E10)
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C11 =
∑
j∈Ω

Wijmj/ρj, (E11)

C12 = −
∑
j∈Ω

xijWijmj/ρj, (E12)

C21 =
∑
j∈Ω

∇iWijmj/ρj, (E13)

C22 = −
∑
j∈Ω

∇iWij ⊗ xijmj/ρj. (E14)

After obtaining the value of ∇X(x), ∇gX(x) can be determined through

∇gX(x) = g
‖g‖ · ∇X(x). (E15)
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