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Abstract

We establish sufficient conditions for differentiability of the expected cost collected
over a discrete-time Markov chain until it enters a given set. The parameter with respect
to which differentiability is analysed may simultaneously affect the Markov chain and
the set defining the stopping criterion. The general statements on differentiability lead to
unbiased gradient estimators.
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1. Introduction

Consider a Markov chain {Xn} with homogeneous transition kernel Pθ on a general state-
space supported on R. Moreover, we equip R with the usual topology, and, if not stated
otherwise, measurability is understood with respect to the Borel field. Let Aθ ⊂R denote a
measurable set, and let τ denote the first entry time into Aθ when starting the chain in x0, i.e.,

τ := τ (x0) = inf{n ≥ 1 : Xn ∈ Aθ},
with X0 = x0, where we set τ = ∞ if the set on the right-hand side is empty. For techni-
cal convenience we assume throughout the paper that x0 �∈ Aθ . We consider the problem of
estimating

d

dθ
E

[
τ−1∑
i=0

h(Xi)

∣∣∣∣∣ X0 = x0

]
, (1)

for some measurable cost function h : R �→R and x0 �∈ Aθ . Generally speaking, the problem
arises naturally in analysing a system, modelled by Pθ , that is operating until a certain event
occurs, here modelled by Xn entering Aθ , upon which some action is taken. For example, in
inventory problems, orders are placed once the stock drops below a certain value; in main-
tenance, preventive maintenance is performed once the age of a component exceeds some
threshold; and in service control, the speed of the server may be adjusted in case observed
waiting times exceed some quality threshold.
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In analysing a model we are interested not only in evaluating its performance but also in
improving it. Let θ be a control parameter of the model. For example, in an inventory model θ
may be the level that triggers the replenishing of stock. Changing the order level not only alters
the cost, represented by h in the model, but may also have an impact on the demand, as having
a low replenishing level may attract more demand. This illustrates that θ may simultaneously
affect the boundary of Aθ , the instantaneous cost h, and the transition probability of the under-
lying process. In this paper, we will derive derivative expressions for this general case of θ
influencing all aspects of the model. As we will show, the overall formulas can be translated
into efficient unbiased simulation-based estimators.

With the advent of simulation-driven perturbation analysis techniques, such as perturbation
analysis [7, 12, 13, 14, 24], the score function method [37], and weak differentiation [34],
efficient unbiased estimators for the expression in (1) have been found for particular instances
of the problem. More specifically, for applications of perturbation analysis to (s, S) inventory
models with θ being either threshold s, S, or the span S − s, we refer to [5, 4]. Alternatively, a
variant of the score function method, called the push-out score function, has been developed for
this kind of threshold optimization in inventory models; see [35], as well as [36] for an early
reference. For a perturbation analysis of a maintenance model where θ triggers (preventive)
maintenance of system components whose age exceeds θ , we refer to [19, 16]. Finally, for
applications to financial models, where θ is the value of a barrier in some option model, we
refer to [15, 31, 17, 21].

General results for the case where Aθ and the instantaneous cost are independent on θ , and
only the underlying stochastic process depends on θ , are provided in [22, 23]. Moreover, in the
setting of Markov chains with discrete state-space, sensitivity analysis of the expected return
time to a specified marked state i∗ (also called time to absorption) with respect to the entries of
the Markov transition probabilities is well-studied. Expressed in our setting, in these studies,
we have h = 1, A = {i∗} contains the marked state, and the transition probability of the random
walk Xn depends on θ . See, for example, [8, 9] for details.

Before laying out the main steps of our approach for providing an unbiased estimator for
the derivative in (1), we provide examples illustrating the relevance of the extension to the
case Aθ . Without loss of generality, we consider θ to be scalar, as for the multidimensional
case θ ∈R

k, k> 1, estimation of a gradient can be reduced to that of estimating the partial
derivatives separately.

Example 1. (Service quality.) Customers arrive at a service station according to a renewal
point process. The interarrival times {In : n ∈N} are independent and identically distributed
(i.i.d.), with density fI(x) such that 0< E[In]<∞ and P(In = 0) = 0. Customers are served in
order of arrival, and consecutive service times are i.i.d. random variables {Sn(θ ) : n ∈N} with
density fS(x; θ ), for θ ∈�⊂R, such that 0< E[Sn(θ )]<∞ and P(Sn(θ ) = 0) = 0. Interarrival
times and service times are assumed to be mutually independent. Consider the process of
consecutive waiting times {Xn}, denoting the time that the corresponding customer has spent
at the service station from arrival to beginning of service. The service system starts initially
empty. Consecutive waiting times Xn follow the recursive relation

Xn = max{0, Xn−1 + Sn−1(θ ) − In}, n ≥ 2, (2)

and X1 = 0. Letting Aθ = [θ,∞) and h(Xi) ≡ 1, with

τ = inf{n : Xn ≥ θ}, for θ ≥ 0, (3)
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Gradients for stopping criteria 31

we obtain from (1) the sensitivity of the expected index of the first customer who experiences
a waiting time exceeding θ .

Example 2. (Investment.) For an investment strategy, a portfolio of m risky assets is con-
sidered. The value of asset i after the nth dividend date is denoted by Zn(i), and we let
Xn = (Zn(1), . . . , Zn(m)), n ≥ 0. From a risk management perspective we are interested in the
expected time until the value of the basket drops below θ :

τθ = inf

{
n :

m∑
i=0

Zn(i) ≤ θ
}

= inf{n : h(Xn) ≤ θ} ,

for

h(Xn) =
m∑

i=0

Zn(i).

The threshold θ may be used in an investment strategy where the investor is only inclined to
restructure the portfolio once the value of the basket drops below θ .

Example 3. (Insurance.) Consider an insurance company where the nth claim Wn arrives at
time tn. For simplicity, we assume that there is a premium inflow of c per time unit. The capital
at time t, denoted by K(t), is then given by

K(t) = K0 + ct −
N(t)−1∑

i=0

Wi,

where τ0 = 0, N(t) is the number of claims incurred up to time t, and K0 is the initial capital.
The time until ruin is given by

inf{t : K(t) ≤ 0}.
The capital K(t) increases between claims, and the only possible time epochs where K(t) can
fall below 0 are the jump epochs of N(t). Hence, letting Xn = (ηn,Wn, K̂n), with ηn the time
between the nth claim and the (n + 1)th, K̂n the capital right after the nth claim, and X0 =
(0, 0,K0), ruin occurs for K̂n < 0. However, the insurance company will have to act before the
zero-threshold is reached; in practice, the insurance company is interested in the time until the
capital drops below a certain threshold θ . Let

τθ = inf
{
n : K̂n < θ

}
denote the index of the claim causing the capital to drop below θ , and let ρn denote the nth
jump time of N(t); then ρτθ yields the time at which the capital drops below θ .

For our analysis, we take a Markov chain operator approach. In the following we focus on
motivating our approach; formal definitions are postponed to Section 2.1. Specifically, let Pθ
denote the Markov kernel of {Xn}. For analysing (1) we make use of the concept of a taboo
kernel. More specifically, the taboo kernel of Pθ is a truncation of Pθ onto the complement of
taboo set Aθ , defined by

[Pθ ]Aθ (B; x) =
{

Pθ
(
B ∩ Ac

θ , x
)
, B ∩ Ac

θ �= ∅,
0 otherwise.
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for all measurable sets B. In words, the taboo kernel avoids entering the set Aθ . When it is clear
with respect to which set Aθ the taboo kernel is constructed, we simplify the notation by letting

Tθ (B; x) = [Pθ ]Aθ (B; x).

This implies ∫
R

h(y)Tθ (dy; x) =E[h(Xi+1)1{Xi+1 �∈ Aθ }|Xi = x],

provided the integral exits, where the transition from x = Xi to Xi+1 is governed by Pθ . Defining
powers of transition kernels in the obvious way by Qn = Qn−1Q, with Q0 denoting the identity,
we have (

Tn
θh
)

(x0) =E

[
n∏

i=0

1{Xi /∈ Aθ }h(Xn)

∣∣∣∣∣ X0 = x0

]
, n ≥ 0, (4)

for x0 �∈ Aθ and T0
θ being the identity operator. For technical convenience we include the indi-

cator 1{X0 �∈ Aθ } in the indicator product; we may do this without loss of generality, thanks to
our assumption that the initial state does not belong to the taboo set Aθ .

Since x0 �∈ Aθ , we obtain for the random horizon summation

E

[
τ−1∑
i=0

h(Xi)

∣∣∣∣∣ X0 = x0

]
=E

⎡⎣ ∞∑
i=0

h(Xi)
i∏

j=0

1{Xj �∈ Aθ }
∣∣∣∣∣∣ X0 = x0

⎤⎦
=

∞∑
i=0

∫
R

h(xi)Ti
θ (dxi; x0)

= (Hθh) (x0), (5)

where

Hθ =
∞∑

n=0

Tn
θ

is called the potential of the taboo kernel Tθ .
The paper is organized as follows. In Section 2 differentiation of the taboo kernel Tθ is

studied. The main result of the paper on the differentiability of the potential Hθ is provided
in Section 3. Section 4 is devoted to translating the overall formulas into gradient estimators.
Section 5 addresses applications. We conclude by identifying topics of further research.

2. Differentiation of one-step taboo kernel

2.1. Transition kernels and norms

Let (S, T ) be a Polish measurable space, for S ⊂R. For ease of presentation we restrict our
analysis to the one-dimensional case. Let M(S, T ) denote the set of finite (signed) measures
on (S, T ) and M1(S, T ) that of probability measures on (S, T ). Let η : R→ [1,∞) be such
that infx η(x) = 1. The weighted supremum norm with respect to η of a cost function ψ is
defined by

||ψ ||η = sup
x

|ψ(x)|
η(x)

,
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and that of a (signed) measure μ ∈M(S, T ) by

||μ||η =
∫
η(x)|μ(dx)| =

∫
η(x)μ+(dx) +

∫
η(x)μ−(dx),

with μ+, μ− denoting the Hahn–Jordan decomposition; see [10]. Typically, μ has Lebesgue
density fμ and we have

||μ||η =
∫
η(x)| fμ(x)|dx.

Note that the property η≥ 1 implies

|ψ(x)| ≤ ||ψ ||ηη(x) for all x;

moreover,∣∣∣∣∫ ψ(x)fμ(x)dx

∣∣∣∣≤ ∫ |ψ(x)| |fμ(x)|dx ≤
∫ (

sup
x

|ψ(x)|
η(x)

)
η(x)|fμ(x)|dx = ||ψ ||η||μ||η.

The mapping P : T × S → [0, 1] is called a (homogeneous) transition kernel on (S, T ) if (i)
P( · ; s) ∈M(S, T ) for all s ∈ S, and (ii) P(B;) is T measurable for all B ∈ T . If, in the condition
(i), M(S, T ) can be replaced by M1(S, T ), then P is called a Markov kernel on (S, T ). Denote
the set of transition kernels on (S, T ) by K(S, T ) and the set of Markov kernels on (S, T ) by
K1(S, T ). A transition kernel P ∈K(S, T ) with 0< P(S; s)< 1 for at least one s ∈ S is called a
defective Markov kernel.

Consider a family of Markov kernels (Pθ : θ ∈�) on (S, T ), with �⊂R, and let
L1(Pθ ;�) ⊂R

S denote the set of measurable mappings g : S →R such that
∫

S |g(u)|Pθ (du; s)
is finite for all θ ∈� and s ∈ S. To simplify the notation, we set

(Pθg)(s) �
∫

S
g(u)Pθ (du; s)

for g ∈L1(Pθ ;�) and s ∈ S.
In what follows, we let� be an open neighbourhood of θ0 and assume that D ⊂L1(Pθ ;�).
We call Pθ ∈K(S, T ) differentiable with respect to θ for D, or�-D-differentiable for short,

if ∂θPθ ∈K(S, T ) exists such that for any g ∈D and any s ∈ S,

d

dθ

∫
S

g(u)Pθ (du; s) =
∫

S
g(u)∂θPθ (du; s). (6)

If the left-hand side of (6) equals zero for all g ∈D, then we say that ∂θPθ is not significant.
In the same vein, we call Pθ ∈K(S, T ) differentiable with respect to x for D, or X-D-

differentiable for short, if ∂xPθ ∈K(S, T ) exists such that for any g ∈D and any s ∈ S,

d

dx

∫
S

g(u)Pθ (du; x) =
∫

S
g(u)∂xPθ (du; x). (7)

If the left-hand side of (7) equals zero for all g ∈D, then we say that ∂xPθ is not significant.
Assume that Pθ has density fθ (y; x), i.e., Pθ (B; x) = ∫B fθ (y; x)dy for all x ∈ S and B ∈ T ,

and suppose that the partial derivatives of fθ (y; x) with respect to x and θ , denoted
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respectively by ∂xfθ (y; x) and ∂θ fθ (y; x), both exist. Provided that for all x, y ∈ S it holds that
∂yfθ (y; x), ∂x fθ (y; x), ∂θ fθ (y; x)> 0 implies fθ (y; x)> 0, we let

SFX(y; x) := SFθX(y; x) := ∂x log fθ (y; x) = ∂xfθ (y; x)

fθ (y; x)
,

SFY (y; x) := SFθY (y; x) := ∂y log fθ (y; x) = ∂yfθ (y; x)

fθ (y; x)
,

and

SF�(y; x) := SFθ�(y; x) := ∂θ log fθ (y; x) = ∂θ fθ (y; x)

fθ (y; x)
.

The mapping SFX(y; x) is called the X-score function acting on the conditioning state (and
is explained in more detail in Remark 1 below), the mapping SFY (y; x) is called the Y-score
function acting on the resulting state, and SF�(y; x) is called the �-score function acting on
the system parameter. Under appropriate smoothness conditions,

d

dx

∫
S

g(u)Pθ (du; x) =
∫

S
g(u)∂xPθ (du; x) =

∫
S

g(y)SFX(y; x)fθ (y; x)dy,

and
d

dθ

∫
S

g(u)Pθ (du; x) =
∫

S
g(u)∂θPθ (du; x) =

∫
S

g(y)SF�(y; x)fθ (y; x)dy.

We revisit the sojourn time example put forward in Example 1. Denote the transition kernel
of the waiting time chain by Pθ ; i.e.,

Pθ (B, x) = P(Xn+1(θ ) ∈ B|Xn(θ ) = x)

for x ≥ 0 and B ⊂ (0,∞) a (Borel) measurable set, or, more formally,

Pθ (B, x) =
∫ ∞

0

(∫ s+x

0
1{x+s−a∈B}fI(a)da

)
fS(s)ds,

and otherwise, for B ∈ [0,∞) with 0 ∈ B,

Pθ (B, x) =
∫ ∞

0

(∫ s+x

0
1{x+s−a∈B}fI(a)da

)
fS(s)ds +

∫ ∞

0

(∫ ∞

s+x
fI(s)ds

)
fS(a)da.

Inserting B = (0, y] and differentiating with respect to y, we obtain the density of the
continuous part of the transition kernel on (0,∞) as

fθ (y; x) =
∫ ∞

0
fI(max{x + s − y, 0})fS(s)ds,

y> 0, where we assume that fI(0) = 0, and

∂x fθ (y; x) =
∫ ∞

0
1{x+s−y>0}∂z fI(x + s − y)fS(s)ds,

where δz fI(x + s − y) is shorthand notation for the derivative of fI(z) with respect to z evaluated
at z = x + s − y. If, for example, interarrival times are exponentially distributed with rate λ, i.e.,
fI(x) = λe−λx, x ≥ 0, then, by δx fI(x) = −λfI(x),

∂x fθ (y; x) = −λ
∫ ∞

0
1{x+s−y>0} fI(x + s − y)fS(s)ds = −λfθ (y; x), y> 0,
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so that in this case

SFX(y; x) = −λ. (8)

Following the same line of argument, we have that

SFY (y; x) = λ. (9)

Furthermore, assume that S(θ ) follows a log-normal distribution with location parameter θ
and scale parameter σ :

fS(s) = 1

sσ
√

2π
exp

(
− (log(s) − θ )2

2σ 2

)
, s> 0.

It is well known that the log-normal distribution provides a good fit to the length of calls in a
service centre; see, for example, [6]. Then it is easily checked that

∂θ fS(s) = log(s) − θ

σ 2
fS(s),

and it follows straightforwardly that

∂θ f (y; x) =
∫ ∞

0

log(s) − θ

σ 2
fI(max{x + s − y, 0})fS(s)ds.

The above expression cannot be applied in a simulation setting as such. In the following we
will therefore rewrite SF�(y; x) by conditioning on the interarrival times. More specifically,
let z denote the interarrival time and write f (y; x, z) for the density of Xn+1 given Xn = x and
In+1 = z; then

f (y; x, z) = fS(y + z − x), y> 0,

and

∂θ f (y; x, z) = log(y + z − x) − θ

σ 2
f (y; x, z) and SF�(y; x, z) = log(y + z − x) − θ

σ 2
.

When evaluating SF� via simulation, we first observe Xn, Xn+1, In+1, and Sn(θ ), and we then
apply differentiation conditional on In+1, which gives

SF�(Xn+1; Xn, In+1) = log(Sn(θ )) − θ

σ 2
, Xn+1 > 0.

In words, we introduce a sub-Markov chain, where, for given Xn, first the interarrival time
is sampled, giving Xn − In+1, and then in a subsequent step the service time is sampled and
added.

The η-norm is extended to transition kernels through the operator norm; that is, for Q ∈
K(S, T ) we have

||Q||η = sup
x∈R

1

η(x)

∫
η(y)|Q(dy, x)|.
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36 B. HEIDERGOTT AND Y. PENG

Note that ||I||η = 1 for I being the identity operator. By algebra,∣∣∣∣∫ g(y)Q(dy; x)

∣∣∣∣≤ ∫ |g(y)| |Q(dy; x)|

=
∫ |g(y)|

η(y)
η(y) |Q(dy; x)|

≤
∫ (

sup
y

|g(y)|
η(y)

)
η(y)|Q(dy; x)|

≤ ||g||η η(x) sup
x

1

η(x)

∫
η(y)|Q(dy; x)|

= ||g||η ||Q||ηη(x), (10)

for all x. In the following we let ηα(x) = α|x|, for x ∈R, and for x ∈ [0,∞) it suffices to let
η(x) = αx. For a polynomial function ψ , we have ‖ψ‖ηα <∞ for any α > 1. In slight abuse of
notation, we will simplify || · ||ηα to || · ||α .

Example 4. Let Aθ = [0, θ ] and consider the taboo kernel Tθ = [Pθ ][0,θ], with Pθ the transition
kernel of the waiting times introduced in Example 1. We denote the stability region of the queue
by �= {θ > 0 : E[S(θ ) − I]< 0}. Then

||Tθ ||α = sup
x≥0

α−x
E
[
αS(θ)−I+x1{S(θ)−I+x>θ}

]
= sup

x≥0
E
[
αS(θ)−I1S(θ)−I+x>θ

]
=E

[
αS(θ)−I].

For [θ1, θ2] ⊂�, there exists α∗ such that E
[
αS(θ)−I

]
has negative right-hand-side derivative

at α= 1 and is strictly convex as a mapping in α on [1, α∗), uniformly on [θ1, θ2]. This shows
that there exists ᾱ > 1 such that

sup
θ∈[θ1,θ2]

||Tθ ||ᾱ < 1.

For details we refer to [26, 29].

Note that for given S(θ ) and I, we obtain from the above argument that the expected accu-
mulated cost exists and is finite for all h such that ||h||α <∞, i.e., for all cost functions h that
are bounded by cᾱx or some finite constant c. Indeed, letting τ denote the first time a waiting
time becomes smaller than θ , for h ≥ 0 and 1 ≤ α ≤ ᾱ we obtain, from ||Tθ ||α < 1 together
with ||T0

θ ||α = ||Tθ ||0α = 1 and ||Ti
θ ||α ≤ ||Tθ ||iα for i ≥ 1, that

E

[
τ−1∑
i=0

h(Xi)

∣∣∣∣∣ X0 = x

]
=

∞∑
i=0

(
Ti
θh
)
(x)

≤
∞∑

i=0

||Tθ ||iα||h||ααx

= αx ||h||α
1 − ||Tθ ||α

<∞,

provided that ||h||α is finite.
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2.2. Differentiability of the taboo kernel

We call a taboo kernel D-differentiable if a linear operator
(
[Pθ ]Aθ

)′ exists such that for any
h ∈D it holds that

d

dθ
Tθh = d

dθ
[Pθ ]Aθ h = ([Pθ ]Aθ

)′
h.

If the above holds, then
(
[Pθ ]Aθ

)′ is the �-D-derivative of Tθ and we let T′
θ := (

[Pθ ]Aθ

)′.
Notice that the derivative of the taboo kernel [Pθ ]Aθ cannot be straightforwardly obtained

in a pathwise sense through differentiating the density as the support of the taboo kernel Aθ
is parametrized, which introduces discontinuities. In the same way, the derivative of the taboo
kernel [Pθ ]Aθ cannot be obtained by simply taking the taboo kernel of the measure-valued
derivative of Pθ , as it is in general not true that [∂θPθ ]Aθ is the derivative of [Pθ ]Aθ ; in formula,
[∂θPθ ]Aθ �= ([Pθ ]Aθ

)′.
For the analysis provided in this section we require Aθ to depend on θ in a smooth way.

This is expressed in the following.

Assumption 1. (Boundary parametrization.) There exists a boundary mapping gθ (x), such
that

• for some set �, independent of θ , we have

x ∈ Ac
θ if and only if gθ (x) ∈�;

• the partial derivatives of gθ with respect to θ and x exist;

• the set {x : ∂xgθ (x) = 0} has Lebesgue measure zero, so that

δθ (x) = −∂θgθ (x)

∂xgθ (x)

is a differentiable and Lebesgue-almost-surely well-defined mapping.

As an illustration of Assumption 1, note that the stopping criterion in (3) is formalized by
�= [0, 1) and

gθ (x) = x

θ
and δθ (x) = gθ (x).

In this paper, we show that T′
θ can be defined via cost functions ψ from an appropriate class

of functions, to be specified later, so that

∂

∂θ
(Tθψ)(x) = ∂

∂θ

∫
ψ(y)Tθ (dy, x) =

∫
ψ(y)T′

θ (dy, x) = (T′
θψ
)
(x),

where (
T′
θψ
)
(x) =

∫
Ac
θ

(
ψ(y)∂θ fθ (y; x) + ∂y(ψ(y)fθ (y; x)δθ (y))

)
dy. (11)

Suppose that Pθ is differentiable in an appropriate way, e.g., weakly differentiable [20, 23],
with derivative P′

θ ; then [
P′
θ

]
Aθ

would be the first part of the estimator representing the derivative of Pθ on the complement
of the taboo set. In order to get a derivative for Tθ rather than just Pθ , we need an additional
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term. This compensator collects the state-space derivatives; if we denote this operator by D,
Equation (11) reads (

Tθ
)′ = [P′

θ

]
Aθ

+ Dθ ,

where ([
P′
θ

]
Aθ
ψ
)

(x) =
∫

Ac
θ

ψ(y)∂θ fθ (y; x)dy =
∫

Ac
θ

ψ(y)SF�(y; x)fθ (y; x)dy,

and (
Dθψ

)
(x) =

∫
Ac
θ

∂y(ψ(y)fθ (y; x)δθ (y))dy.

The kernel Dθ lives on the complement of the taboo set Aθ . We provide an explicit form of Dθ
in the following example.

Example 5. Consider the taboo set Aθ = (θ,∞); then we may let �= [0, 1] with gθ (x) = x/θ ,
for x ≥ 0. For ψ(y) = yp, for some p ≥ 1, we obtain

Dθψ(x) =
∫ θ

0

yp

θ
((p + 1) + ySFY (y; x)) fθ (y; x)dy.

Because of the inner differentiation ∂y under the integral in Dθ , the operator Dθ splits nat-
urally into two parts. Indeed, writing Dθ in explicit form, we obtain the following for T′

θ :

(
T′
θψ
)
(x) = ([P′

θ

]
Aθ
ψ
)
(x) + (Dθψ)(x)

=
∫

Ac
θ

ψ(y)SF�(y; x)fθ (y; x)dy︸ ︷︷ ︸
=: T′

1

+
∫

Ac
θ

ψ ′(y) δθ (y) fθ (y; x)dy︸ ︷︷ ︸
=: T′

2

+
∫

Ac
θ

ψ(y)
(
δθ (y)SFY (y; x) + ∂yδθ (y)

)︸ ︷︷ ︸
=: νθ (y; x)

fθ (y; x)dy

︸ ︷︷ ︸
=: T′

3

. (12)

In words, the derivative of Tθ splits into three parts: (i) the first part assesses the sensitivity of
the Markov chain outside the taboo set Aθ ; (ii) the second part measures the knock-on effect
of continuing the process on states belonging to the boundary of Aθ , where the unperturbed
process otherwise would have stopped; and (iii) the third part measures the effect perturbing
θ has on the performance at the next step reached from the state x, where the perturbation is
weighted by the impact of θ on the boundary. We explain the meaning of the second part in
more detail in the following remark.

Remark 1. Let ψ̃ be some cost function and denote the one-step-ahead expected value by

ψ(x) = (Tθ ψ̃)(x).
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Observe that under appropriate smoothness conditions

ψ ′(x) = ∂x(Tθψ
)
(x) = ∂x

∫
Ac
θ

ψ̃(y)fθ (y; x)dy

=
∫

Ac
θ

ψ̃(y)∂xfθ (y; x)dy =
∫

Ac
θ

ψ̃(y)SFX(y; x)fθ (y; x)dy,

which shows that differentiation of the cost function ψ can be captured by differentiation of
the transition density, provided that ψ itself can be interpreted as a conditional expectation.
This is exactly what happens when products of Markov kernel operators are differentiated. In
the following we provide a more general discussion of this phenomenon. Note that, for n ≥ 1,

(
Tn
θψ
)
(y) =E

[
ψ(Xn)

n∏
i=0

1{Xi �∈ Aθ }
∣∣∣∣∣ X0 = y

]
is the conditional expectation of the reward after n transitions of the taboo chain. Interchanging
differentiation and integration leads to

∂y
(
Tn
θψ
)
(y) = ∂y

(
TθTn−1

θ ψ
)
(y)

=
∫

Ac
θ

(
Tn−1
θ ψ

)
(z)∂yfθ (z; y)dz.

Using the X-score function, this derivative can easily be evaluated as follows:∫
Ac
θ

(
Tn−1
θ ψ

)
(y) ∂yfθ (z; y)dz =

∫
Ac
θ

(
Tn−1
θ ψ

)
(z)SFX(z, y)fθ (z; y)dy.

In words, the differentiation in the part T′
2 of the derivative representation in (12) relates to

differentiating a conditional expectation with respect to the conditioning value, which can be
dealt with by using the X-score function.

Differentiating a Markov chain with taboo set Aθ is related to the differentiation of a distri-
bution with θ -dependent support. In the following, we compare the application of our approach
to the case of a distribution with θ -dependent support.

Example 6. Let Aθ = (θ, 1], for 0< θ < 1, and fθ (y; x) = 1 on [ 0, 1 ] and zero otherwise. The
taboo kernel can now be written as the defective uniform distribution

(Tθψ)(x) =
∫ θ

0
ψ(y)dy,

which is clearly the expected value with respect to the uniform distribution on [0, θ ] scaled
by θ . This is a classical example that cannot be handled by the score function, as the density
1[0,θ](y) fails to be Lipschitz continuous; here it is well known that the derivative is given by

∂

∂θ
(Tθψ)(x) =ψ(θ ), (13)

provided that ψ is continuous.
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Let gθ (y) = y/θ , �= [0, 1], and fθ (y; x) = 1[0,1]. Noticing that ∂θ fθ (y; x) = 0 = ∂yfθ (y; x)
and

δθ (x) = x

θ
, ∂xδ(x) = 1

θ
,

we obtain from (12) (where we set the score functions to zero)

∂

∂θ
(Tθψ)(x) =

∫ θ

0

(
∂yψ(y)δθ (y) +ψ(y)∂yδθ (y)

)
dy. (14)

For example, in the case of ψ(y) = yp, for some p> 1, it is easily seen that

∂

∂θ
(Tθψ)(x) = θp,

which indeed yields the true derivative.
The uniform distribution on [0, θ ] can be retrieved by

1

θ
(Tθψ)(x) = 1

θ

∫ θ

0
ψ(y)dy.

Note that, for ψ continuous, it holds that

∂

∂θ

(
1

θ

∫ θ

0
ψ(y)dy

)
= ∂

∂θ

(
1

θ
(Tθψ)(x)

)
= 1

θ

(
ψ(θ ) − 1

θ

∫ θ

0
ψ(y)ydy

)
for all x, where the right-hand side is an expression for the measure-valued derivative of the
uniform distribution. Comparing the above measure-valued derivative with our new one,

∂

∂θ

(
1

θ
(Tθψ)(x)

)
= 1

θ

(∫ θ

0

(
∂yψ(y)δθ (y) +ψ(y)∂yδθ (y)

)
dy − 1

θ

∫ θ

0
ψ(y)ydy

)
,

obtained via (14), it is apparent that the resulting estimators are different. However, both
estimators have as a common part

− 1

θ2

∫ θ

0
ψ(y)dy.

The difference lies in the fact that the (positive part of the) measure-valued derivative concen-
trates mass on the boundary of the taboo set, whereas our new estimator leads to integration
over the complement of the taboo set. Our approach requires ψ to be differentiable, whereas
for measure-valued differentiation only continuity is required.

That our approach requires stronger conditions on the performance function than classical
measure-valued differentiation stems from the fact that we develop a differentiation theory for
Markov chains (in contrast to the differentiation of unconditional measures), which requires
capturing the knock-on effect of a perturbation on the future development of the Markov chain;
see Remark 1.

In the following we provide the theoretical development for the estimator in (11). We denote
the Euclidean distance between y and ȳ by λ(y, ȳ) and define the distance from y to a set A by
λ(y, A) = inf{λ(y, ȳ) : ȳ ∈ A}. Note that λ(y, A) = 0 in the case y ∈ A. Recall that � denotes the
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base set from which Ac
θ is obtained via Ac

θ = {x : gθ (x) ∈�}; see Assumption 1. We now define
ε sets around the boundary ∂�=� \�o through

�ε := �∪ {y ∈�c : λ(y, ∂�) ≤ ε} (15)

and
�−ε := {y ∈� : λ(y, ∂�) ≥ ε}.

We let

χε(y) := λ(y, �−ε)
λ
(
y, �c

ε

)+ λ(y, �−ε)
,

where, by definition, χε(y) = 0 for y ∈�−ε , χε(y) = 1 for y ∈�c
ε , and ‖χε‖∞ ≤ 1 (where

||ψ ||∞ := supy∈R |ψ(y)| for ψ : R �→R). It is easy to see that χε(y) converges to 1{y ∈�},
except for y ∈ ∂�, as ε tends to zero. Let

χ̄ε(y) :=
∫

y∈R
χε(z)φε(y − z)dz,

where φε is the density of a centred normal distribution with variance ε2, i.e.,

φε(y) = 1

ε
√

2π
exp

(
− y2

2ε2

)
.

In words, χ̄ε(y) is a smoothed version of χε(y) using a standard normal density as mollifier.
Smoothness of the normal density implies

χ̄ ′
ε(y) =

∫
R

χε(z)∂yφε(y − z)dz

= 1

ε
√

2π

∫
R

χε(z)
(z − y)

ε2
exp

(
− (y − z)2

2ε2

)
dz.

The following lemma summarizes properties of χ̄ε .

Lemma 1. The functions {χ̄ε} are smooth and satisfy

||χ̄ε ||∞ <∞ and ||χ̄ ′
ε ||∞ <∞.

Proof. The smoothness of χ̄ε(y) comes directly from the construction of the convolution,
and ||χ̄ε ||∞ ≤ ||χε ||∞ ≤ 1, which straightforwardly leads to the smoothness and boundedness
of χ̄ε . In addition, ∣∣∣∣χ̄ ′

ε

∣∣∣∣∞ ≤ ||χε ||∞
ε3

√
2π

∫
R

|z − y| exp

(
− (y − z)2

2ε2

)
dz

= 2||χε ||∞
ε3

√
2π

∫ ∞

z=0
e−zdz ≤ 2

ε2
√

2π
,

which leads to the conclusion. �
We introduce the following transition kernels:

P̃θ (B; x) :=
∫

B
δθ (y)fθ (y; x)dy, P̂θ (B; x) :=

∫
B
(SF�(y; x) + νθ (y; x)) fθ (y; x)dy,

P̄θ (B; x) :=
∫

B
SFX(y; x)fθ (y; x)dy,
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and

U(B; x) :=
∫

B
sup
θ∈�

fθ (y; x)dy.

Note that U will be used to establish bounds needed for applying the dominated convergence
theorem. The kernels P̃θ , P̂θ , and P̄θ represent different parts of the gradient expression.

Assumption 2. (Boundary integration.) Assume the following:

(i) The sets ∂Aθ = Aθ \ Ao
θ and Nθ = {x ∈R : ∂xgθ (x) = 0} have Lebesgue measure zero.

Moreover, we assume that Nθ is measurable for all θ .

(ii) It holds for α that
lim

y→±∞ α2|y|fθ (y; x) = 0.

(iii) The operator U has bounded norm ‖U‖α2 <∞.

(iv) The Lebesgue measure L (·) of Aεθ \ Aθ converges uniformly to zero, i.e.,

lim
ε→0

sup
θ∈�

L
(
Aεθ \ Aθ

)= 0,

where
Aεθ := {x ∈R : gθ (x) ∈�ε} .

(v) We have

sup
θ∈�

||SF�||α <∞, sup
θ∈�

||SFX||α <∞,

sup
θ∈�

||νθ ||α <∞, sup
θ∈�

||∂θgθ ||α <∞, sup
θ∈�

||δθ ||α <∞.

The following results are needed to prove unbiasedness of the derivative estimator. The
technical conditions put forward in Assumption 2 guarantee that the mass of the set effected
by changing the boundary of Aθ is sufficiently smooth; see the conditions (i) and (iv). The
remaining conditions establish that all objects needed for the analysis are uniformly (in θ )
well-defined in the norm sense. In the case when the process Xn exhibits some monotonicity in
θ , these conditions reduce to assuming that the norms are well-defined for the ‘worst’ choice
of θ .

Lemma 2. Under the conditions (iii)–(v) in Assumption 2, we have

sup
θ∈�

∥∥P′
θ

∥∥
α
<∞, sup

θ∈�
∥∥P̃θ

∥∥
α
<∞, sup

θ∈�
∥∥P̂θ

∥∥
α
<∞, sup

θ∈�
∥∥P̄θ

∥∥
α
<∞,

and

lim
ε→0

∥∥∥[Pθ ]Aεθ
− [Pθ ]Aθ

∥∥∥
α

= 0, lim
ε→0

sup
θ∈�

∥∥∥[̃Pθ ]Aεθ − [̃Pθ ]Aθ∥∥∥α = 0,

lim
ε→0

sup
θ∈�

∥∥∥[P̂θ ]Aεθ − [P̂θ ]Aθ∥∥∥α = 0.

Proof. By definition, (v) implies that for some finite constant c,

sup
θ∈�

|SF�(y; x)| ≤ cαxαy for all x, y.

https://doi.org/10.1017/apr.2022.7 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2022.7


Gradients for stopping criteria 43

This implies

sup
θ∈�

∥∥P′
θ

∥∥
α

≤ sup
x

∫
αy
(
supθ∈� |SF�(y; x)|fθ (y; x)

)
dy

αx

≤ sup
x

∫
cα2yαx

(
supθ∈� fθ (y; x)

)
dy

αx

=
∫

cα2y
(

sup
θ∈�

fθ (y; x)

)
dy<∞,

by (iii). The rest of the results in the first part of the conclusion can be proved similarly. By
definition, for some finite constant c,

sup
θ∈�

|δθ (y)| ≤ cαy for all y.

Then,

sup
θ∈�

∥∥∥[̃Pθ ]Aεθ − [̃Pθ ]Aθ∥∥∥α ≤ 2 sup
θ∈�

∫
Aεθ\Aθ

αy|δθ (y)|fθ (y; x)dy

≤ 2 sup
θ∈�

∫
Aεθ\Aθ

cα2y
(

sup
θ∈�

fθ (y; x)

)
dy.

From the conditions (iii) and (iv),

lim
ε→0

sup
θ∈�

∫
Aεθ\Aθ

cα2y
(

sup
θ∈�

fθ (y; x)

)
dy = 0,

by the absolute continuity of Lebesgue integral [39]. The rest of the results in the second part
of the conclusion can be proved similarly. �

Recall the definition of the v-norm || · ||α in (23). We denote the set of differentiable
mappings with finite || · ||α-norm and finite derivative || · ||α-norm by

D := {ψ : ‖ψ‖α <∞ and ‖∂xψ(x)‖α <∞}.
The following theorem establishes our main differentiability result with respect to a single-step
transition.

Theorem 1. Under Assumption 1 and Assumption 2, it holds for all h ∈D that

d

dθ
Tθh = T′

θh,

with T′
θ as in (11), or, equivalently,

T′
θ = [P′

θ

]
Aθ

+ Dθ .

Proof. First, we have for any h in D that

d

dθ

∫
R

χ̄ε(gθ (y)) h(y) fθ (y; x)dy

=
∫
R

χ̄ε(gθ (y)) h(y) SF�(y; x) fθ (y; x)dy +
∫
R

χ̄ ′
ε(gθ (y)) ∂θgθ (y) h(y) fθ (y; x)dy,

(16)
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where the interchange of differentiation and integration in the second equality is justified by
the dominated convergence theorem, using that∫

R

sup
θ∈�

∣∣∣χ̄ε(gθ (y)) h(y) SF�(y; x)
∣∣∣fθ (y; x)dy ≤ ||χ̄ε ||∞‖h‖α sup

θ∈�
||SF�||α‖U‖α2 <∞

and ∫
R

sup
θ∈�

∣∣∣χ̄ ′
ε(gθ (y)) ∂θgθ (y) h(y) fθ (y; x)

∣∣∣dy ≤ ||χ̄ ′
ε ||∞‖h‖α sup

θ∈�
||∂θgθ ||α‖U‖α2 <∞,

which are justified by Lemma 1 and Assumption 1. By the chain rule, we solve for χ̄ ′
ε(gθ (y))

from
∂yχ̄ε(gθ (y)) = χ̄ ′

ε(gθ (y)) ∂ygθ (y),

which implies that for every y ∈R \Nθ ,

χ̄ ′
ε(gθ (y)) = (∂ygθ (y)

)−1
∂yχ̄ε(gθ (y)). (17)

The value of the function on Nθ , which has zero Lebesgue measure by Assumption 2, does not
affect the value of the integral. Inserting (17) into (16) yields∫

R

χ̄ ′
ε(gθ (y)) ∂θgθ (y) h(y) fθ (y; x)dy

=
∫
R

h(y) ∂yχ̄ε(gθ (y)) ∂θgθ (y)
(
∂ygθ (y)

)−1
fθ (y; x)dy

= −
∫
R

∂yχ̄ε(gθ (y)) h(y) δθ (y) fθ (y; x)dy. (18)

Letting
u = χ̄ε(gθ (y))

and
v = h(y) δθ (y)fθ (y; x)

and applying the formula for integration by parts, − ∫ u′v = −uv + ∫ uv′, to the right-hand
side of (18) yields

−
∫
R

∂yχ̄ε(gθ (y)) h(y) δθ (y) fθ (y; x)dy

= − h(y)χ̄ε(gθ (y)) δθ (y) fθ (y; x)|∞y=−∞ +
∫
R

χ̄ε(gθ (y)) ∂y(h(y) δθ (y) fθ (y; x)) dy.

By Assumption 1,∣∣∣h(y)χ̄ε(gθ (y)) δθ (y) fθ (y; x)|∞y=−∞
∣∣∣≤ ‖χ̄ε‖∞‖h‖α‖δθ‖α α2|y|fθ (y; x)

∣∣∣∞
y=−∞ = 0.

To summarize,

d

dθ

∫
R

χ̄ε(gθ (y)) h(y) fθ (y; x)dy

=
∫
R

χ̄ε(gθ (y)) h(y) SF�(y; x) fθ (y; x)dy

+
∫
R

χ̄ε(gθ (y))
(
h′(y) δθ (y) + h(y) νθ (y; x)

)
fθ (y; x)dy,
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where the integrability of h′ stems from the assumption that h′ ∈D. To justify the interchange
of derivative and ε-limit, we have

lim
ε→0

sup
θ∈�

∣∣∣∣∫
R

(χ̄ε(gθ (y)) − 1{gθ (y) ∈�}) γθ (y; x)fθ (y; x)dy

∣∣∣∣
≤2‖h‖α lim

ε→0
sup
θ∈�

∥∥∥[̂Pθ ]Aεθ − [̂Pθ ]Aθ∥∥∥α + 2‖h′‖α lim
ε→0

sup
θ∈�

∥∥∥[̃Pθ ]Aεθ − [̃Pθ ]Aθ∥∥∥α = 0,

where

γθ (y; x) := h′(y) δθ (y) + h(y)(SF�(y; x) + νθ (y; x)),

and

lim
ε→0

∣∣∣∣∫
R

(χ̄ε(gθ (y)) − 1{gθ (y) ∈�}) h(y) fθ (y; x)dy

∣∣∣∣≤ 2‖h‖α lim
ε→0

∥∥∥[Pθ ]Aεθ
− [Pθ ]Aθ

∥∥∥
α

= 0.

Summarizing the above analysis, we have

d

dθ

∫
R

1{gθ (y) ∈�} h(y) fθ (y; x)dy = lim
ε→0

d

dθ

∫
R

χ̄ε(gθ (y)) h(y) fθ (y; x)dy

= lim
ε→0

∫
R

χ̄ε(gθ (y)) γθ (y; x) fθ (y; x)dy

=
∫
R

1{gθ (y) ∈�}γθ (y; x) fθ (y; x)dy, (19)

which is equivalent to

d

dθ
Tθh = T′

θh.

This proves the theorem. �
Remark 2. The theory justifying the interchange of limit, derivative, and integral can be found
in [38, 39]. If h is a constant, the estimator in the theorem goes back to the generalized
likelihood ratio method in [32].

3. Differentiation of the potential kernel

In this section, we derive the measure-valued derivative of the taboo kernel in an n-step
transition, which is used to establish the product rule for the differentiation operation defined
by (11).

Theorem 2. Under Assumption 1 and Assumption 2, if ||Pθ ||α <∞, then it holds for all h ∈D
that

d

dθ
Tn
θh =

n−1∑
k=0

Tn−k−1
θ T′

θTk
θh, n ≥ 1.
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Proof. For k ≥ 1 we have

d

dθ

∫
R

χ̄ε(gθ (y))
(

[Pζ ]k
Aζh
)

(y) fθ (y; x)dy

∣∣∣∣
ζ=θ

=
∫
R

χ̄ε(gθ (y))
(

[Pζ ]k
Aζh
)

(y) SF�(y; x) fθ (y; x)dy

∣∣∣∣
ζ=θ︸ ︷︷ ︸

=: [a]

+
∫
R

χ̄ ′
ε(gθ (y)) ∂θgθ (y)

(
[Pζ ]k

Aζh
)

(y) fθ (y; x)dy

∣∣∣∣
ζ=θ︸ ︷︷ ︸

=: [b]

,

where the interchange of differentiation and integration is justified similarly as in Theorem 1
by noticing ∣∣∣([Pθ ]k

Aθh
)

(y)
∣∣∣≤ ‖h‖α‖Pθ‖k

αηα(y)<∞;

see (10). Then,

[b] = −
(

[Pθ ]k
Aθh
)

(y)χ̄ε(gθ (y)) δθ (y) fθ (y; x)
∣∣∣∞
y=−∞︸ ︷︷ ︸

=: [b1]

+
∫
R

χ̄ε(gθ (y)) ∂y

((
[Pθ ]k

Aθh
)

(y) δθ (y) fθ (y; x)
)

dy︸ ︷︷ ︸
=: [b2]

.

By Assumption 2,

[b1] ≤ ‖χ̄ε‖∞‖h‖α
∥∥Pθ‖k

α

∥∥δθ‖α α2|y|fθ (y; x)
∣∣∣∞
y=−∞ = 0.

As for the term b2,

[b2] =
∫
R

χ̄ε(gθ (y))

( ∫
z∈R

1{gθ (z) ∈�}
(

[Pζ ]k−1
Aζ

h
)

(z)∂yfζ (z; y)dzδθ (y)

+
(

[Pζ ]k
Aζh
)

(y)νθ (y; x)

)
fθ (y; x)dy

∣∣∣∣
ζ=θ

.

We now bound [a] + [b2], where we take [b2] as on the right-hand side above,

lim
ε→0

sup
ζ∈�

∣∣∣∣∫
R

(
χ̄ε(gζ (y)) − 1{gζ (y) ∈�}) γ̃ζ,θ (y; x)fζ (y; x)dy

∣∣∣∣
≤ 2‖h‖α‖Pθ‖k−1

α

∥∥P̄θ
∥∥
α

lim
ε→0

sup
θ∈�

∥∥∥[̂Pθ ]Aεθ
− [̂Pθ ]Aθ

∥∥∥
α

+ 2‖h′‖α‖Pθ‖k
α lim
ε→0

sup
θ∈�

∥∥∥[̃Pθ ]Aεθ − [̃Pθ ]Aθ ∥∥∥α = 0,

where

γ̃ζ,θ (y; x) :=
∫

z∈R
1{gζ (z) ∈�}

(
[Pθ ]k−1

Aθ
h
)

(z) SFζX(z; y) dzδζ (y)

+
(

[Pθ ]k
Aθh
)

(y)
(

SFζ�(y; x) + νζ (y; x)
)
,
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and

lim
ε→0

∣∣∣∣∫
R

(χ̄ε(gθ (y)) − 1{gθ (y) ∈�})
(

[Pζ ]k
Aζh
)

(y) fθ (y; x)dy

∣∣∣∣
ζ=θ

≤ 2‖h‖α‖Pθ‖k
α lim
ε→0

∥∥∥[Pθ ]Aεθ
− [Pθ ]Aθ

∥∥∥
α

= 0.

Following the line of argument put forward in the proof (see (19)), we arrive at

d

dθ

∫
R

1{gθ (y) ∈�}
(

[Pζ ]k
Aζh
)

(y) fθ (y; x)dy

∣∣∣∣
ζ=θ

= lim
ε→0

d

dθ

∫
R

χ̄ε(gθ (y))
(

[Pζ ]k
Aζh
)

(y) fθ (y; x)dy

∣∣∣∣
ζ=θ

= lim
ε→0

∫
R

χ̄ε(gθ (y))γ̃θ,θ (y; x) fθ (y; x)dy

=
∫
R

1{gθ (y) ∈�}γ̃θ,θ (y; x) fθ (y; x)dy.

The case of k = 0 has already been treated in Theorem 1.
By algebra,

1

�

(
[Pθ+�]n

Aθ+�h − [Pθ ]n
Aθ h
)

=
n−1∑
k=0

[Pθ+�]n−k−1
Aθ+�

1

�

(
[Pθ+�]Aθ+� − [Pθ ]Aθ

)
[Pθ ]k

Aθ h.

There exists a �0 > 0 small enough so that for every |�|<�0, it holds that θ +� ∈�. For
|�|<�0, there exists ζ ∈� such that

1

�

(
[Pθ+�]Aθ+� − [Pθ ]Aθ

)
[Pθ ]k

Aθ h =
([̃

Pζ
]

Aζ

[
P̄ζ
]

Aζ
+ [̂Pζ ]Aζ [Pθ ]Aθ

)
[Pθ ]k−1

Aθ
h

by the mean value theorem. Notice that for k ≥ 1

sup
ζ∈�

∣∣∣([̃Pζ ]Aζ [P̄ζ ]Aζ + [̂Pζ ]Aζ [Pθ ]Aθ

)
[Pθ ]k−1

Aθ
h(y)

∣∣∣
≤ ‖h‖α‖Pθ‖k−1

α

(
sup
θ∈�

∥∥P̃θ
∥∥
α

sup
θ∈�

∥∥P̄θ
∥∥
α

+ ‖Pθ
∥∥
α

sup
θ∈�

∥∥P̂θ‖α
)
αy <∞.

By the dominated convergence theorem,

lim
�→0

n−1∑
k=0

[Pθ+�]n−k−1
Aθ+�

1

�

(
[Pθ+�]Aθ+� − [Pθ ]Aθ

)
[Pθ ]k

Aθ h =
n−1∑
k=0

[Pθ ]n−k−1
Aθ

[Pθ ]A′
θ
[Pθ ]k

Aθ h,

which leads to the conclusion. �
In order for (Hθh)(x0) (the accumulated cost up to the time of hitting the set Aθ ) to exist, the

process Xn needs to exhibit some kind of drift towards Aθ . This is well known from the theory
of geometric ergodicity, where the drift towards a recurrent set or state is used to construct a
taboo kernel. We refer to [26] for details and to Example 4 for an illustration of this principle.
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In words, ||Tθ ||α < 1 means that the set Aθ carries enough mass of Pθ so that removing Aθ
from the state-space reduces the norm of Pθ to less than one.

Theorem 3. Under Assumption 1 and Assumption 2, if

sup
θ∈�

||Tθ ||α < 1,

then it holds for all h ∈D that

d

dθ

∞∑
n=0

Tn
θh =

∞∑
n=0

∞∑
k=0

Tn
θT′

θTk
θh,

or, equivalently, Hθ is D-differentiable with derivative

H′
θ = HθT′

θHθ .

Proof. By Assumption 2 we have

sup
θ∈�

||T′
θ ||α = : c<∞.

Letting

sup
θ∈�

||Tθ ||α = ρ,

it follows from (10) and the assumption that ρ < 1 that

∞∑
n=1

sup
θ∈�

∣∣∣∣∣
n−1∑
k=0

Tn−k−1
θ T′

θTk
θh(x)

∣∣∣∣∣<
∞∑

n=1

ρn−1cαx = cρ

1 − ρ
αx. (20)

The proof of the proposition above is a simple application of Theorem 2 and the dominated
convergence theorem. �

In the case Aθ = A, Theorem 3 recovers the known results for measure-valued differentiation
and the score function; see [22] and the discussion therein.

4. Estimation procedures

In this section we translate the gradient expression put forward in Theorem 3 into simulation
estimators. Let

g(x) =
( ∞∑

k=0

T′
θTk

θψ

)
(x), (21)

where x denotes the initial value of the individual transition operators T′
θTk

θ .
Suppose that we evaluate

(
T′
θTk

θψ
)
(Xi) at Xi �∈ Aθ . This kernel represents the event that we

start in Xi and evaluate the expected value of ψ along a path that does not enter the taboo
set, where the first transition of the path is governed by the derivative kernel T′

θ . Elaborating
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on (12), we can replace T′
θ by Tθ with appropriate scaling via the score functions and the

derivatives of δθ and ψ . This leads to the following estimator for
(
T′
θTk

θψ
)
(Xi) at Xi �∈ Aθ :(

T′
θTk

θψ
)

(Xi) =E
[
φψ (Xi; Xi+1, . . . , Xi+k+1)

∣∣ Xi
]
, k ≥ 1,

where

φψ (Xi; Xi+1, . . . , Xi+k+1) =
i+k+1∏

j=i

1{Xj /∈ Aθ }
⎛⎜⎝ψ(Xi+1+k)SF�(Xi+1; Xi)︸ ︷︷ ︸

T′
1

+ψ(Xi+1+k)SFX(Xi+2; Xi+1)δθ (Xi+1)︸ ︷︷ ︸
T′

2

+ ψ(Xi+1+k)
(
SFY (Xi+1; Xi)δθ (Xi+1) + ∂yδθ (Xi+1)

)︸ ︷︷ ︸
T′

3

⎞⎟⎟⎠ , k ≥ 1,

and, for k = 0, we can estimate T′
θT0

θψ(Xi) = T′
θψ(Xi) =E[φψ (Xi; Xi+1)|Xi], for

Xi �∈ Aθ , via

φψ (Xi; Xi+1) = 1{Xi, Xi+1 /∈ Aθ }
⎛⎜⎝ψ(Xi+1)SF�(Xi+1; Xi)︸ ︷︷ ︸

T′
1

+ψ ′(Xi+1)δθ (Xi+1)︸ ︷︷ ︸
T′

2

+ ψ(Xi+1)
(
SFY (Xi+1; Xi)δθ (Xi+1) + ∂yδθ (Xi+1)

)︸ ︷︷ ︸
T′

3

⎞⎟⎟⎠ .

Consider a cycle {X0, X1, . . . , Xτ (x)−1} of the Markov chain, with X0 = x �∈ Aθ , where we
have expanded the notation for the first entrance time into Aθ , denoted so far by τ , by explicitly
indicating the initial state. Starting the count from 0, the cycle length is τ (x). As the transitions
from X0 to X1 up to the transition from Xτ(x)−2 to Xτ (x)−1 do not enter the taboo set, they may be
considered as having been sampled via Tθ , whereas the transition from Xτ (x)−1 to Xτ (x) cannot
be considered as having been driven by Tθ , since with this transition the Markov chain enters
the taboo set. This shows that there are τ (x) − 1 taboo kernel transitions in a cycle of length
τ (x), and the indices of the states from which a taboo kernel transition is executed run from 0
to τ (x) − 2. Following the line of argument put forward in (5),

g(x) =
∞∑

k=0

(
T′
θTk

θψ
)

(x) =
∞∑

k=0

E

[
k+1∏
i=0

1{Xi /∈ Aθ }φψ (X0; X1, . . . , Xk+1)

∣∣∣∣∣ X0 = x

]

=E

⎡⎣ τ (x)−1∑
i=1

φψ (X0; X1, . . . , Xi)

∣∣∣∣∣∣ X0 = x

⎤⎦
for x �∈ Aθ , where we set the sum to zero in the case where the lower bound is larger than the
upper bound (which happens for realizations where τ (x) = 1).
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Treating the outer sum in the same way, we obtain from Theorem 3, with x0 �∈ Aθ ,

d

dθ

∞∑
n=0

(
Tn
θψ
)

(x0) =
∞∑

n=0

∞∑
k=0

(
Tn
θT′

θTk
θψ
)

(x0) (22)

=
∞∑

n=0

(
Tn
θg
)

(x0)

=
∞∑

n=0

E

[
n∏

i=0

1{Xi /∈ Aθ }g(Xn)

∣∣∣∣∣ X0 = x0

]

=E

⎡⎣ τ (x0)−2∑
i=0

τ (x0)−1∑
k=i+1

φψ (Xi; Xi+1, . . . , Xk)

∣∣∣∣∣∣ X0 = x0

⎤⎦ .

Simulation offers the opportunity to first sample the time horizon τ (x). Then, re-initiating
the random number stream, we can exactly repeat the stochastic experiment. Given τ (x),
we can sample σ independently from everything else uniformly distributed on {0, 1, . . . ,
τ (x) − 2}. With this definition we can apply the randomization to the outer τ (x0) sum in (22)
and obtain the following alternative version of the estimator:(

d

dθ

∞∑
n=0

Tn
θψ

)
(x0) =E

⎡⎣ (τ (x0) − 1)
τ (x0)−1∑
k=σ+1

φψ (Xσ ; Xσ+1, . . . , Xk)

∣∣∣∣∣∣ X0 = x0

⎤⎦ .

Notice that the above estimator contains several likelihood ratio terms, namely, SF�(y; x),
SFX(y; x) as a term of νθ , and SFY (y; x), which may lead to a large variance of the deriva-
tive estimator. Following the standard approach in measure-valued differentiation [20, 18, 23,
33, 34], we may apply the Hahn–Jordan decomposition,

∂θ fθ (y; x) = cθ (x)
(
f +
θ (y; x) − f −

θ (y; x)
)
,

where

f +
θ (y; x) := (∂θ fθ (y; x))+ /cθ (x), f −

θ (y; x) := (∂θ fθ (y; x))− /cθ (x),

cθ (x) :=
∫
R

(∂θ fθ (y; x))+ dy =
∫
R

(∂θ fθ (y; x))− dy,

by noticing that∫
R

(∂θ fθ (y; x))+ dy −
∫
R

(∂θ fθ (y; x))− dy = ∂θ

∫
R

fθ (y; x)dy = 0.

The Hahn–Jordan decomposition is often not easy to sample from; typically one can find
decompositions that are easier to sample from (see [20]).

We turn to the state derivative, i.e., the Y -score function SFY (y; x). We obtain that

∂yfθ (y; x) = ĉθ (x)
(
f̂ +(y; x) − f̂ −(y; x)

)
,

where

f̂ +
θ (y; x) := (

∂yfθ (y; x)
)+
/ĉθ (x), f̂ −

θ (y; x) := (
∂yfθ (y; x)

)−
/ĉθ (x),

ĉθ (x) :=
∫
R

(
∂yfθ (y; x)

)+
dy =

∫
R

(
∂yfθ (y; x)

)−
dy,
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by noticing ∫
R

(
∂yfθ (y; x)

)+
dy −

∫
R

(
∂yfθ (y; x)

)−
dy = fθ (y; x)|∞y=−∞ = 0.

The estimator also requires differentiation of the conditional expectation of the future
costs with respect to the initial value captured by SFX(y; x). For this we construct the
decomposition

∂xfθ (y; x) = c̄θ (x)
(
f̄ +
θ (y; x) − f̄ −

θ (y; x)
)
,

where

f̄ +
θ (y; x) := (∂xfθ (y; x))+ /c̄θ (x), f̄ −

θ (y; x) := (∂xfθ (y; x))− /c̄θ (x),

c̄θ (x) :=
∫
R

(∂xfθ (y; x))+ dy =
∫
R

(∂xfθ (y; x))− dy,

by noticing that∫
R

(∂xfθ (y; x))+ dy −
∫
R

(∂xfθ (y; x))− dy = ∂x

∫
R

fθ (y; x)dy = 0.

Elaborating on the above decompositions, the score functions in the estimator can be replaced
by appropriate splittings of the sample paths, where the positive and negative parts are given by
the Markov kernels corresponding to the above densities. We refer to the literature on measure-
valued differentiation for details.

Following the framework provided in [32], the results presented in this paper can be
extended to the multidimensional case, where S ⊂R

d, for d> 1. Specifically, the weight
supremum norm is extended to R

d by letting

ηα(x1, . . . , xd) = α|x1| · · · α|xd |, α > 1. (23)

5. Applications

Consider the following simple capital flow model for an unlimited liability company.
Suppose at the nth period a company receives a random profit of Wn. If the company has a
positive capital at the nth period, then (i) rXn is given to the shareholder as a dividend, and
(ii) the remaining capital is topped up by M> 0, and the excess of capital max(rXn − M, 0)
is extracted; otherwise, the company receives −rXn capital from the shareholders, for some
r ∈ (0, 1). The company has credit to borrow money up to θ ≥ 0, and if the company’s capital
is below −θ , then it is ruined and no longer has any debt obligations. Then, with X0 = x,

τ := τ (x) = inf{n ≥ 1 : Xn + θ ≤ 0},
and

Xn = (1 − r)Xn−1 + Wn,

for Xn ≤ M and M otherwise. The cash flow of the company is

τ−1∑
n=0

rXn,

where X0 = x0 gives the initial value. Let Wn, n ∈N, be a sequence of i.i.d. random variables
that follow a normal distribution with mean μ= 0.1 and variance σ 2 = 1, and set x0 = 0.3,
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r = 0.3, and θ = 0. Let Pθ denote the transition kernel of the Markov chain Xn. Then (Pθ )(dy, x)
has a transition density

f (y; x) = 1

σ
√

2π
exp

(
− (y −μ− (1 − r)x)2

2σ 2

)

on (−∞,M] and a point mass

(Pθ )(M, x) =
∫ ∞

M
f (y; x)dy.

We have �= (−∞, 0], g(x; θ ) = x + θ , Aθ = (−∞,−θ ], and Tθ = [Pθ ](−∞,−θ].
We are interested in estimating the sensitivity of the total cash flow until ruin,

h(θ, x0) = (Hθψ)(x) =
∞∑

n=0

(
Tn
θψ
)
(x) =E

[
τ−1∑
n=0

rXn

∣∣∣∣∣ X0 = x0

]
.

We have

‖T‖α = sup
x≤M

α−|x|
(∫ M

−θ
α|y|f (y; x)dy + αM

∫ ∞

M
f (y; x)dy

)
,

and letting α = 1 (which we may do as |Xn| ≤ M is bounded for |θ |<M and thus ψ(Xn) also
is) gives

‖T‖1 = sup
x≤M

∫ ∞

−θ
f (y; x)dy = P

(
σZ +μ+ (1 − r)x>−θ

)
,

for Z a standard normal random variable. It follows that

‖T‖1 = P
(
σZ +μ+ (1 − r)M>−θ)< 1

for any θ ≤ 0. Obviously, Assumptions 1 and 2 are satisfied, and by Theorem 3 we obtain

∂θh(θ, x0) = (HθT′
θHθψ

)
(x0).

For ease of analysis, we let M = ∞ in the following. This is justified as rXn >M is a rare
event for the numerical setting of the example, which can be easily justified numerically. Note
that δθ (x) = −1, and

SFX(y; x) = 1 − r

σ 2

(
y −μ− (1 − r)x

)
, SFY (y; x) = 1

σ 2

(
(1 − r)x +μ− y

)
.

After some algebra, we obtain for the unbiased estimator

−r(τ − 1) + r

σ 2

(
τ−1∑
i=1

Xi

)

×
{
τ−1∑
i=1

[
(1 + (1 − r)2)Xi − (1 − r)(Xi−1 + Xi+1) − rμ

]
+ Xτ − (1 − r)Xτ−1 −μ

}
.
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TABLE 1. Derivative estimates for the expected cash flow in the ruin problem (mean ± standard error).

this paper FD(0.1) FD(0.01)

r = 0.3, n = 106, mean ± std err: 1.24 ± 0.007 1.28 ± 0.04 1.20 ± 0.3
r = 0.9, n = 108, mean ± std err: 0.59 ± 0.009 0.53 ± 0.05 0.23 ± 0.5

FIGURE 1. Expected cash flow (left) and time to ruin (right) as a function of θ for r = 0.3.

We plot the total cash flow and the expected time to ruin in Figure 1. We compare the
performance of our estimator to that of a finite-difference estimator (FD) defined by

1

δ

⎛⎝τθ+δ−1∑
n=1

rXn −
τθ−1∑
n=1

rXn

⎞⎠ ;

see [30]. We denote the FD with perturbation size 0.1 by FD(0.1), and the FD with perturbation
size 0.01 by FD(0.01). The means and standard errors of the three derivative estimators are
reported in Table 1, where we show results for r = 0.3 and additionally for r = 0.9, denoting
by n the number of independent experiments used for the estimators.

In Table 1, we can see that the estimator in this paper leads to the lowest variance, while
FD suffers from the bias–variance dilemma. In addition, the computation time of our esti-
mator is about half that of FD, because the former only needs to simulate one sample path,
while the latter needs to simulate two sample paths. The key to applying the common random
numbers (CRN) technique is to synchronize the simulations of the two sample paths [28]. For
the random horizon problem, it is not clear how to efficiently synchronize simulation of the
sample paths under the perturbed parameter. Thus, it may not be easy to implement CRN to
reduce the variance of FD. In this example, there is no need to calculate the Hahn–Jordan
decomposition, but we note that one could split the random variables as follows: ĉ = −1/

√
2,

c̄ = (1 − r)/
√

2π , and

X̂+
n , X̄+

n ∼μ+ (1 − r)Xn−1 + Wei
(
2,

√
2σ
)
, X̂−

n , X̄−
n ∼μ+ (1 − r)Xn−1 − Wei

(
2,

√
2σ
)
,

where Wei(a, b) denotes a Weibull-distributed random variable with the density

a

b

( x

b

)a−1
e−(x/b)a

1{x ≥ 0}.
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6. Conclusion

In this paper, we have developed an approach for differentiating random horizon problems,
where the parameter of interest may affect the stopping criterion as well as the transition
dynamics of the underlying stochastic process. We discuss the multidimensional case and
various implementations of the obtained derivative expressions.
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