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Orlicz—Besov Extension and Imbedding

Hongyan Sun

Abstract. 'We establish criteria for Orlicz-Besov extension/imbedding domains via (global) n-regular
domains that generalize the known criteria for Besov extension/imbedding domains.

1 Introduction

Due to important applications in harmonic analysis, geometry analysis, and partial
differential equations, the extension and imbedding properties of function spaces (in-
cluding Sobolev, fractional Sobolev, Hajlasz—Sobolev, Besov, Triebel-Lizorkin space,
and Q-spaces) have attracted much attention and have been widely studied in the
literature [2,5,7-11,15,16,18,20-23].

In this paper we are interested in the Orlicz-Besov spaces as motivated by
[13,14,19]. Let ¢ be a Young function, that is, ¢ € C([0,0)) is convex and satis-
fies ¢(0) = 0, ¢(t) > 0 for all £ > 0. For any « € R and domain Q c R”, define the

homogeneous Orlicz-Besov space B‘x’(p( Q) as the space of all measurable functions u
in Q with the semi-norm

o . u(x) —u(y)l\ dxdy
Hu||1;a,¢(0) .:1nf{)t>0./§;—/0¢( PR )|x—y|2”£1 < oo,

Define the inhomogeneous Orlicz-Besov space B*#(Q) := L?(Q)nB*?(Q), equipped
with norm [[u|ges(q) = [#sq) + [4]sus(q)- Here L?(Q) is the Orlicz space, that
is, the set of all functions u with

lullLoa) ¢:inf{/\>0:fn</>(|u(;)|)dxg1} < 00.

The Orlicz-Besov spaces generalize the Besov (or fractional Sobolev) spaces; indeed,
if ¢(t) = tP with p > 1and a + n/p > 0, then B?(Q) is exactly the homogenous

Besov space BZ;"/‘D(Q) and B*¢(Q) is the inhomogenous Besov space B;;"/P(Q).

The main purpose of this paper is to establish the following criteria for Orlicz-
Besov extension/imbedding when « # 0, which generalizes the known criteria for
Besov extension/imbedding established in [9,16,24]. Recall that the case « = 0 has

already been considered by Liang and Zhou [13].
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Theorem 1.1 Let a € (0,1) and let ¢ be a Young function satisfying

/ (' %x) dt

(x) tn+1

(11) Agy(a) :=sup

x>0

>

orlet a € (-n,0) and let ¢ be a Young function satisfying (1.1) and

(12) Ag(a) —sup[ $t7"x) dt

>0 (x) tn+1

For any domain Q c R", the following statements are equivalent.
(1) Qs a global n-regular domain (respectively n-regular domain); that is, there ex-
ists a constant 0 > 0 such that |B(x,r) n Q| > 0r" forallx € Qand 0 < r <
2 diam Q (respectively, 0 < r < 1).
(ii) Q is a B¥?-extension domain ( respectively, B%%-extension domain).
(iii)) Qisa B“'¢-imbedding domain (respectively, B**-imbedding domain).

Note that a bounded domain ) is n-regular if and only if it is global n-regular. An
unbounded global n-regular ) must be n-regular, but the converse is not necessarily
correct; indeed, the domain (-1,1) x R""! is n-regular, but not global n-regular. Mo-
tivated by Besov B‘H”/ ?_and BM"/ ? -extension/imbedding domains in [9,16,24], the

definitions of B* "5 and B*¢- extens10n/imbedding domains are as below.

Definition 1.2 (i) For X =B*? or B*?, adomain Q c R” is called an X-extension
domain if any function u € X(Q) can be extended to be a function & € X (R")
in a continuous and linear way. In other words, there exists a linear bounded
operator E: X(Q) - X(R") such that Eu|q = u whenever u € X(Q).

(ii) A domain Q) c R" is called a B“’¢-imbedding domain (respectively, B*?-im-
bedding domain) if the following hold.
(a) When a € (—n, 0), there exists a constant C >1such thatinf g |u—c

Lr/lal(Q)
< Cllullgus(qy (respectively, n/|a|(Q) < C|u|pas(qy) forany u € B*¢(Q)
(respectively, u € B*?(Q)).

(b) When « € (0, 1), there exists a constant C > 1 such that for any u € B*#(Q)
(respectively, u € B*?(Q)), we can find 4 € C(Q) satisfying i = u al-
most surely (a.s.) and [d(x) — 4(y)| < Cllul|gagq)lx — y|* (respectively,
[a(x) = 4(y)| < Clu|pes(aylx — y|*)) forall x, y € Q.

Below we give some reasons for assumptions (1.1) and (1.2) on « and ¢, and also
for the restriction on the range of a.

Remark 1.3 (i) When « € (0,1), (1.2) holds trivially; indeed, since ¢ is increasing,
we always have ¢(¢™%x) < ¢(x) forall £ > L and x > 0, and hence [~ ~("*D dt < oo
implies (1.2).

When a € (-n,0), assumptions (1.1) and (1.2) guarantee that both B*#(Q) and
B*?(Q) contain smooth functions with compact supports, and hence are nontriv-
ial; see Lemma 2.2 and [19, Lemma 2.3]. Moreover, (1.1) and (1.2) are optimal in the
following sense.
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n

Assumption (1.1) is optimal in the sense that both B p>/ 5 T*(Q) and B;,/ 11,’ T*(Q) (that
is, B*#(Q) and B**#(Q) with ¢(t) = t?) are nontrivial when n/p + a € (0,1), but
are trivial when n/p + a > 1; see [4]. Since ¢(t) = t? satisfies (1.1) if and only if
n/p+ a <1, we know that (1.1) is optimal for guaranteeing their non-triviality. When
Qis an unbounded domain, (1.2) is optimal to guarantee C}(Q) c B%?(Q) and hence
CH(Q) c B*?(Q); see [19, Remark 2.4].

(ii) Note that (1.1) implies & < 1 and (1.2) implies « > —n. Indeed, if & > 1, then we
have A, (a) > fol t""1dt = oo, and hence (i) fails. If & < —n, by the convexity of ¢
and ¢ > 0in (0, 00), there exists a constant ¢ > 0 such that ¢(¢) — ¢(1) > c¢(t - 1) for

all £ > 0. Thus
_ ° ¢(1) +c(t7%x-1) dt ¢p(1)-c cx *° dt o
Al zsop | px) 1l - sup| n(x)  $(x) I et

and hence (ii) fails.

Now we turn to the proof of Theorem 1.1. Recall that when Q is a bounded domain
or Q = R", the equivalence (i) < (iii) in Theorem 1.1 was already proved in [19] by
a direct approach (without using extension). But when Q ¢ R” is an unbounded
domain, the direct approach in [19] does not work. This is also the partial motivation
for us to study the Orlicz-Besov extension.

To prove Theorem 1.1, we first recall the Whitney cubes and their reflected quasi-
cubes considered by Shvartsman [16]. By using these quasi-cubes, we get an extension
operator E. In Section 4 we prove when () is a global n-regular domain, the extension
operator E is bounded from B*¢(Q) — B*?(R"), and hence Q is a B*?-extension
domain; see Theorem 4.1. A similar result for B¢ was also proved; see Theorem 4.2.
This proves (i) = (ii) in Theorem 1.1. In Section 5 the Orlicz-Besov extension domains
are proved to be Orlicz-Besov imbedding domains, that is, (ii) = (iii) in Theorem 1.1;
see Theorems 5.1 and 5.3. In Section 6, by the estimate of Orlicz-Besov norms of
some test functions given in Section 2 and using some ideas from [5,6], we show that
Orlicz-Besov imbedding domains are (global) n-regular domains, that is, (iii) = (i)
in Theorem 1.1; see Theorems 6.1 and 6.2.

Finally, we use the following conventions and notations in this paper. Throughout
the paper, C will be a positive constant depending only on #, «, ¢, and Q, whose value
can change from line to line. Its value can change even in a single string of estimates.
The dependence of a constant on certain parameters is expressed, for example, by
yo = yo(n). We write A < B (resp., A 2 B) if there exist a constant C > 0 such that
A < CB (resp., A > CB). The notations fg or JCB f(x) dx denote the average value of

f on the set Bwith 0 < |B| < oo, i.e., |;T‘fo(x) dx.

2 Some Basic Properties of Young Functions and
Orlicz-Besov Spaces

Note that if ¢ is a Young function, then ¢ is increasing, and ¢(t) - oo as t - oo.
Moreover, we have the following properties for Young functions.
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Lemma 2.1 Let ¢ be a Young function.
() Ifae(-n,1)and ¢ satisfies (1.1), then lim;_, oo ¢(xs'"%)s™" = 0 for all x > 0.
(if) Ifa € (-n,0) and ¢ satisfies (1.2), then lim,_, o ¢(x57*)s™ = 0 for all x > 0 and

(2.1) $(xs™%) <2 Ag(a)p(x)s"  foralls>1,x>0.

Proof When a € (-#,0], Lemma 2.1 was established in [13,19]. When « € (0,1),
using a similar argument as in [19], we get (i). ]

Lemma 2.2 Let o and ¢ be as in Theorem 1.1. Then
CH(Q) c B*?(Q) c B**(Q) c L'(Q).

Proof If o < 0, this was established in [13,19]. If « € (0,1), this can be proved
similarly. We omit the details. ]

The following ¢-Poincaré inequality holds.

Lemma 2.3  Let o and ¢ be as in Theorem 1.1. Then there exists a constant C > 1 such
that fB u(x) — up|dx < Cr*|u|gue 5y, where B:= B(z,r) c R" and u € B*¢(B).

Proof Lety = |a|. Then we have

0<ff”y_2n dxdy Sff y-2n dxdy

B JB lx —y|" = JB IB(x.2r) |x =yl
2r

_wnf/ 721"V U dsdyx < oo,

Set K, := [ [ 7" dXdy . Notice that

X

at+y _
r—af|u(x) —u3|dx < 2 ry—2nf |u(x) ”()’)| dXd)’ .
wy B =yt e—yP

n

Let u € B*¢(B). For A > 2 K y |4l e (5)> applying Jensen’s inequality, we have

r £ Ju(x) - up|dx o ZWK ylu(x) —u(y)] dxdy
"’( T )“y foB¢( PSS )Ky|x—y|v

22" Y f/ ZWK ylu(x) —u(y)] dydx
Alx = y|® lx = y>

22n—y
T K

Y

Thus, letting A — ZL:#K), |4/ 326 (5)» one has

2n 7\ ety
ot —unlax <67 () R e

as desired. This completes the proof of Lemma 2.3. ]
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Forx € Qand 0 < r < t < diam Q, let Bo(x,t) := Q n B(x,t) and Bo(x,7) :=
QnB(x,r), and set

1 z€Bg(x,1),
t_ —

(2.2) Uy, t(2) = t-lx-2 z€Bq(x,t) N Bq(x,7),
0 ze€ QN Bg(x,t).

Then we have the following estimates.

Lemma 2.4 Let o and ¢ be as in Theorem 1.1. Then there exists a constant C such
that for any domain Q c R", u, ., € B*%(Q) with

et s 2y < CCE - r)-a[gb—l(“g;zxr));)]_l.

Proof If o < 0, this was established in [13,19]. If « € (0,1), this can be proved
similarly. We omit the details. |

3 Whitney Cubes and Reflected Quasi-cubes for (Global) n-regular
Domains

Let Q c R” be a domain, and write U := R" \ Q. Then U admits a Whitney decom-
position [16,20].

Lemma 3.1 'There exists a family W = {Q; }ien of countable closed cubes satisfying
the following.
(i) U=UienQiand Q) n Q5 =@, forall i,k e Nwith i # k.
(i) Forevery Qe ¥, lg < dist(Q,0Q) < 4y/nlq.
(i) IfK,Q e W, then ilQ < Ik < 4lg, whenever QN K # &.

Associated with %, there is a partition of unity [20].
Lemma 3.2 There exists a family {¢q : Q € #'} of functions such that the following

hold.

(i) ForeachQeW,0< ¢q GCS"(%Q).
(ii) Foreach Q € W, |V¢ql| < L/lq for some constant L > 0.
(i) Ygew Po = Xu-

By Lemmas 3.1 and 3.2, we have the following properties of % and partition of
unity.

Lemma 3.3 Forany Q € #,let N(Q) = {P € #,Pn Q # @}. Then we have the
following.

(i) PeN(Q)< QeN(P)«<=3QnP+g < PNQ+@ <= 3PN3iQ+0.
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(ii) There exists a constant y := yo(n) such that forany Q € #', one has f N(Q) < yo

and
1 1 1
3.1 — dx < — 9 dx < — 9 d
6D o fyeedr< o [ e drs 5o [ xs(x)dx
Pl
< — <47 y0.
Pelg(:Q) |Q| ’

Next we recall the reflected quasi-cubes of Whitney cubes when Q is a global
n-regular domain. For € > 0, we set 7, := {Q €W :lg < !diam Q}

Obviously, # = #,, for all € > 0, if diam Q = oo, and #, ¢ W, for any € > 0, if
diam Q < co. Write

o ={PeW: Qxp,elp) NQ(xg.€lg) # @, Ip <elg},

where x, € Q0 is a point nearest to Q on Q. Let

(3.2) Q™ =[Q(xp,€lg) N Q] N (U{Q(xp,€lp) : Pe AG}).
We have the following result, which is essentially given by Shvartsman [16]; see
also [13].

Lemma 3.4 If Q is a global n-regular domain, then there exists ¢y € (0,1) and y,,
y2 € (1, 00) depending only on 6 and n such that the following hold.

(i) Q%% c (10/nQ)NQ, forall Q € #,.
(i) |Q| < y1|Q*°|, whenever Q € #s,.
(111) ZQEVVEO XQ*<o < Y2Xa-

In the case that Q) is a global n-regular domain, for each Q € %, following [16],
we call Q" := Q™ as the reflected quasi-cube of Q. If diam Q < oo additionally, for
any Q € #' \ W,,, we call Q* = Q as the reflected quasi-cube of Q.

Set %Ek) ={QeN(P):Pe Vﬂegk*l)} ,for k >1and %E") =W, Let

v = {xeQ:Qe Vﬂegk)}

for k > 0. If Q) is a bounded (global) n-regular domain, we have the following result.

Lemma 3.5 ([13]) If Q is a bounded (global) n-regular domain, then

(3.3) > X+ < [y2+ (e +457V/n) " xa,
Qen Y
(3.4) Q| < (y1 + 67'4%e,™)|Q*|,  forall Q e #P.

Proof Recall that (3.3) was proved in [13, §3]. For every P € #;,, |P| < y1|P*|. For
Qe Vﬂegk) \ W, we have Q" = Q and [ < g diam Q. Since Q is global n-regular,
|Q| < 4 (diam Q)" < §714k"¢;"|Q* | forall Q € %sk) \ W,,,and hence (3.4) holds. m

n
€o
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Remark 3.6 If Q is an unbounded n-regular domain, we define quasi-cubes for
Whitney cubes with side-length less than 1. Set # = {Q € # : I < 1}. Given any
€ € (0,1), define the reflected quasi-cube Q*¢ similarly as in (3.2) for any Q « V.
Following Shvartsman [16, Theorem 2.4], we also get the same estimates about these
reflected quasi-cubes as in Lemma 3.4 with #, replaced by 7.

Finally, we state the following well-known result for (global) n-regular domains,
proved in [5, Lemma 9], [17, Lemma 2.1], and [24, §2].

Lemma 3.7 IfQ c R" is a (global) n-regular domain, then |Q ~ Q| = 0.
4 (Global) n-regular Domains Are Orlicz-Besov Extension Domains

Theorem 4.1 shows that global n-regular domains are B*?-extension domains; The-
orem 4.2 shows that n-regular domains are B®?-extension domains.

Theorem 4.1 Let o and ¢ be as in Theorem 1.1. If Q) is a global n-regular domain,
then Q is a B®?-extension domain.

Proof Recall the reflected quasi-cube Q* of a cube Q € # = ¥, given as in Sec-
tion 3 and U = R" \ Q. By Lemma 3.7, we can assume, without loss of generality, that
Q is closed. Define the extension operator E by

u(x) xeQ,
4.1 E =
(4.1) u(x) {ZQEW po(x)ug xeU,

for any u € B*#(Q). Obviously, E is linear and Eu = u in Q. It is sufficient to show
the boundedness of E:B*¢(Q) — B*#(R"). This is further reduced to finding a
constant M > 0 depending only on «, ¢, n, and 0 such that

-~ |[Eu(x) - Eu(y)|\ dydx
HO = [, “’( Ay ) ey <t

whenever A > M and [u[|gus(q) = 1
Let u € B*#(Q) and assume |t] ooy = 1. Write

H(L) = ff+2ff+ff o |[Eu(x) — Eu(y)|\ dydx
aJa vJa JuJu Alx — y|* |x — y|?n
=: HI(A) + ZHz(A) + H3(A)
We claim that there exist constants L; > 1 such that
(42) Hl(/l) SHI(A/L,) for1:2,3
Assume that (4.2) holds for the moment. Denote by M; > 1 the constant in (4.2) for
i =2,3. Letting M = 8(L, M, + L3M3), by the monotonicity and convexity of ¢ and
|]gas(qy =1 for A > M we have
Hl(/\) SM,Hl(A/Ll) SM,H1(8M,) SHl(S) fOI'l:2,3
The convexity of ¢ then yields H(1) < 4H;(8) < H1(2) <1as desired.
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To prove claim (4.2), we consider cases diam 2 = oo and diam Q) < oo separately.

Case I: diam Q) = co. To bound H; (1), by Lemma 3.2(iii), one has
Eu(x)-u(y) = Y, ¢o(x)[ug —u(y)] forallxeU,yeQ.
QeW

Using Jensen’s inequality twice, we have

o B oo )

If 9o (x) # 0, by Lemma 3.2(i), x € 1£Q. For anyz € Q%, by Q* ¢ 10,/nQ given
in Lemma 3.4(i), we have |x — z| < 10le For x € Q by Lemma 3.3(i), there is
P € N(Q) such that x € P. So by Lemma 3.1(ii)-(iii), for any y € Q one has

1
|x — y| > dist(x, Q) > Ip > ZZQ'
Hence
(4.4) ly—z| <|y—x|+|x —z| < |y — x| +10nlq < 4ln|x - y|.
When « € (-1,0), set s = =zl which is larger than 1 by (4.4). Then by (2.1),

41n|x-y|’

¢(u(2)—u(y)l)<¢( u(z) —u(y)| )Ix—yl”
Alx=yle ) 7 "\ Aly =2/ (41n)* | |y - 2"

s¢>( |u(z) = u(y)] )Ix—ylz"

Aly =z|*/(41n) ] |y = 2"
When « € (0,1), by (4.4) and the the monotonicity of ¢, one has the same estimates.
From these and (4.3) it follows that

(2) —u(y)| dydz
Hy(A) /HZWQE””Q“)fTH[ (Aw zﬂ4m>)|y—4”dx

Since Lemma 3.4(ii)-(iii) and (3.1) give [Q| < 1|Q*|, Xqen;, Xo* < y2Xa, and
Ju 9a(x)dx < 4"y, one has

1
Q|

1 u(2) - u(y)| | _dedy

Hy(A) S ZQ € W|:|Q|_[ pq(x) dx] /(;* ff2¢(/\|)/—z|'x/(4ln)”‘) ly — zn
u(z) —u(y)| \ dzdy .
/f (/\|y 2|o/(41n)« )|y_z|2n S Hi(A/(41n)%)

as desired.
To bound H3(1), let

Alzz{(x,y)eUxU:|x—y|<

1631\/5 max{dist(x, Q), dist( y, Q)}} ,
Ay:=(UxU)N A,

Write
)= JL o) e et et
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Note that it is enough to find constants Ls; > 1 such that H3;(A) $ Hy(A/Ls;) for
i =1,2. Indeed, if it is true, letting L3 = L3; + L3,, by the monotonicity of ¢ we have
H;3(1) S Hi(A/L3).

Write
Eu(x) - Eu(y)|\ dydx
Hy (M) = f[ (' .
s =2 2 Moy A ) ey

Given any (x, y) € A; n (P, x P;), observe that

1 17
(4.5) |x — y| < ﬁlpl, hence y € EPI’ and then P, € N(P).

Indeed, choosing x € Q) to satisfy |x — x| = dist(x, ), we have

dist(y, Q) <|y—x|<|y—x|+|x - x| < dist(y, Q) + dist(x, Q),

1
63+/n

which implies dist(y, Q) < légf\[fl dist(x, Q). Thus, by this and (x, y) € A;,

(4.6) |x-y|< max{dist(x, Q), dist(y, Q) } < ! dist(x, Q).

1
163 \/‘ 163y/n—1
For x € P, Lemma 3.1(ii) gives dist(x, Q) < 5\/nlp,. From this and (4.6) we conclude
|x - y| < 55 1p, as desired.
Next, by Lemma 3.2(iii), for (x, y) € A; n (P, x P;), we rewrite

Eu(x) - Eu(y) = Y [pa(x) = o ()] [ug+ — ups].
Qe

Moreover, we claim that

(4.7) if o(x) + ¢q(y) #0,then Q € N(P).

To see this, if 9 () # 0, by Lemma 3.2(i), we have y € {ZQ, and hence by y € P; and
Lemma 3.3(i), Q € N(P,) as desired.

Assume that ¢ (y) = 0 and ¢q(x) # 0. By Lemma 3.2(i), x € iZQ. Lemma 3.1(ii)
implies that

dist(x, Q) < dist(x, Q) + m%xdist(a,Q) < %\/EZQ +5v/nlg < f—;\/ﬁlQ.

This, together with (4.6), gives |x — y| < 351o. From this and x € 1£Q, it follows that
y € 3Q. Again by Lemma 3.3(i) and y € P5, we have Q € N(P,) as de51red
By (4.7), Lemma 3.2(ii) and Lemma 3.1(iii), one gets

b~y
Eu(x)-Eu(| < Y lgo()=po()lugrupls ¥ 4L g -up]
QeN(Py) QeN(Py) P

By (4.5) and Lemma 3.1(iii), one has |x — y| < élp2 < Ip,. Note that ey (p,) 1 < Yo-
Thus, by Jensen’s inequality,
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~ |Eu(x) - Eu(y)|\ dydx
I(AIO(PIXPZ))"/fAIn<plxpz>¢( Alxc =yl )|x‘y|2"

- |x_)’|17a|”Q* —ups|\ dydx
S )’0 / f o
QeN(py) P JIx- y\<1P2 In,A[(4Ly0) |x =y

Via a change of a variable, applying (1.1) and |Py| ~ |P,| as indicated by (4.5), one gets

1 o
_ wn g+ — up;|
Han(Bxp) <yt B [ o [ ( : ) e
1 l ’ QeN(P) P I5A[(4Lyo) ) s"*!

|Py| ( |”Q* — upy| ) ( |uq+ — up;| )

s Y Sl ) s Y e ).

QENZ(PZ) l;z lg/\/(‘lL)’O) Qe}%(zpz) lg/\/(‘lLYO)
From this, (4.5), and Lemma 3.3(ii), it follows that

— Upy : ug+ — upy|
) ) s (Lol

p;/ pze%%pg QEI%PZ) A/(4LY0) pzze';// Qeg(:Pz) ZPZA/(4LYO)

Using Jensen’s inequality twice, one gets

@) -utl)
Ha(d) 5 P;WQeN(Pz) |P*||Q | [[*XQ* ( Iy )L/(4L)/0) )dZd .

Note that Q € N(P,) and Lemmas 3.1 and 3.4 give

(4.8) Qcl0P,, P,cl0Q, Q*clov/nQ, P; clo/nP,,
[Po| ~ Q[ ~ P3| ~ Q7.

Thus for any (z,w) € Py x Q*, one has

(4.9) |z — w| <100nlp,.

Ifae(-n,0),sets= by (4.9), s > 1. By (2.1), one then has

Py
|z—w|/100n°

u(2) —u(w)| |u(2) —u(w)| Ip,
a 5 A/(4Lyo) ) S oA Groi0ome]) = F
lZn

u(z) —u(w)|
<9 |z = w|*A/[4Lyo(100m)"] ) lz = wpn

If a € (0,1), by the monotonicity of ¢ and (4.9), the same estimate also holds. By this
estimate, (4.8), and Lemma 3.4(iii), it follows that

|u(z) - u(w)| dzdw
Ha(1) 5 2. ffp FxQ* (|Z—W|"‘/\/[4LV0(100”)“]) |z = wl

PZEW QeN(Py)

|u(2) —u(w)| dzdw .
f f (Iz w|9A/[4Ly,(100n)« ]) z—wpr = Hi(A/[4Lyo(1001)"])

as desired.
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Regarding H3; (1), by Lemma 3.2(iii), we have
Eu(x) = Eu(y)= ). > ¢o(x)9p(y)[uq+ —up+]

PeW QeW
=y > ‘PQ(x)QDP()’)JC f[u(z)—u(w)]dwdz.
PeW QeW Q* JpP*
Applying Jensen’s inequality twice, one gets
|Eu(x) - Eu(y)| \u —u(w)|
s T <P(x¢(y)ff dwdz.
( Alx =y ) QZ;WP;V T /\|x G )

For any (x,y) € Ay with ¢q(x)¢p(y) # 0, by Lemma 3.2(ii), we have x € ZQ and
Y€ P Foranyz € Q*,by Q* c 10,/nQ given in Lemma 3.4(i) and by Lemma 3.1(ii)-
(111) one has

|x - 2] <10nlq < min{40nl5: Q € N(Q)} <40nmin{dist(Q,Q),Q ¢ N(Q)}
< 40n dist(x, Q).
Similarly, for w € P*, we have |y — w| < 40n dist(y, Q). Since (x, y) € A,, we obtain

(4.10) |z —w| < |x —z| +|x — y| + |y — w| <13041n*|x — y|.
Ifae(-n,0),sets= — B \which is larger than 1 by (4.10). Then by (2.1),

|z—w|/(13041n2)°
¢(Iu(2)—u(W)I) <¢( |u(2) —u(w)| )Ix—yl"
AMx = y|« T\ Mz — w|*/(13041n2)* | |z — w|"

scp( u(z) —u(w)| )Ix—ylz”

Az = w|®/(13041n2)« | |z — w|>"

If « € (0,1), by (4.10) and the monotonicity of ¢, one also has the same estimates.
Thus, by Lemma 3.4(ii), (3.1), and Lemma 3.4(iii), we obtain

Hnp(A) s Y ), [IQIf(PQ( ) dx |P|[§0P()’) )’]

QeW Pew

X[ [ ¢( |u(z) — u(w)| ) dwdz
»Jpx U\ Az — w|*/(13041n2)% | |z — w|?"

() -u(w)| | dwdz _ N
e /;2 /Q ¢(A|Z— W|“/(13O41n2)0‘) |Z— W|2" = Hl(A/(13041n ) )

as desired.

Case 2: diam Q < oo. Recall the definitions of V(") and %gi) in Section 3. Write

Hy(\) = [[V<z>[g¢+fu\v<2> fﬂ]gb(lEuﬁ;)_—yLrgy)l) xd_yﬁczn

=: ﬁz](l) + I"\Izz(/l)

It is enough to find constants Ly; such that Hy < Hi(A/Ly;), i = 1,2. Regarding
H,1(1), observe that Yoew 9o(x) = Zoen® po(x) =1, forall x € V(). Since (3.4)
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and (3.3) give
Q| < (y1 +67'4°"e;")|Q*|, forallQe %53),
> xor < (r2+ (e +4°Vn)")xa,

3)
Qe

using the same argument as H,(1) of case diam Q = oo, we will have Hy (1) S
Hl(/l/fm). Here we omit the details.
Regarding Hj, (1), we first note that

(4.11) Eu(x) =uq forallxe U~ V®,

Indeed, for x € U ~ V?), there exists Q € # 7/6(52) such that x € Q. Thus,
N(Q)n e, =2,

and P* = Q for any P € N(Q). By Lemma 3.2 (i) and (iii), we have

> oop(x)= Y ep(x)=1,

Pew PeN(Q)

and hence Eu(x) = X pey ¢p(x)up+ = Lpen(q) 9p(¥)ua = ua.
Next, for x € U ~ V® and y € Q, one has

1
|x — y| > dist(x, Q) > Ig > — diam Q > diam Q,
€o

where x € Q € #' ~ Vﬂegz) as above. By (4.11), Jensen’s inequality, and a change of
variables, we have

Hy(R) < [U\Vu) /J[ (|ugf|’)‘_1:’|g)|) dﬂjfjin
|Q| / f L —y|>diam Q (MEL'))C—Z'(i/)I) lx dy|2nd}’dz

|u(2) —u(y)l
|Q| ol [ ()L(d1amQ) )tn+1dydz‘

Since (1.2) implies

f“¢(|u(z)—u(y)|)dt< (|M(Z)—u()’)|)
1 A(diam Q)« ) ¢n+1 7 T\ A(diam Q) )’

and diam Q < oo gives | diam Q" < |Q|, one has

Hy»(1) s // (|;E(Z13amué))lz|)dydz.

If « € (—n,0), from this and (2.1) with s = diamQ 5 1 't follows that

[x=yl
& lu(z) —u(y)l\ dydz _
s [ fo ) o

If a € (0,1), using the monotonicity of ¢, one also gets the same estimate as desired.
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Regarding H3(1), since
UxUc[VO xvO]u[v® x (U\VE)]u[(U\V®) x VD]
U [(U\V®) < (U\V)],
by (4.11), one has

|[Eu(x) - Eu(y)|\ dydx
[/v(s) [vo) 2 [wz) fu\ws)] ¢( Alx = y|« ) |x — y|n

: I"I\g,](/l) + 2ﬁ32(/1)

It is enough to find L5, such that Hs; S H(A/L3;), i =1,2.
Regarding Hs; (1), observe that Yoew o(x) = X

H;(1)

Qen D 9qo(x) = 1, for all

xe VO, By (3.4) and (3.3) with k = 4, using an argument similar to H3 (1) in case
diam Q = oo, we will have H3; (1) $ Hy(A/ L3;). Here we omit the details.

Regarding Hs,(1), by (4.11) we have Eu(y) = uq for y € U\V®). Note also that
[x — y| > ¢ diam Q > diam Q for all x € v,y e U\VP), Then

Ho()) < f J. [Bu(x) ~ual) _dy
v Jix-ylrdiamo\  Ax — y|* jx =y

f f |Eu(x) —uo| 1 dt dx
dlamQ Ve A(diam Q)@ ¢« | 1

By (1.2) and Jessen’s inequality,

|[Eu(x) - uq |Bu(x) - u(z)|
H(1) 5 [(D (A(dlamQ)(Z‘) slaf [/<2>f ( A(diam Q) )dde'

Note that for any x € V(®) and z € Q, we have

di Q 22
|x —z| < fam (4 +4+1)/n+diamQ < ﬁdiamQ
€0 €o
_ diam . . : .
Ifa e (-n,0),sets = PEEONIL which is larger than 1 by the above inequality.

Then by (2.1),
= Eu(x) - u(z)] dzdx =
AaWs [ | S B (A [22/nfe )"
25 oo Jo ¢(/\|x —z]%/(22y/n)e0)* ) |z - x[*" a(M/[22v/nfe0]")
If o € (0,1), by the monotonicity of ¢, the same estimate also holds. We then conclude
that Hs, (1) § Hy(A/L21[22/n/€o]*). This completes the proof of Theorem 4.1.  m

Theorem 4.2  Let o and ¢ be as in Theorem 1.1. If Q) is an n-regular domain, then Q
is a B*%-extension domain.

Proof Assume that Q is n-regular. It suffices to find a linear bounded operator
E:B*¢(Q) - B*?(R") such that Eu(x) = u(x) in Q for all u € B*?(Q). We
consider the cases diam () < oo and diam Q) = oo separately.

Case I: diam Q < oo. In this case Q is global n-regular. Thus the extension operator
E in (4.1) is bounded from B*%(Q) to B**(R").
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Let Eu = nEu for any u € B*¢(Q). Here y ¢ CL{(V®) u Q) ) satisfying that 7 = 1on
V@ UuQ,0<y<1in V® N V® and |vy| < L,,. Note that E is linear and Eu = Eu
in V® U Q = u, and hence Eu = u in Q. By (4.11) Eu(x) = ug whenx e U~ V),

To get the boundedness of E:B*%(Q) — B%?(R"), it suffices to show that if
|| geo () =1, then HEuHBa,MR.,) < L This is further reduced to proving

TJ(A) + H()) == [ ¢(|Eu(x)|) / [ (|Eu(x) —Ebé(y)|)’ dxd);n
i n Jpn Mx _ )’| |x _ }/|
o) [ [ o a0 xdr,
o\ ML S T A=yl ) ey
where I, L, > lisa constant. Indeed, by this, the convexity of ¢ and the boundedness
of E:B*#(Q) — B*?(R"), there exists a constant M > 1such forall A > M, ]()L) +

H()) <1, that is, HEu|\Ba,¢(Rn) < M as desired.
Let u € B (Q) with |u|xs(q) = 1. Since

> go(x)= Y go(x)=1 forallxeV®,
QeW QEW(:)

by (3.4), (3.1), and (3.3), one gets

= |[Eu(x)|
“41)  J)< V(%ng(l)d

e o)
< [Q¢(u(;)|) dx + Qe%m fvw pq(x) dxf)* ¢( |“E\Z)|) dz

sfggb(“‘(;)')dx.

Moreover, noting that for all x, y e R ~ [V®) u Q] x R" ~ [V®) uQ], Eu(x) =
Eu(y) = 0, one can see that

) < f f |Eu ) - Eu(y)|\ dxdy
v®UuQ V(4)uQ A|x yl* lx -y

f / |Eu(x)| \ dxdy
VU JRN [V ULQ] A|x y|* ) |x = y|*n
=: HI(A) + 2H2(/\)

Note that |x - y| > ;' diam Q > diam Q, forallx e V@ uQ, y e R" < [VH U Q]. If
a € (—-n,0), by (1.2) one has

FIz(/\)Sf‘/(S)Ungb('EuA(x)') dxg/()(p("’l(/{cﬂ)d

If a € (0,1), by the monotonicity of ¢, the same estimate also holds.
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Regarding H; (1), note that

|[Eu(x) - Eu(y)| = [n(x)Eu(x) = n(y)Eu(y)| < [n(x) - n(y)||Eu(x)]
+1(y)|Eu(x) — Eu(y)|
< Lylx = y||[Eu(x)| + [Eu(x) - Eu(y)|.

By the convexity of ¢, we have

7 2L, |E -yl
Hl(A) < 1[ f (b ’7| u(x)||x )’| dxdy
2 Jvwua Jv@ua A |x — y|2n

+1/ f o 2|Eu(x) — Eu(y)|\ dxdy
2 Jvwua Jveua Alx = y|* |x — y|?n

1~ 1~
=: EHH(A) + EHIZ(A)

Obviously,

_ 2|Eu(x) - Eu(y)|\ dxdy
HIZ(A)S [n /n (/5( Mx_yla ) ‘x—y|2n.

Observe that |x — y| < 4°\/ne;' diam Q for x, y € V) u Q. By (1.1) and (4.12), we

have
~ /ey diam 0 (L |Eu(x)|t7*) dt
s [ o LB
u(d) varua " Jo ¢( A gt
. f 6 2L,,|_Eu§x)| i
vioua "\ 1/(4°/ne;! diam Q)1
|u(x)|
< d
fn ¢()L/(45\/ﬁeol diam Q)!-« *
as desired.
Case 2: diam Q = co. For any u € B*#(Q), define
B e u(x) xeQ,
Yoz Pa(x)ugr xeU.
Recall that 7/ is as in Remark 3.6. Set U := U{Q € #/, I < 47'}. Observe that
(4.13) > 9a(x)= Y ¢q(x)=1, forallxeU.
QEW QeW

Indeed, assume x € U and ¢q(x) # 0 for some Q € #. Then x € P for some
Pe W withlp <1/4and x € %Q. By Lemma 3.3(i) we know that Q € N(P) and

hence by Lemma 3.1(iii), I < 4lp < 1, thatis, Q € # . Thus (4.13) holds. Since Q is
n-regular, with the aid of (4.13), Remark 3.6, and by arguments similar to those of the
case diam Q) = oo in Theorem 4.1, we have

(4.14) ‘|E\MHB“’¢(GUQ) < Clulgascqy forallue B*¢(Q).

Here we leave the details to the reader.
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For 0 < k < 5, set V(¥) := U{Q: Qe lqg <4} Letije CH(V® u Q) such
that% = lin V@ yuo,o0< 7 <land|V7| < Ly in V() U Q. Foreachu € B*?(Q),
define Eu := %Eu. Obviously E is a linear operator and Eu = u in Q. Using (4.14)
instead of the boundedness of E: B*#(Q) — B*?(R") used in the case diam Q < co
and by an argument very similar to the case diam Q < oo, we have ‘|EMHBO&,¢(R»1) S
||| ges () as desired; here we leave the details to the reader. ]

5 Extension Implies Imbedding

Theorem 5.1 indicates that B¢ -extension domains are B**#-imbedding domains; The-
orem 5.3 indicates that B**?-extension domains are B*¢-imbedding domains.

Theorem 5.1  Let a and ¢ be as in Theorem 1.1. If Q is a B*¢-extension domain, then
it is a B®?-imbedding domain.

To prove Theorem 5.1, we need the following lemma.

Lemma 5.2 Let a and ¢ be as in Theorem 1.1.

(i) Ifa e (0,1), there exists a constant C > 1 such that for all u € B*#(R"), we can
find i € C(R") satisfying it = u a.s. and [d(x) = 4(y)| < Clu|gusnlx = y*
forall x,y e R".

(ii) Ifa e (=n,0), then there exists a constant C > 1 such that for any u € B*¢(R"),
we have inf g |u - ¢

Lo/lel (Rn) < CH“”B“’(R")'

Proof Note that Lemma 5.2(ii) has already been proved in [19, Theorem 1.1]. To
see (i), let u € B*#(R"). Note that u € L _(R") due to Lemma 2.2. Then almost all
the points in R” are the Lebesgue points of u. For any Lebesgue points x, y € R", we

have
G.1) |u(x) = u(I S e = y1* ] gecs (gny -
Indeed, write |u(x)~u(y)| < [u(x)~tp(x,2jx—y)) |+t (y) = tip(x 2x—y))|- By Lemma 2.3,
we have
(5:2)  [u(x) = upGaapey | = 2 [Mp(2-te-yl) ~ UB(ramif-y)]
=0

A
018

JC [u(z) = up(x,2-i+1)x—y|) | d2
j=0 < B(x,277*x~yl)

277 = Yt s (B 25y

~
I

A
18

-
1]
(=]

< Clx =y [ g ()

Similarly to (5.2), we also have [u(y) — up(x,2x-yp| S ¥ = ¥|*[ 4] o (rn)- This and
(5.2) give (5.1) as desired.

Using (5.1) and Lemma 2.3, similarly to the proof of (5.2), one has that for all
x € R", {tp(x,2-1) } j»0 is a Cauchy sequence. Define i(x) := lim;_, o J(l‘i(x,Z*f) u(z)dz
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for all x € R”. Then u € L} _(R") implies & = u almost everywhere, and (5.1) implies

loc
that
li(x) - a(y)| < hm lim JC JC |u(z) — u(w)|dxdw
o0 j=oo JB(x,271) JB(y,274)
< HuHBW(Rn) lim lim JC JC |z — w|* dzdw
=00 j=>oo JB(x,2-1) JB(y,27)

< Jx = y1* el g ey

as desired. This completes the proof of Lemma 5.2. ]

Proof of Theorem 5.1 Let E:B*%(Q) - B*#(R") be a bounded linear extension
operator. For any u € B®?(Q), we have Eu € B®?(R") with Eu(x) = u(x),x € Q
and [l s gy < Cltl oo o

If « € (0,1), by Lemma 5.2(i), there exists i € C(R") such that i = Eu almost
everywhere and [ii(x) — 4(y)| < |x — y|*|Et| gag (gn) for all x, y € R". Thus & = u
almost everywhere in Q, and [i(x) - 4(y)[ $ |x = ¥|*[u]gas(q) forall x, y € Q as
desired.

Ifa € (-n,0), by Lemma 5.2(ii), we have infeer |Eu = c|[ poiet(ny S | Ett]| s ()
which yields inf g ||u - ¢

() S [ gas(q) as desired. ]

Theorem 5.3 Let a and ¢ be as in Theorem 1.1. If Q is a B*%-extension domain, then
it is a B*?-imbedding domain.

By an argument as in the proof of Theorem 5.1, we know that Theorem 5.3 follows
from the following lemma.

Lemma 5.4 Let o and ¢ be as in Theorem 1.1.

(i) Ifa € (0,1), there exists a constant C > 1 such that for all u € B*?(R"), we can
find 4 € C(R") satisfying it = u a.s. and

[4(x) = a(y)| < Clulpasmnylx — y|*  forallx,y e R".

(ii) Ifa € (-n,0), then there exists a constant C > 1 such that for any u € B*¢(R"),
we have [t pujei gy < Cllu] pesmny-

Proof Whenae (0,1),since || gug(gny < [[tt] pes (rn), Lemma 5.2(i) implies Lemma
5.4(i). When a € (-1, 0), Lemma 5.2(ii) gives inf cer |u—c || paier(rry S [4] o6 () and
hence |u - ¢ HLn/WRn) S H“HBM’(R") for some cy. If ¢y = 0, then (ii) follows. Below,
we prove ¢g = 0 by contradiction. If ¢y # 0, we assume without loss of generality that

co > 0. By

Hx eR" : Ju(x) - co| > C?OH < i“u - CHLn/|a|(Rn) < 00,
we have
(5.3) Hx eR": 2 <u(x) < 3;:0}‘ = oo,
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Since u € B*?(R"), then u € L?(R"). Letting A = |[u o gn) + 1, by the convexity of
¢, we have

‘{xeR .u(x)zz}‘Sfu(x)z%i/zdxsfﬂgn¢(i)m<oo,

which contradicts (5.3). The completes the proof of Lemma 5.4. ]

6 Imbedding Implies (Global) n-regular

Theorem 6.1 shows that B®¢-imbedding domains are global #-regular. Theorem 6.2
shows that B*#-imbedding domains are n-regular.

Theorem 6.1 Let a and ¢ be as in Theorem 1.1. If Q is a B®?-imbedding domain,
then it is global n-regular.

Proof If « € (-n,0) and Q is bounded, then Theorem 6.1 was already proved
(19, Theorem 1.2]. If @ € (-n,0) and Q is unbounded, Theorem 6.1 can be proved
similarly to that in [19] for the case when diam Q < co. Assume that 0 < a < 1 below.
Forz e Q,t < diam Q/2,and 0 < r < £/2, set u as defined in (2.2). Then by Lemma 2.4,
u e B*?(Q) and

I (t _ r)n -1 7 » " -1
[ulgesay < C(£=1) [(p (lBo(zf)l)] Scf“[(p (2"|BQ(“)|)] ‘

Since Q is a B*#-imbedding domain, there exists & such that i = u a.s. and
[4(x) = a()] < Clulgos oy bx = yI*

Take x € Bo(z, 1) and y € Bo(z,3t/2)\B(z, t) satisfying i(x) =u(x) and & ( y) =u(y).
Then |ii(x) —d(y)| =1land |x — 2| < /2, ¢t < |y — 2| < 3t/2,and hence ¢ < |x — y| < 2t.
Therefore,

-1 -1
. o i a 2a I t"
e | (amea) | poree | ame)]

which yields [Bo(z,t)] > [2"¢(C2**)]'t" forall z € Q and t < 1diam Q. If
diam Q = oo, this implies that Q is global n-regular. If diam Q < oo, for 1 diam Q <
t < 2diam Q, considering |Bq(z, t)| > |Ba(z, t/4)|, we also know that Q is global
n-regular as desired. This completes the proof of Theorem 6.1. ]

Theorem 6.2 Let o and ¢ be as in Theorem 1.1. If Q is a B*%-imbedding domain,
then it is n-regular.

Proof We claim that there exists a constant C such that for any z € Q, ¢ < min
{I,diam Q},and r < t, u := u,, ; € B*?(Q) and

(6.1) ”u||Bzx,¢(Q) < C(t—?’)_a[gb_l(é;z;):ﬂ)] '
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Here uy ., is defined in (2.2). Assume the claim is true for the moment. Similarly
to the proof of Theorem 6.1 when « € (0,1) and the proof of [19, Theorem 1.2] when
a € (—n,0), we know that Q) is n-regular.

To see (6.1), since u = u, . ; is supported in Bq(z,t) and 0 < u < 1, we have

fg ‘P('u(f)') dx < $(1/1)|Ba(z. 1) <1

[ ()]

Hence, |u]s¢0) < [cp*l(m)] . Thus (6.1) follows if there exists a constant

C > 1 such that [¢_1(|Bn(lz’t)‘ )] e C(t-r)™ [(/5_1(‘1;:(2:” )] ~'. Note that this is
equivalent to

62 s < ()
But when a € (-7,0), by (2.1) with £ < 1 and the convexity of ¢, we have
o~ ()
gz3"A¢(a>(tir)"¢[¢—l(M)u_n—a]
: (tir)n*"[“’_l( |BQ<1z,t>|) H(z:iArf‘fa)]’

which gives (6.2). Moreover, when « € (0,1), by t < 1 we have

U Y A N
|BQ(Z’t)|S|BQ(Z’f)|_¢[¢ (|BQ(ZJ)|)]S[¢ (|Bn<z,t>|)“ ) ]

which gives (6.2) as desired. This completes the proof of Theorem 6.2. [

whenever
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