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Minimum non-chromatic-choosable
graphs with given chromatic number∗
Jialu Zhu and Xuding Zhu

Abstract. A graph𝐺 is called chromatic-choosable if 𝜒 (𝐺) = 𝑐ℎ(𝐺) . A natural problem is to deter-
mine the minimum number of vertices in a non-chromatic-choosable graph with given chromatic
number. It was conjectured by Ohba, and proved by Noel, Reed and Wu that 𝑘-chromatic graphs
𝐺 with |𝑉 (𝐺) | ≤ 2𝑘 + 1 are chromatic-choosable. This upper bound on |𝑉 (𝐺) | is tight. It is
known that if 𝑘 is even, then 𝐺 = 𝐾3★(𝑘/2+1) ,1★(𝑘/2−1) and 𝐺 = 𝐾4,2★(𝑘−1) are non-chromatic-
choosable 𝑘-chromatic graphs with |𝑉 (𝐺) | = 2𝑘 + 2. Some subgraphs of these two graphs are also
non-chromatic-choosable. The main result of this paper is that all other 𝑘-chromatic graphs𝐺 with
|𝑉 (𝐺) | = 2𝑘 + 2 are chromatic-choosable. In particular, if 𝜒 (𝐺) is odd and |𝑉 (𝐺) | ≤ 2𝜒 (𝐺) + 2,
then𝐺 is chromatic-choosable, which was conjectured by Noel.

1 Introduction

A proper colouring of a graph 𝐺 is a mapping 𝜙 : 𝑉 (𝐺) → N such that 𝜙(𝑢) ≠ 𝜙(𝑣)
for every edge 𝑢𝑣 of 𝐸 (𝐺). A 𝑘-colouring of𝐺 is a proper colouring of𝐺 using colours
from [𝑘] = {1, 2, . . . , 𝑘}. We say 𝐺 is 𝑘-colourable if there is a 𝑘-colouring of 𝐺 . The
chromatic number 𝜒(𝐺) of𝐺 is the minimum 𝑘 such that𝐺 is 𝑘-colourable.

List colouring is a natural generalization of classical graph colouring, introduced
independently by Erdős-Rubin-Taylor [4] and Vizing [24] in 1970’s. A list assignment of
𝐺 is a mapping 𝐿 which assigns to each vertex 𝑣 a set 𝐿 (𝑣) of permissible colours. An
𝐿-colouring of 𝐺 is a proper colouring 𝜙 of 𝐺 with 𝜙(𝑣) ∈ 𝐿 (𝑣) for each vertex 𝑣. We
say that 𝐺 is 𝐿-colourable if there exists an 𝐿-colouring of 𝐺 , and 𝐺 is 𝑘-choosable if 𝐺
is 𝐿-colourable for any list assignment 𝐿 of𝐺 with |𝐿 (𝑣) | ≥ 𝑘 for each vertex 𝑣. More
generally, for a function 𝑔 : 𝑉 (𝐺) → N, we say𝐺 is 𝑔-choosable if𝐺 is 𝐿-colourable for
every list assignment 𝐿 with |𝐿 (𝑣) | ≥ 𝑔(𝑣) for all 𝑣 ∈ 𝑉 (𝐺). The choice number ch(𝐺)
of𝐺 is the minimum 𝑘 for which𝐺 is 𝑘-choosable.

A 𝑘-colouring of a graph𝐺 is a special case of list colouring, where each vertex 𝑣 has
the same list 𝐿 (𝑣) = {1, 2, . . . , 𝑘}. So 𝑘-choosable implies 𝑘-colourable. At first glance,
onemight expect the reverse inequality to hold aswell. The smaller intersection between
lists would make it easier to assign distinct colours to adjacent vertices. However, the
reverse inequality is far from true. It was observed in [4] and [24] that for any integer 𝑘 ,
there are bipartite graphs that are not 𝑘-choosable. So the difference 𝑐ℎ(𝐺) − 𝜒(𝐺) can
be arbitrarily large.
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2 J.Zhu and X.Zhu

A graph 𝐺 is called chromatic-choosable if 𝜒(𝐺) = 𝑐ℎ(𝐺). Chromatic-choosable
graphs have been studied a lot in the literature, and are related to some other diffi-
cult problems. For example, the famous Dinitz problem (see e.g. [25]) asks the following
question:

“Given an 𝑛 × 𝑛 array of 𝑛-sets, is it always possible to choose one from each set,
keeping the chosen elements distinct in every row, and distinct in every column?”

This problem can be equivalently stated as whether the line graph of 𝐾𝑛,𝑛 is
chromatic-choosable? This problem was solved by Galvin [5], who proved a more gen-
eral result: the line graph of any bipartite multigraph is chromatic-choosable. On the
other hand, Galvin’s result is a special case of a more general conjecture - the list
colouring conjecture: line graphs of all multigraphs are chromatic-choosable. The list
colouring conjecture was posed independently by many different researchers: Albert-
son and Collins, Bollobás and Harris, Gupta, and Vizing (see [1, 7, 10]). It has attracted a
lot of attention and remains open in general.

Ohba conjecture is another well-known conjecture about chromatic-choosable
graphs. It was proved in [18] that for any graph 𝐺 , 𝑐ℎ(𝐺 ∨ 𝐾𝑛) = 𝜒(𝐺 ∨ 𝐾𝑛) for suf-
ficiently large 𝑛, where 𝐺 ∨ 𝐻 is the join of 𝐺 and 𝐻, i.e., the graph obtained from the
disjoint union of𝐺 and𝐻 by adding edges connecting every vertex of𝐺 to every vertex
of𝐻. Thismeans that graphs𝐺 with |𝑉 (𝐺) | “close” to 𝜒(𝐺) are chromatic-choosable. A
natural problem is how close should be |𝑉 (𝐺) | and 𝜒(𝐺) to ensure that𝐺 be chromatic-
choosable. Equivalently, what is the minimum number of vertices in a non-𝑘-choosable
𝑘-chromatic graph?

We denote by𝐾𝑘1★𝑛1 ,𝑘2★𝑛2 ,...,𝑘𝑞★𝑛𝑞 the complete multi-partite graphwith 𝑛𝑖 parts of
size 𝑘𝑖 , for 𝑖 = 1, 2, . . . , 𝑞. If 𝑛 𝑗 = 1, then the number 𝑛 𝑗 is omitted from the notation.
It was proved in [3] that if 𝑘 is an even integer, then 𝐾4,2★(𝑘−1) and 𝐾3★(𝑘/2+1) ,1★(𝑘/2−1)
are not 𝑘-choosable. These two graphs are 𝑘-chromatic graphs with 2𝑘 + 2 vertices.
Ohba [18] conjectured that for any positive integer 𝑘 , 𝑘-chromatic graphs with at most
2𝑘 + 1 vertices are 𝑘-choosable. This conjecture has attracted considerable attention,
and many partial results were proved before it was finally confirmed by Noel, Reed and
Wu [17].

One approach has been to prove variants of Ohba’s conjecture in which |𝑉 (𝐺) | ≤
2𝑘 + 1 is replaced by |𝑉 (𝐺) | ≤ Φ(𝜒(𝐺)) for some function Φ with Φ(𝑘) < 2𝑘 + 1.
Ohba [18] proved such a variant with Φ(𝑘) = 𝑘 +

√
𝑘 , and Reed and Sudakov [21]

improved the result to Φ(𝑘) = 5
3 𝑘 −

4
3 . By using a sophisticated probabilistic method,

Reed and Sudakov [20] proved thatOhba’s conjecture is asymptotically true: if |𝑉 (𝐺) | ≤
(2 − 𝑜(1))𝜒(𝐺), then𝐺 is chromatic-choosable.

Another approach has been to show the conjecture holds for special families of
graphs. He, Li, Shen and Zheng [22] proved Ohba’s conjecture for graphs 𝐺 with inde-
pendence number 𝛼(𝐺) ≤ 3, by extending a result of Ohba [19] who proved that if
|𝑉 (𝐺) | ≤ 2𝜒(𝐺) and 𝛼(𝐺) ≤ 3, then 𝐺 is chromatic-choosable. Kostochka, Stieb-
itz and Woodall [13] improved this result and showed that Ohba’s Conjecture holds for
graphs 𝐺 with 𝛼(𝐺) ≤ 5. Also Ohba’s conjecture were verified for some particular
complete multipartite graphs in [9, 22, 23].

In 2015, Ohba’s conjecture was finally confirmed by Noel, Reed and Wu [17]:
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Minimum Non-chromatic-choosable Graphs with Given Chromatic Number 3

Theorem 1.1 (Noel-Reed-Wu Theorem) Every 𝑘-colourable graph with at most 2𝑘 + 1
vertices is 𝑘-choosable.

Nevertheless, this is not the end of the story. More problems related to Ohba’s con-
jecture are posed and studied. One problem is what would be the choice number of
𝑘-chromatic graphs 𝐺 with |𝑉 (𝐺) | slightly bigger than 2𝑘 + 1. This question was
addressed in [16]. Another related problem is the online version of Ohba’s conjecture,
which was posed in [8], and has been studied in a few papers [2, 12, 14]. Some partial
cases are verified and the conjecture remains open in general.

This paper explores the tightness of Ohba’s conjecture. Although Ohba’s conjecture
is tight,𝐾4,2★(𝑘−1) and𝐾3★(𝑘/2+1) ,1★(𝑘/2−1) for even 𝑘 are the only known 𝑘-chormatic
graphs with 2𝑘 + 2 vertices that are not 𝑘-choosable. In particular, Ohba’s conjecture
was not known to be tight for odd integer 𝑘 .

Noel [15] conjectured if 𝑘 is odd, then all 𝑘-chromatic graphs with 2𝑘 + 2 vertices
are 𝑘-choosable.

Observe that for a 𝑘-chromatic graph𝐺 , by adding edges between vertices of distinct
colour classes, the resulting graph has the same chromatic number, and whose choice
number is not decreased. Therefore in the study of minimum non-chromatic choosable
graphs, it suffices to consider complete multipartite graphs.

The main result of this paper is that 𝐾4,2★(𝑘−1) and 𝐾3★(𝑘/2+1) ,1★(𝑘/2−1) for even 𝑘
are the only non-𝑘-choosable complete 𝑘-partite graphs with 2𝑘 + 2 vertices.

Theorem 1.2 Assume 𝐺 = (𝑉, 𝐸) is a complete 𝑘-partite graph with |𝑉 | ≤ 2𝑘 + 2, and
𝐺 ≠ 𝐾4,2★(𝑘−1) , 𝐾3★(𝑘/2+1) ,1★(𝑘/2−1) when 𝑘 is even, and 𝐿 is a 𝑘-list assignment of 𝐺 .
Then 𝐺 is 𝐿-colourable.

As a consequence, Noel’s conjecture is confirmed:

Corollary 1.3 If 𝑘 is odd, then every 𝑘-chromatic graph with at most 2𝑘 + 2 vertices is
chromatic-choosable.

For a positive integer 𝑘 , let

𝛽(𝑘) = min{|𝑉 (𝐺) | : 𝜒(𝐺) = 𝑘 < 𝑐ℎ(𝐺)}.

For an odd integer 𝑘 , it can be checked that 𝐾5,2★(𝑘−1) is not 𝑘-choosable. Thus we
have the following corollary.

Corollary 1.4 For the function 𝛽 defined above,

𝛽(𝑘) =
{
2𝑘 + 2, if 𝑘 is even,
2𝑘 + 3, if 𝑘 is odd.

Here is a brief outline of the proof of Theorem 1.2.
Assume 𝐺 is a complete 𝑘-partite graph with 2𝑘 + 2 vertices, 𝐺 ≠

𝐾4,2★(𝑘−1) , 𝐾3★(𝑘+1)/2,1★(𝑘−1)/2 when 𝑘 is even, and 𝐿 is a 𝑘-list assignment of
𝐺 . Let 𝐶𝐿 =

⋃
𝑣∈𝑉 𝐿 (𝑣). The first step is to construct a family S of independent sets
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that form a partition of 𝑉 (𝐺). Let 𝐺/S be the graph obtained from 𝐺 by identifying
each independent set 𝑆 ∈ S into a single vertex 𝑣𝑆 . Let 𝐿S be the list assignment of
𝐺/S defined as 𝐿S (𝑣𝑆) =

⋂
𝑢∈𝑆 𝐿 (𝑢). Build a bipartite graph 𝐵S with partite sets

𝑉 (𝐺/S) and 𝐶𝐿 , with {𝑣𝑆 , 𝑐} be an edge if 𝑐 ∈ 𝐿S (𝑣𝑆). If 𝐵S has a matching 𝑀 that
covers 𝑉 (𝐺/S), then 𝑀 defines an 𝐿-colouring of 𝐺 , with each 𝑆 ∈ S be coloured
with the colour matched to 𝑣𝑆 in 𝑀 .

Assume that there is no such amatching𝑀 , and hence byHall’s Theorem, there exists
a subset 𝑋S of𝑉 (𝐺/S) such that |𝑌S | < |𝑋S |, where𝑌S = 𝑁𝐵S (𝑋S). By analysing the
lists 𝐿 (𝑣) and independent sets 𝑆 inS, the inequality |𝑌S | < |𝑋S |may lead to a series of
inequalities and eventually lead to a contradiction (which means that no such 𝑋S exists
and hence the desired matching 𝑀 exists).

Assume no contradiction is derived, and hence 𝑋S and 𝑌S do exist. We choose 𝑋S
so that |𝑋S | − |𝑌S | is maximum. By Hall’s Theorem, this implies that there is a matching
𝑀 ′ in 𝐵S − (𝑋S ∪ 𝑌S) that covers𝑉 (𝐺/S) − 𝑋S .

Definition 1.1 A partial 𝐿-colouring of 𝐺 is an 𝐿-colouring of an induced subgraph
𝐺 [𝑋] of𝐺 . Given an 𝐿-colouring 𝜙 of𝐺 [𝑋] , 𝐿𝜙 is the list assignment of𝐺−𝑋 defined
as 𝐿𝜙 (𝑣) = 𝐿 (𝑣) − 𝜙(𝑁𝐺 (𝑣) ∩ 𝑋) for 𝑣 ∈ 𝑉 (𝐺 − 𝑋). An 𝐿-colouring 𝜙 of 𝐺 [𝑋] is a
good partial 𝐿-colouring of𝐺 if the pair (𝐺 − 𝑋, 𝐿𝜙) satisfies the condition of Theorem
1.2.

The matching𝑀 ′ constructed above defines a partial 𝐿-colouring 𝜓 of𝐺 that colours
vertices in

⋃
𝑆∈𝑉 (𝐺/S)−𝑋S 𝑆. One nice property of this partial colouring 𝜓 is that if

{𝑣} ∈ 𝑋S is a singleton part of S, then 𝐿𝜓 (𝑣) = 𝐿 (𝑣) (as 𝐿 (𝑣) ⊆ 𝑌S ). In other
words some neighbours of 𝑣 may have been coloured, and yet 𝑣 still has the same set
of permissible colours.

By using this property, we want to extend 𝜓 to a good partial 𝐿-colouring 𝜙 of 𝐺 ,
that colours a subset 𝑋 of𝐺 . If this can be done, then𝐺 − 𝑋 has an 𝐿𝜙-colouring 𝜃, and
the union 𝜙 ∪ 𝜃 would be an 𝐿-colouring of𝐺 .

For the plan above to work, the choice of the partition S of𝑉 (𝐺) in the first step is
crucial. Indeed, Theorem 1.2 is equivalent to saying that there is a choice ofS such that
𝐵S has a matching 𝑀 that covers𝑉 (𝐺/S). We usually start with a proper colouring 𝑓
of𝐺 , which is not necessarily an 𝐿-colouring, but “close” to an 𝐿-colouring, and letS be
the colour classes of 𝑓 . In particular, the colouring 𝑓 uses colours from𝐶𝐿 , and if 𝑓 (𝑣) =
𝑐 ∉ 𝐿 (𝑣), then 𝑓 −1 (𝑐) = {𝑣} and 𝑐 is contained in many lists. The concept of “near
acceptable” 𝐿-colouring is defined to capture the required properties needed for the
plan above to work. Near acceptable 𝐿-colouring was first used in [17]. The definitions
of near acceptable 𝐿-colourings for the proofs ofNoel-Reed-WuTheoremandTheorem
1.2 are slightly different. The slight differencemakes it more difficult to construct a near
acceptable 𝐿-colouring of𝐺 for the proof ofTheorem1.2,while the proof ofNoel-Reed-
Wu Theorem is already complicated. For the proof of Theorem 1.2, before constructing
a near acceptable 𝐿-colouring of 𝐺 , a pseudo-𝐿-colouring of 𝐺 is constructed as an
intermediate step. In many cases, we need to repeatedly modify a pseudo 𝐿-colouring
until we obtain a near acceptable 𝐿-colouring.

In Section 2, we prove a sufficient condition for a complete multipartite graph 𝐺
with all parts of size at most 3 to be 𝑔-choosable for a given function 𝑔 : 𝑉 (𝐺) → N.
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This will be used in later proofs. In Section 3, we fix some notation and present some
basic properties of a minimum counterexample. In Section 4, we prove Theorem 1.2 for
complete 𝑘-partite graphs with most parts of size at most 3. These graphs are special
as there is little difference between these graphs and the critical graphs 𝐾4,2★(𝑘−1) and
𝐾3★(𝑘/2+1) ,1(𝑘/2−1) (for even 𝑘 ). In Section 5, we introduce the concept of pseudo-𝐿-
colouring of𝐺 and prove some properties of such colourings. In Section 6, we define the
concept of near-acceptable 𝐿-colouring and show that the existence of a near-acceptable
𝐿-colouring of 𝐺 implies the existence of a proper 𝐿-colouring of 𝐺 . Some sufficient
conditions for the existence of near-acceptable 𝐿-colourings of 𝐺 are presented in
Sections 7 and 8. A final contradiction is derived in Section 9.

2 Graphs with all parts of sizes at most 3

This section proves the following lemma, which gives a sufficient condition for 𝑔 :
𝑉 (𝐺) → N, so that 𝐺 is 𝑔-choosable when all parts of 𝐺 have size at most 3. This
lemma is analog to Lemma 5 in [14], where a sufficient condition for𝐺 to be on-line 𝑔-
choosablewas given. The sufficient condition below is almost the same as that in Lemma
5 of [14], except that for two vertices 𝑢, 𝑣 in a 3-part of𝐺 , the upper bounds for the sum
𝑔(𝑢) + 𝑔(𝑣) in the two lemmas are different, and which is needed in later applications.

Lemma 2.1 Let 𝐺 be a complete multipartite graph with parts of size at most 3. Let A, B,
C,D be a partition of the parts of𝐺 into classes such thatA andD contain only parts of size
1, B contains all parts of size 2 and C contains all parts of size 3. Let 𝑘1, 𝑘2, 𝑘3, 𝑑 denote the
cardinalities of classes A, B, C, D respectively. Suppose that classes A and D are ordered,
i.e.A = (𝐴1, . . . , 𝐴𝑘1 ) andD = (𝐷1, . . . , 𝐷𝑑). If 𝑔 : 𝑉 (𝐺) → N is a function for which
the following hold:

𝑔(𝑣) ≥ 𝑘2 + 𝑘3 + 𝑖, for all 1 ≤ 𝑖 ≤ 𝑘1 and 𝑣 ∈ 𝐴𝑖 (a-1)
𝑔(𝑣) ≥ 𝑘2 + 𝑘3, for all 𝑣 ∈ 𝐵 ∈ B (b-1)

𝑔(𝑢) + 𝑔(𝑣) ≥ 3𝑘3 + 2𝑘2 + 𝑘1 + 𝑑, for all 𝑢, 𝑣 ∈ 𝐵 ∈ B (b-2)
𝑔(𝑣) ≥ 𝑘2 + 𝑘3, for all 𝑣 ∈ 𝐶 ∈ C (c-1)

𝑔(𝑢) + 𝑔(𝑣) ≥ 2𝑘3 + 2𝑘2 + 𝑘1, for all 𝑢, 𝑣 ∈ 𝐶 ∈ C (c-2)∑︁
𝑣∈𝐶

𝑔(𝑣) ≥ 4𝑘3 + 3𝑘2 + 2𝑘1 + 𝑑 − 1, for all 𝐶 ∈ C (c-3)

𝑔(𝑣) ≥ 2𝑘3 + 𝑘2 + 𝑘1 + 𝑖, for all 1 ≤ 𝑖 ≤ 𝑑 and 𝑣 ∈ 𝐷𝑖 (d-1)

then 𝐺 is 𝑔-choosable.

Proof Assume the parts of 𝐺 are partitioned into A, B, C, D and 𝑔 is a function
satisfying the inequalities (a-1)-(d-1), and 𝐿 is a list assignment with |𝐿 (𝑣) | = 𝑔(𝑣). We
shall colour an independent set 𝑆 of𝐺 with a colour 𝑐 ∈ ⋂

𝑣∈𝑆 𝐿 (𝑣). Let𝐺′ = 𝐺−𝑆 and
𝐿′ be the list assignment of𝐺′ defined as 𝐿′ (𝑥) = 𝐿 (𝑥)−{𝑐} for 𝑥 ∈ 𝑉 (𝐺′) and 𝑔′ (𝑣) =
|𝐿′ (𝑣) |. We shall verify that the pair (𝐺′, 𝑓 ′) satisfies the condition of Lemma 2.1, and
hence 𝐺′ is 𝐿′-colourable by induction hypothesis (if |𝑉 (𝐺) | = 1, then the result is
trivial). Together with the colouring of 𝑆 with colour 𝑐, we obtain an 𝐿-colouring of𝐺 .
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In the following, we describe the choice of the independent set 𝑆. The colour 𝑐 is
always an arbitrary colour in

⋂
𝑣∈𝑆 𝐿 (𝑣). We describe briefly how to verify the fact that

(𝐺′, 𝑔′) satisfies the condition of Lemma 2.1 (the proof of Lemma 5 of [14] is similar,
and contains more detailed explanations). The partition A′, B′, C′, D′ of the parts of
𝐺′ and the ordering of parts in A′ and D′ are inherited from the partition and the
ordering of the parts of 𝐺 , except that one part may have some vertices coloured and
remaining vertices form a part in another class. When a part from B or C has some
vertices coloured and the remaining vertex form a part in A′ or D′, we also need to
put it in a correct order. Denote by 𝑘 ′1, 𝑘

′
2, 𝑘

′
3, 𝑑

′ the cardinalities of A′, B′, C′, D′,
respectively. To verify the inequalities, it suffices to show that with 𝑔 replaced by 𝑔′, 𝑘𝑖
replaced by 𝑘 ′

𝑖
and 𝑑 replaced by 𝑑′, the amount reduced on the left hand side is nomore

than the amount reduced on the right hand side.
The choice of 𝑆 is determined in 8 cases. For 2 ≤ 𝑖 ≤ 8, Case 𝑖 is considered only if

all cases 𝑗 with 𝑗 ≤ 𝑖 − 1 do not apply.

(1) If there exists𝐶 ∈ B ∪ C for which
⋂
𝑣∈𝐶 𝐿 (𝑣) ≠ ∅, then 𝑆 = 𝐶 .

Verification: For (a-1),(b-1),(c-1), (d-1), the left hand side is reduced by at most 1 (i.e.,
𝑔′ (𝑣) ≥ 𝑔(𝑣) − 1), and the right hand side is reduced by at least 1. (For example, consider
(a-1): 𝑘 ′2 + 𝑘 ′3 + 𝑖 = 𝑘2 + 𝑘3 + 𝑖− 1). For (b-2), (c-2), the left hand side is reduced by at most
2 (i.e., 𝑔′ (𝑢) + 𝑔′ (𝑣) ≥ 𝑔(𝑢) + 𝑔(𝑣) − 2), and the right hand side is reduced by at least 2.
For (c-3), the left hand side is reduced by at most 3 (i.e.,

∑
𝑣∈𝐶 𝑔

′ (𝑣) ≥ ∑
𝑣∈𝐶 𝑔(𝑣) − 3),

and the right hand side is reduced by at least 3.
(2) If there exist𝐶 = {𝑢, 𝑣, 𝑤} ∈ Cwith 𝑔(𝑢)+𝑔(𝑣) = 2𝑘3+2𝑘2+𝑘1, and 𝐿 (𝑢)∩𝐿 (𝑣) ≠

∅, then 𝑆 = {𝑢, 𝑣}.
Verification: The part {𝑤} of 𝐺′ is the last member of D′. Thus 𝑘 ′3 = 𝑘3 − 1 and 𝑑′ =
𝑑 + 1. Note that 𝑔′ (𝑤) = 𝑔(𝑤) ≥ 4𝑘3 + 3𝑘2 + 2𝑘1 + 𝑑 − 1 − (2𝑘3 + 2𝑘2 + 𝑘1) =

2𝑘3+ 𝑘2+ 𝑘1+𝑑−1 = 2𝑘 ′3+ 𝑘 ′2+ 𝑘 ′1+𝑑′. The other inequalities are verified as in Case 1.
(3) If there exists𝐶 = {𝑣, 𝑢, 𝑤} ∈ C, 𝑔(𝑣) = 𝑘2 + 𝑘3, 𝐿 (𝑣) ∩ 𝐿 (𝑢) ≠ ∅, then 𝑆 = {𝑢, 𝑣}.

Verification: The part {𝑤} of𝐺′ is the last member ofA′. Thus 𝑘 ′3 = 𝑘3−1 and 𝑘 ′1 = 𝑘1+
1. Note that 𝑔′ (𝑤) = 𝑔(𝑤) ≥ 2𝑘3+2𝑘2+𝑘1−(𝑘3+𝑘2) = 𝑘3+𝑘2+𝑘1 = 𝑘 ′3+𝑘 ′2+𝑘 ′1. For
𝑢, 𝑣 ∈ 𝐶 ∈ C, either 𝑔(𝑢)+𝑔(𝑣) ≥ 2𝑘3+2𝑘2+𝑘1+1 or 𝑔′ (𝑢)+𝑔′ (𝑣) ≥ 𝑔(𝑢)+𝑔(𝑣)−1
(as Case 2 does not apply). Hence (c-2) holds for (𝐺′, 𝑔′). As Case 1 does not apply, the left
hand side of (c-3) reduces by at most 2, and the right hand side is reduced by 2. Hence (c-3)
holds for (𝐺′, 𝑔′) as Case 1 does not apply. The other inequalities are verified as in Case 1.

(4) If there exists𝐶 = {𝑣, 𝑢, 𝑤} ∈ C, 𝑔(𝑣) = 𝑘2 + 𝑘3, 𝐿 (𝑣) ∩ (𝐿 (𝑢) ∪ 𝐿 (𝑤)) = ∅, then
𝑆 = {𝑣}.
Verification: In the remaining graph 𝐺′ = 𝐺 − 𝑣, the two vertices 𝑢, 𝑤 are identified into
a single vertex 𝑢∗ with 𝐿′ (𝑢∗) = 𝐿 (𝑢) ∩ 𝐿 (𝑤). The set {𝑢∗} is the last member ofA′. So
𝑘 ′3 = 𝑘3 − 1, 𝑘 ′1 = 𝑘1 + 1. Note that

𝑔(𝑢) + 𝑔(𝑤) ≥ (4𝑘3 + 3𝑘2 + 2𝑘1 + 𝑑 − 1) − (𝑘3 + 𝑘2) = 3𝑘3 + 2𝑘2 + 2𝑘1 + 𝑑 − 1.

On the other hand the total number of colours is at most |𝑉 | − 1 = 3𝑘3 + 2𝑘2 + 𝑘1 + 𝑑 − 1.
As 𝐿 (𝑣) is disjoint with 𝐿 (𝑢) ∪ 𝐿 (𝑤), we have |𝐿 (𝑢) ∪ 𝐿 (𝑤) | ≤ 2𝑘3 + 𝑘2 + 𝑘1 + 𝑑 − 1.
Hence

|𝐿′ (𝑢∗) | = |𝐿 (𝑢) ∩ 𝐿 (𝑤) | ≥ 𝑘3 + 𝑘2 + 𝑘1 = 𝑘 ′3 + 𝑘 ′2 + 𝑘 ′1.
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Note that for 𝐶 ∈ C, ∑𝑣∈𝐶 𝑔
′ (𝑣) ≥ ∑

𝑣∈𝐶 𝑔(𝑣) − 2, as Case 1 does not apply. Hence
(c-3) holds for (𝐺′, 𝑔′). The other inequalities are verified as in Case 3.

(5) If there exists 𝐵 = {𝑢, 𝑣} ∈ B, 𝑔(𝑣) = 𝑘2 + 𝑘3, then 𝑆 = {𝑣}.
Verification: The part {𝑢} of𝐺′ is the last member ofD′. Thus 𝑘 ′2 = 𝑘2−1 and 𝑑′ = 𝑑+1.
Note that 𝑔′ (𝑢) = 𝑔(𝑢) ≥ 3𝑘3 + 2𝑘2 + 𝑘1 + 𝑑 − (𝑘3 + 𝑘2) = 2𝑘3 + 𝑘2 + 𝑘1 + 𝑑 =

2𝑘 ′3 + 𝑘 ′2 + 𝑘 ′1 + 𝑑′. For 𝐵′ = {𝑥, 𝑦} ∈ B, since Case 1 does not apply, 𝑔′ (𝑥) + 𝑔′ (𝑦) ≥
𝑔(𝑥)+𝑔(𝑦)−1. So (b-2) holds for (𝐺′, 𝑔′). The other inequalities are verified as in Case 4.

(6) If 𝑘1 ≠ 0 and 𝐴1 = {𝑣}, then 𝑆 = {𝑣}.
Verification: In this case, 𝑘 ′1 = 𝑘1−1. As Cases 2,3,4 do not apply, (b-1), (c-1) and (c-2) were
not tight for 𝑔, and hence they hold for (𝐺′, 𝑔′). Also for (a-1), the index of each member
reduces by 1, and hence the right hand side reduces by 1, so it holds for (𝐺′, 𝑔′). The other
inequalities are verified as in Case 5.

(7) Assume 𝑘3 ≠ 0 and𝐶 = {𝑢, 𝑣, 𝑤} ∈ C. As |𝐶𝐿 | ≤ |𝑉 | − 1 = 3𝑘3 + 2𝑘2 + 𝑘1 + 𝑑 − 1,
So 𝑔(𝑢) +𝑔(𝑣) +𝑔(𝑤) ≥ 4𝑘3+3𝑘2+2𝑘1+𝑑−1 > |𝐶𝐿 | and there is a colour 𝑐which
appears in two of the three colour sets 𝐿 (𝑢), 𝐿 (𝑣), 𝐿 (𝑤), say 𝑐 ∈ 𝐿 (𝑢) ∩ 𝐿 (𝑣). Let
𝑆 = {𝑢, 𝑣}.
Verification: Let {𝑤} be the only member of A′. Then 𝑘 ′3 = 𝑘3 − 1 and 𝑘 ′1 = 𝑘1 + 1,
𝑔′ (𝑤) = 𝑔(𝑤) ≥ 𝑘2 + 𝑘3 = 𝑘 ′2 + 𝑘 ′3 + 1 = 𝑘 ′2 + 𝑘 ′3 + 𝑘 ′1. The other inequalities are
verified as in Case 6.

(8) If 𝑑 > 0 and 𝐷1 = {𝑣}, then 𝑆 = {𝑣}.
Verification: In this case, 𝑘3 = 𝑘1 = 0 and 𝑑′ = 𝑑 − 1. (b-1) is not tight for 𝑔 (as Case
5 does not apply), and hence holds for (𝐺′, 𝑔′). (b-2) holds for (𝐺′, 𝑔′) as the left-hand
size reduces by at most 1, and the right hand side reduces by 1. For other member ofD′, its
index is recued by 1, and hence (d-1) holds for (𝐺′, 𝑔′). Note that 𝑘1, 𝑘3 = 0, so the other
inequalities are vacant.

Assume all the cases above do not apply. Then𝐺 = 𝐾2★𝑘2 , i.e.,𝐺 consists of 𝑘2 parts
of size 2, and 𝑔(𝑣) ≥ 𝑘2 for each vertex 𝑣. It is well-known [4] that in this case, 𝐺 is
𝑔-choosable. ■

3 Some notation and basic properties for a minimum
counterexample

By a counterexample of Theorem 1.2, we mean a pair (𝐺, 𝐿) such that 𝐺 is a complete
multipartite graph and 𝐿 is a list assignment of𝐺 that satisfy the condition of Theorem
1.2, and𝐺 is not 𝐿-colourable. We say (𝐺, 𝐿) is a minimal counterexample to Theorem
1.2 if (𝐺, 𝐿) is a counterexample to Theorem 1.2 with

(1) |𝑉 (𝐺) | minimum,
(2) subject to (1), with |𝐶𝐿 | minimum (recall that𝐶𝐿 =

⋃
𝑣∈𝑉 𝐿 (𝑣)),

It is well-known [11] that |𝐶𝐿 | < |𝑉 (𝐺) |. Let

𝜆 = |𝑉 | − |𝐶𝐿 | > 0. (3.1)

In the remainder of this paper, we assume that (𝐺, 𝐿) is a minimum counterexample
to Theorem 1.2. Assume 𝐺 is a complete 𝑘-partite graph. By Noel-Reed-Wu Theorem,
we know that 𝑘-chromatic graphs with at most 2𝑘 + 1 vertices are 𝑘-choosable and
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hence𝐺 has exactly 2𝑘 + 2 vertices, and

|𝐶𝐿 | ≤ 2𝑘 + 1. (3.2)

A part of𝐺 of size 𝑖 (respectively, at least 𝑖 or at most 𝑖) is called a 𝑖-part (respectively,
𝑖+-part, or 𝑖−-part). Let

𝑇 = {𝑣 : {𝑣} is a singleton part of𝐺}.

Let 𝑝𝑖 , 𝑝+𝑖 and 𝑝
−
𝑖
be the number of 𝑖-parts, 𝑖+-parts and 𝑖−-parts, respectively.

For a subset 𝑋 of𝑉 (𝐺), let

𝐿 (𝑋) =
⋃
𝑣∈𝑋

𝐿 (𝑣).

For three vertices 𝑥, 𝑦, 𝑧 of𝐺 , let

𝐿 (𝑥 ∨ 𝑦) = 𝐿 (𝑥) ∪ 𝐿 (𝑦), 𝐿(𝑥 ∧ 𝑦) = 𝐿 (𝑥) ∩ 𝐿 (𝑦),

𝐿 ((𝑥 ∧ 𝑦) ∨ 𝑧) = (𝐿 (𝑥) ∩ 𝐿 (𝑦)) ∪ 𝐿 (𝑧).
For 𝑐 ∈ 𝐶𝐿 and𝐶′ ⊆ 𝐶𝐿 , let

𝐿−1 (𝑐) = {𝑣 : 𝑐 ∈ 𝐿 (𝑣)}, 𝐿−1 (𝐶′) =
⋃
𝑐∈𝐶′

𝐿−1 (𝑐).

For a part 𝑃 of𝐺 and integer 𝑖, let

𝐶𝑃,𝑖 = {𝑐 ∈ 𝐶 : |𝐿−1 (𝑐) ∩ 𝑃 | = 𝑖},
Λ𝑃,𝑖 = max{|

⋂
𝑣∈𝑆

𝐿 (𝑣) | : 𝑆 ⊆ 𝑃, |𝑆 | = 𝑖}.

.
Assume S is a partition of 𝑉 (𝐺) into a family of independent sets. Each 𝑆 ∈ S

is called an S part. Recall that 𝐺/S is the graph obtained from 𝐺 by identifying each
part 𝑆 ∈ S into a single vertex 𝑣𝑆 , and 𝐿S is the list assignment of 𝐺/S defined as
𝐿S (𝑣𝑆) =

⋂
𝑣∈𝑆 𝐿 (𝑣). If 𝑆 = {𝑣} ∈ S consists of a single vertex of 𝐺 , then we denote

𝑣𝑆 by 𝑣. In this case, 𝐿S (𝑣) = 𝐿 (𝑣). For the partitionsS constructed in this paper, most
parts of S are singletons. To define S, it suffices to list its non-singleton parts.

Recall that 𝐵S is the bipartite graph with partite sets 𝑉 (𝐺/S) and 𝐶𝐿 , in which
{𝑣𝑆 , 𝑐} is an edge if and only if 𝑐 ∈ 𝐿S (𝑣𝑆). A matching 𝑀 in 𝐵S covering 𝑉 (𝐺/S)
induces an 𝐿S-colouring of𝐺/S, which in turn induces an 𝐿-colouring of𝐺 . Since𝐺
is not 𝐿-colourable, no such matching𝑀 exists. By Hall’s Theorem, there is a subset 𝑋S
of𝑉 (𝐺/S) such that |𝑋S | > |𝑁𝐵S (𝑋S) |.

We denote by 𝑋S a subset of𝑉 (𝐺/S) for which |𝑋S | − |𝑁𝐵S (𝑋S) | is maximum. Let

𝑌S = 𝑁𝐵S (𝑋S) =
⋃
𝑣𝑆 ∈𝑋S

𝐿S (𝑣𝑆).

The choice of 𝑋S implies that there is a matching 𝑀S in 𝐵S − (𝑋S ∪ 𝑌S) that cov-
ers all vertices in 𝑉 (𝐺/S) − 𝑋S . The matching 𝑀S defines a partial colouring 𝜓S of
𝐺 [⋃𝑆∈S−𝑋S 𝑆] with colours from𝐶𝐿 − 𝑌S .

These notation will be used throughout the whole paper.

2024/12/22 23:05

https://doi.org/10.4153/S0008414X24001184 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X24001184


Minimum Non-chromatic-choosable Graphs with Given Chromatic Number 9

Observation 3.1 The following easy facts will be used often in the argument.

(1) There is an injective mapping 𝜙 : 𝐶 → 𝑉 such that 𝑐 ∈ 𝐿 (𝜙(𝑐)).
(2) If 𝑓 is a proper colouring of 𝐺 , then there is a surjective proper colouring 𝑔 : 𝑉 → 𝐶 such

that for every vertex 𝑣, 𝑔(𝑣) ∈ 𝐿 (𝑣) or 𝑔(𝑣) = 𝑓 (𝑣).
(3) No two vertices in the same part of𝐺 have the same list, and no colour is contained only in

the lists of vertices in a same part.
(4) 𝐺 ≠ 𝐾4,2★(𝑘−1) for any 𝑘 and |𝑇 | ≥ 1.

Proof (1) is well-known (Corollary 1.8 in [17]) and also easy to verify (use the mini-
mality of |𝐶𝐿 |).

(2) was proved in Proposition 1.13 in [17].
(3) If 𝑢, 𝑣 are in the same part and 𝐿 (𝑢) = 𝐿 (𝑣), then By Noel-Reed-Wu Theorem,

there is a proper 𝐿-colouring 𝑓 of 𝐺 − 𝑢, which extends to a proper 𝐿-colouring of 𝐺
by letting 𝑓 (𝑢) = 𝑓 (𝑣).

If there is a colour 𝑐 such that 𝐿−1 (𝑐) ⊆ 𝑃𝑖 for some part 𝑃𝑖 of 𝐺 , then by Noel-
reed-Wu Theorem,𝐺 − 𝐿−1 (𝑐) has an 𝐿-colouring 𝑓 , which extends to an 𝐿-colouring
of𝐺 by colouring vertices in 𝐿−1 (𝑐) with colour 𝑐.

(4) It was proved in [3] that 𝐾4,2★(𝑘−1) is not 𝑘-choosable if and only if 𝑘 is even. By
our assumption, 𝐺 ≠ 𝐾4,2★(𝑘−1) for even 𝑘 . Thus 𝐺 ≠ 𝐾4,2★(𝑘−1) for any 𝑘 . It was
proved in [6] that𝐺 = 𝐾3★2,2★(𝑘−2) is 𝑘-choosable. Using the fact that |𝑉 (𝐺) | = 2𝑘 +2,
it is easy to see that |𝑇 | ≥ 1. ■

Lemma 3.2 If 𝑃 is a 2+-part of 𝐺 , then
⋂
𝑣∈𝑃 𝐿 (𝑣) = ∅. Consequently for each colour

𝑐 ∈ 𝐶 , |𝐿−1 (𝑐) | ≤ 𝑘 + 𝑝1 + 2.

Proof Assume the lemma is not true. We choose such a part 𝑃 of maximum size, and
colour vertices in 𝑃 by a common colour 𝑐. Let 𝐿′ (𝑣) = 𝐿 (𝑣) − {𝑐} for 𝑣 ∈ 𝑉 (𝐺) − 𝑃.
If |𝑃 | ≥ 3, then 𝐿′ and 𝐺 − 𝑃 satisfies the condition of Noel-Reed-Wu Theorem and
hence𝐺 − 𝑃 has an 𝐿′-colouring.

Assume |𝑃 | = 2. By (4) of Observation 3.1, 𝐺 − 𝑃 ≠ 𝐾4,2★(𝑘−2) . If 𝐺 − 𝑃 ≠

𝐾3★(𝑞+1) ,1★(𝑞−1) , then by the minimality of 𝐺 , 𝐺 − 𝑃 has an 𝐿′-colouring. If 𝐺 − 𝑃 =

𝐾3★(𝑞+1) ,1★(𝑞−1) , then since each 3-part𝑃 has atmost twovertices 𝑣 forwhich 𝑐 ∈ 𝐿 (𝑣),
it is straightforward to verify that 𝐺 − 𝑃 and 𝐿′ satisfy the condition of Lemma 2.1.
Hence𝐺 − 𝑃 has an 𝐿′-colouring.

For any colour 𝑐 ∈ 𝐶 , each 2+-part contains a vertex 𝑣 ∉ 𝐿−1 (𝑐). So

|𝐿−1 (𝑐) | ≤ |𝑉 (𝐺) | − 𝑝+2 = 2𝑘 + 2 − (𝑘 − 𝑝1) = 𝑘 + 𝑝1 + 2.

This completes the proof of Lemma 3.2. ■

4 Graphs with most parts of size at most 3

In this section, we consider complete 𝑘-partite graphs whose most parts are 3−-parts.
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Let

G1 = {𝐾5,3★(𝑞−1) ,2★(𝑘−2𝑞) ,1★𝑞 : 𝑘 ≥ 2𝑞 ≥ 2},
G2 = {𝐾4★𝑎,3★(𝑞−𝑎) ,2★𝑏,1★(𝑘−𝑞−𝑏) : 𝑎 ≤ 2, 𝑎 ≤ 𝑞, 𝑏 ≥ 0, 𝑞 + 𝑏 ≤ 𝑘, 𝑎 + 2𝑞 + 𝑏 = 𝑘 + 2.}

Theorem 4.1 𝐺 ∉ G1 ∪ G2.

We may assume that 𝑘 ≥ 8, as for 𝑘 ≤ 7, we can check directly the graphs in G1,G2
are 𝑘-choosable.

Assume𝐺 ∈ G1 ∪ G2. We order the parts of𝐺 as 𝑃1, 𝑃2, . . . , 𝑃𝑘 so that

• if𝐺 ∈ G1, then 𝑃1 is the 5-part and 𝑃2, 𝑃3, . . . , 𝑃𝑞 are 3-parts with
Λ𝑃2 ,2 ≥ Λ𝑃3 ,2 ≥ . . . ≥ Λ𝑃𝑞 ,2;

• if𝐺 ∈ G2, then the first 𝑎 parts are the 4-parts of𝐺 , and 𝑃𝑎+1, 𝑃𝑎+2, . . . , 𝑃𝑞 are
3-parts with Λ𝑃2 ,2 ≥ Λ𝑃3 ,2 ≥ . . . ≥ Λ𝑃𝑞 ,2. If 𝑎 = 2, then order 𝑃1, 𝑃2 so that
Λ𝑃1 ,3 ≥ Λ𝑃2 ,3.

Let

𝑖0 = max{ 𝑗 : Λ𝑃𝑗 ,2 ≥ 𝑗}.
For a 3-part 𝑃 of𝐺 , we have 3𝑘 ≤ ∑

𝑣∈𝑃 |𝐿 (𝑣) | ≤ |𝐶𝐿 | + |𝐶𝑃,2 | ≤ 2𝑘 + 1 + |𝐶𝑃,2 |. So
|𝐶𝑃,2 | ≥ 𝑘 − 1. As 𝑃 has three 2-subsets, we have Λ𝑃,2 ≥ (𝑘 − 1)/3 ≥ 2.

Claim 4.2 If 𝐺 ∈ G1, then 𝐶𝑃1 ,4 = ∅ and 𝐶𝑃1 ,3 ≠ ∅.

Proof If 𝑐 ∈ 𝐶𝑃1 ,4, then we colour vertices in 𝐿−1 (𝑐) ∩ 𝑃1 with colour 𝑐, and let
𝐿′ (𝑣) = 𝐿 (𝑣) − {𝑐} for 𝑣 ∈ 𝐺 − (𝐿−1 (𝑐) ∩ 𝑃1). It is easy to verify that 𝐺′ = 𝐺 −
(𝐿−1 (𝑐) ∩ 𝑃1) and 𝐿′ satisfy the condition of Lemma 2.1 (with 𝑃1 − 𝐿−1 (𝑐) being the
last part inA, and withD = ∅), and hence𝐺′ is 𝐿′-colourable, and𝐺 is 𝐿-colourable,
a contradiction.

If 𝐶𝑃1 ,3 = ∅, then each colour 𝑐 ∈ 𝐶𝐿 is contained in 𝐿 (𝑣) for at most two vertices
𝑣 ∈ 𝑃1. Hence 2(2𝑘 + 1) ≥ 2|𝐶𝐿 | ≥

∑
𝑣∈𝑃1 |𝐿 (𝑣) | = 5𝑘 , which implies that 𝑘 ≤ 2, a

contradiction. ■

Claim 4.3 𝐺 ≠ 𝐾5,2★(𝑘−2) ,1.

Proof If 𝐺 = 𝐾5,2★(𝑘−2) ,1, then fix a 3-subset 𝑆1 of 𝑃1 with
⋂
𝑣∈𝑆1 𝐿 (𝑣) ≠ ∅. Let S

be the partition of 0𝑉 (𝐺) with one non-singleton part 𝑆1. Then |𝑉 (𝐺/S)| = 2𝑘 and
hence |𝑋S | ≤ 2𝑘 and |𝑌S | ≤ 2𝑘 − 1. By Lemma 3.2, |𝑋S ∩ 𝑃 | ≤ 1 for any 2-part 𝑃.
So |𝑋S | ≤ 𝑘 + 2 and |𝑌S | ≤ 𝑘 + 1. On the other hand, |𝑋S | ≥ 2 and hence 𝑣 ∈ 𝑋S
for some vertex 𝑣 with |𝐿S (𝑣) | ≥ 𝑘 and hence |𝑌S | ≥ 𝑘 and |𝑋S | ≥ 𝑘 + 1, and hence
|𝑋S ∩ 𝑃′

1 | ≥ 2. This in turn implies that |𝑌S | = 𝑘 + 1 and hence |𝑋S | = 𝑘 + 2. Then
𝑃′
1 ⊆ 𝑋S and |𝑌S | ≥ |𝐿S (𝑃′

1) | ≥ 𝑘 + 2 = |𝑋S | (by Claim 4.2), a contradiction. ■

It follows fromObservation 3.1 that𝐺 ≠ 𝐾4,2★(𝑘−1) for any 𝑘 . As𝐺 ≠ 𝐾5,2★(𝑘−2) ,1,
𝐺 has at least two 3+-parts. Therefore

𝑖0 ≥ 2.
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For 𝑖 = 1, 2, . . . , 𝑖0, we shall choose a subset 𝑆𝑖 of 𝑃𝑖 of size 2 or 3, and let S be the
partition of𝑉 (𝐺)with non-singleton parts {𝑆1, 𝑆2, . . . , 𝑆𝑖0 }. The rules for choosing the
sets 𝑆𝑖 will be given later.

For simplicity, in the graph𝐺/S, for 𝑖 = 1, 2, . . . , 𝑖0, we denote 𝑣𝑆𝑖 by 𝑧𝑖 , and let

𝑍 = {𝑧1, 𝑧2, . . . , 𝑧𝑖0 }.

We denote by 𝑃′
𝑖
the part of𝐺/S, where for 1 ≤ 𝑖 ≤ 𝑖0, 𝑃′

𝑖
is obtained from the part 𝑃𝑖

by identifying 𝑆𝑖 into a new vertex 𝑧𝑖 , and for 𝑖0 + 1 ≤ 𝑖 ≤ 𝑘 , 𝑃′
𝑖
= 𝑃𝑖 .

As 𝑖0 ≥ 2, we have |𝑉 (𝐺/S)| ≤ 2𝑘 , and hence

|𝑋S | ≤ 2𝑘, |𝑌S | ≤ 2𝑘 − 1. (4.1)

We shall prove further upper and lower bounds for |𝑋S | and |𝑌S | that eventually lead
to a contradiction.

The details are delicate and a little complicated, which is perhaps unavoidable, as
𝐾4,2★(𝑘−1) and𝐾3★(𝑘/2+1) ,1★(𝑘/2−1) (for even integer 𝑘 ) are very close to graphs inG1∪
G2, and they are not 𝑘-choosable. We divide the proofs for 𝐺 ∉ G1 and 𝐺 ∉ G2 into
two subsections.

4.1 𝐺 ∉ G1

Assume to the contrary that𝐺 ∈ G1.
The subsets 𝑆𝑖 for 𝑖 = 1, 2, . . . , 𝑖0 are chosen as follows:

(1) 𝑆1 is a 3-subset of 𝑃1 with |⋂𝑣∈𝑆1 𝐿 (𝑣) | = Λ𝑃1 ,3.
(2) For 2 ≤ 𝑖 ≤ 𝑖0, 𝑆𝑖 is a 2-subset of 𝑃𝑖 with |⋂𝑣∈𝑆𝑖 𝐿 (𝑣) | = Λ𝑃𝑖 ,2.

Assume for 𝑖 = 2, 3, . . . , 𝑖0, 𝑃𝑖 = {𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖} and 𝑆𝑖 = {𝑢𝑖 , 𝑣𝑖}.
Since |𝑃1−𝑆1 | = 2, by (3) ofObservation 3.1, |𝐿 (𝑃1−𝑆1) | ≥ 𝑘+1. As (⋂𝑣∈𝑆1 𝐿 (𝑣))∩

𝐿 (𝑃1 − 𝑆1) = ∅, we know that

|𝐿S (𝑃′
1) | ≥ 𝑘 + 2. (4.2)

It follows from the definition of S that for 𝑖 = 1, 2, . . . , 𝑖0, |𝐿S (𝑧𝑖) | ≥ 𝑖0.
If 𝑋S ⊆ 𝑍 and 𝑧𝑖 ∈ 𝑋S for some 𝑖 ≤ 𝑖0, then we have |𝑌S | ≥ |𝐿S (𝑧𝑖) | ≥ 𝑖0 ≥ |𝑋S |,

a contradiction. Thus 𝑋S − 𝑍 ≠ ∅. Let 𝑣 ∈ 𝑋S − 𝑍 . Then

|𝑌S | ≥ |𝐿S (𝑣) | = |𝐿 (𝑣) | ≥ 𝑘, |𝑋S | ≥ 𝑘 + 1.

This implies that |𝑋S ∩ 𝑃′
𝑖
| ≥ 2 for some 𝑖. As |𝐿S (𝐴) | ≥ 𝑘 + 1 for any 2-subset 𝐴

of 𝑃′
𝑖
(for any 𝑖), we have

|𝑌S | ≥ 𝑘 + 1, |𝑋S | ≥ 𝑘 + 2. (4.3)

Claim 4.4 |𝑌S | ≥ 𝑘 + 𝑖0 and hence |𝑋S | ≥ 𝑘 + 𝑖0 + 1.

Proof If there is an index 𝑖0 + 1 ≤ 𝑖 ≤ 𝑞 such that 𝑢, 𝑣 ∈ 𝑋S ∩ 𝑃′
𝑖
, then |𝑌S | ≥

|𝐿 (𝑢∨ 𝑣) | ≥ 2𝑘 − |𝐿 (𝑢∧ 𝑣) | ≥ 2𝑘 − 𝑖0 > 𝑘 + 𝑖0 (as 𝑖0 ≤ 𝑞 − 1 < 𝑘/2) and we are done.
Assume |𝑋S ∩ 𝑃′

𝑖
| ≤ 1 for any 𝑖0 + 1 ≤ 𝑖 ≤ 𝑞. If {𝑧𝑖 , 𝑤𝑖} ⊆ 𝑋S for some 𝑖 ≥ 2,

then |𝑌S | ≥ |𝐿 (𝑤𝑖) | + |𝐿𝑆 (𝑧𝑖) |+ ≥ 𝑘 + 𝑖0, and we are done. Otherwise, |𝑋S | ≥ 𝑘 + 2
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(by (4.3)) implies that 𝑃′
1 ⊆ 𝑋S and |𝑋S | = 𝑘 + 2. By (4.2), |𝑌S | ≥ |𝐿S (𝑃′

1) | ≥ 𝑘 + 2, a
contradiction. ■

Claim 4.5 If |𝑌S | = 𝑘 + 𝑖0, then Λ𝑃𝑖 ,2 = 𝑖0 for 𝑖 = 2, 3, . . . , 𝑖0 and there is an index
2 ≤ 𝑖 ≤ 𝑖0 such that 𝑃𝑖 has a 2-subset 𝑆 with |

⋂
𝑣∈𝑆 𝐿 (𝑣) | ≥ 2 and

⋂
𝑣∈𝑆 𝐿 (𝑣) ∪ 𝐿 (𝑃𝑖 −

𝑆) ⊈ 𝑌S .

Proof Assume |𝑌S | = 𝑘 + 𝑖0. Then |𝑋S | ≥ 𝑘 + 𝑖0 + 1.
By the argument in the proof of Claim 4.4, for any index 𝑖 > 𝑖0, |𝑋S ∩ 𝑃𝑖 | ≤ 1.

This implies that |𝑋S | ≤ 𝑘 + 𝑖0 + 1, and hence |𝑋S | = 𝑘 + 𝑖0 + 1 and 𝑃′
𝑖
⊆ 𝑋S for

𝑖 = 1, 2, . . . , 𝑖0. As |𝐿S (𝑃′
𝑖
) | ≥ 𝑘 + 𝑖0 for 2 ≤ 𝑖 ≤ 𝑖0, we conclude that for 2 ≤ 𝑖 ≤ 𝑖0,

𝑌S = 𝐿S (𝑃′
𝑖
) and Λ𝑃𝑖 ,2 = 𝑖0.

We shall find an index 2 ≤ 𝑖 ≤ 𝑖0, a 2-subset 𝑆 of 𝑃𝑖 with |⋂𝑣∈𝑆 𝐿 (𝑣) | ≥ 2 and⋂
𝑣∈𝑆 𝐿 (𝑣) ∪ 𝐿 (𝑃𝑖 − 𝑆) ⊈ 𝑌S .
Assume first that there is an index 2 ≤ 𝑖 ≤ 𝑖0 such that 𝐿 (𝑃𝑖) ⊈ 𝑌S .
As 𝐿 (𝑤𝑖) ⊆ 𝑌S , wemay assume that there is a colour 𝑐 ∈ 𝐿 (𝑢𝑖)−𝑌S . If |𝐿 (𝑣𝑖∧𝑤𝑖) | ≥

2, then let 𝑆 = {𝑣𝑖 , 𝑤𝑖}, we are done.
Assume |𝐿 (𝑣𝑖 ∧𝑤𝑖) | ≤ 1. This implies that |𝐿 (𝑣𝑖 ∨𝑤𝑖) | ≥ 2𝑘 − 1 > 𝑘 + 𝑖0. So there

is a colour 𝑐′ ∈ 𝐿 (𝑣𝑖) − 𝑌S . If |𝐿 (𝑢𝑖 ∧ 𝑤𝑖) | ≥ 2, then let 𝑆 = {𝑢𝑖 , 𝑤𝑖}, we are done.
Assume |𝐿 (𝑢𝑖 ∧ 𝑤𝑖) | ≤ 1. Hence

2+𝑖0 ≥ |𝐿 (𝑢𝑖∧𝑤𝑖) |+|𝐿 (𝑣𝑖∧𝑤𝑖) |+|𝐿 (𝑢𝑖∧𝑣𝑖) | = |𝐶𝑃𝑖 ,2 | ≥ 3𝑘−|𝐿 (𝑃𝑖) | ≥ 3𝑘−(2𝑘+1).

This implies that 𝑘 − 3 ≤ 𝑖0 ≤ 𝑞 ≤ 𝑘/2, contrary to our assumption that 𝑘 ≥ 8.
Assume next that 𝐿 (𝑃𝑖) = 𝑌S for 2 ≤ 𝑖 ≤ 𝑖0. As each colour in 𝐿 (𝑃𝑖) is contained

in at most two lists of vertices of 𝑃𝑖 , we have 2(𝑘 + 𝑖0) ≥ 3𝑘 , i.e., 𝑖0 ≥ 𝑘/2. Hence
𝑖0 = 𝑘/2 = 𝑞 and𝐺 = 𝐾5,3★(𝑞−1) ,1★𝑞 .

For each singleton part {𝑣} of 𝐺 , we have 𝑣 ∈ 𝑋S and hence 𝐿 (𝑣) ⊆ 𝑌S for each
singleton part {𝑣}. Thus 𝐿 (⋃𝑘

𝑖=2 𝑃𝑖) = 𝑌S .
Since𝐶𝑃1 ,4 = ∅, we have |𝐿 (𝑃1) | ≥ 5𝑘/3 > 𝑘 +𝑖0 = |𝑌S |. Let 𝑐 ∈ 𝐿 (𝑃1) −𝑌S . Then

𝑐 is contained in the lists of vertices in 𝑃1 only, in contradiction to Observation 3.1. ■

If |𝑌S | = 𝑘 + 𝑖0, then asΛ𝑃𝑖 ,2 = 𝑖0 for 2 ≤ 𝑖 ≤ 𝑖0, we may assume that 𝑆′2 = {𝑢2, 𝑤2}
is a 2-subset of 𝑃2 for which |⋂𝑣∈𝑆′2 𝐿 (𝑣) | ≥ 2 and

⋂
𝑣∈𝑆′2 𝐿 (𝑣) ∪ 𝐿 (𝑃2 − 𝑆

′
2) ⊈ 𝑌S .

We letS′ be the partition of𝑉 (𝐺) whose non-singleton parts are obtained from that
of S by replacing 𝑆2 with 𝑆′2, i.e., S′ = {𝑆1, 𝑆′2, 𝑆3, . . . , 𝑆𝑖0 }.

Instead of𝐺/S, we consider the graph𝐺/S′. We still have (4.3), i.e.,

|𝑌S′ | ≥ 𝑘 + 1, |𝑋S′ | ≥ 𝑘 + 2.

Then analog to the proof of Claim 4.4, we can show that

|𝑌S′ | ≥ 𝑘 + 𝑖0 + 1, |𝑋S′ | ≥ 𝑘 + 𝑖0 + 2.

Let S′′ = S if |𝑌S | ≥ 𝑘 + 𝑖0 + 1, and S′′ = S′ if |𝑌S | = 𝑘 + 𝑖0. Then

|𝑌S′′ | ≥ 𝑘 + 𝑖0 + 1, |𝑋S′′ | ≥ 𝑘 + 𝑖0 + 2.
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For simplicity, we assume that S′′ = S. Then |𝑋S | ≥ 𝑘 + 𝑖0 + 2 implies that |𝑋S ∩
𝑃𝑖 | ≥ 2 for some 𝑖 ≥ 𝑖0 + 1. Assume {𝑢, 𝑣} ⊆ 𝑋 ∩ 𝑃𝑖 for some 𝑖 ≥ 𝑖0 + 1. Then

|𝑌S | ≥ |𝐿 (𝑢 ∨ 𝑣) | = 2𝑘 − |𝐿 (𝑢 ∧ 𝑣) | ≥ 2𝑘 − 𝑖0. (4.4)

Since 𝑋S contains at most one vertex of any 2-part, we have

|𝑋S | ≤ 𝑘 + 2𝑞 + 1 − 𝑖0.

If for some 𝑖 ≥ 𝑖0 + 1, 𝑃𝑖 = {𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖} ⊆ 𝑋S , then

|𝑌S | ≥ |𝐿 (𝑃𝑖) | = |𝐿 (𝑢𝑖) | + |𝐿 (𝑣𝑖) | + |𝐿 (𝑤𝑖) |
− (|𝐿 (𝑢𝑖 ∧ 𝑣𝑖) | + |𝐿 (𝑢𝑖) ∩ 𝐿 (𝑤𝑖) | + |𝐿 (𝑣𝑖) ∩ 𝐿 (𝑤𝑖) |)
≥ 3𝑘 − 3𝑖0.

Hence 𝑘 + 2𝑞 + 1 − 𝑖0 ≥ |𝑋S | ≥ 3𝑘 − 3𝑖0 + 1, which implies that 𝑘 ≤ 𝑞 + 𝑖0 ≤ 2𝑞 − 1,
in contrary to 𝑘 ≥ 2𝑞.

Thus |𝑋S ∩ 𝑃′
𝑖
| ≤ 2 for 𝑖 ≥ 𝑖0 + 1. This implies that |𝑋S | ≤ 𝑘 + 𝑞 + 1.

On the other hand, |𝑌S | ≥ 2𝑘 − 𝑖0 (by (4.4)) implies that |𝑋S | ≥ 2𝑘 − 𝑖0 + 1. Hence
𝑘 + 𝑞 + 1 ≥ |𝑋S | ≥ 2𝑘 − 𝑖0 + 1, which implies that 𝑘 ≤ 𝑖0 + 𝑞 ≤ 2𝑞 − 1, in contrary to
𝑘 ≥ 2𝑞.

This completes the proof that𝐺 ∉ G1.

4.2 𝐺 ∉ G2

Assume to the contrary that𝐺 ∈ G2.

Claim 4.6 Assume 𝑃 is a 4-part of 𝐺 and Λ𝑃,3 ≤ 1. Then Λ𝑃,2 ≥ 2. If |Λ𝑃,2 | ≥ 3, then
for any 2-subset 𝑆 of 𝑃 with |⋂𝑣∈𝑆 𝐿 (𝑣) | = Λ𝑃,2, for any 𝑥 ∈ 𝑃 − 𝑆,

|
⋂
𝑣∈𝑆

𝐿 (𝑣) ∪ 𝐿 (𝑥) | ≥ 𝑘 + 2.

If Λ𝑃,2 = 2, then there exists a 2-subset 𝑆 of 𝑃 such that |⋂𝑣∈𝑆 𝐿 (𝑣) ∩ 𝐶𝑃,2 | = 2, and
hence for any 𝑥 ∈ 𝑃 − 𝑆, |⋂𝑣∈𝑆 𝐿 (𝑣) ∪ 𝐿 (𝑥) | ≥ 𝑘 + 2.

Proof Assume 𝑃 is a 4-part of𝐺 and Λ𝑃,3 ≤ 1. Assume Λ𝑃,2 ≥ 3 and 𝑆 is a 2-subset
of 𝑃 with |⋂𝑣∈𝑆 𝐿 (𝑣) | = Λ𝑃,2. Then for any 𝑥 ∈ 𝑃 − 𝑆, since |⋂𝑣∈𝑆 𝐿 (𝑣) ∩ 𝐿 (𝑥) | ≤
Λ𝑃,3 ≤ 1, we have

|
⋂
𝑣∈𝑆

𝐿 (𝑣) ∪ 𝐿 (𝑥) | = |
⋂
𝑣∈𝑆

𝐿 (𝑣) | + |𝐿 (𝑥) | − |
⋂
𝑣∈𝑆

𝐿 (𝑣) ∩ 𝐿 (𝑥) | ≥ Λ𝑃,2 + 𝑘 − 1 ≥ 𝑘 + 2.

Assume Λ𝑃,2 ≤ 2. As 𝑃 has four 3-subsets, we have |𝐶𝑃,3 | ≤ 4. As
∑3
𝑖=1 𝑖 |𝐶𝑃,𝑖 | =∑

𝑣∈𝑃 |𝐿 (𝑣) | ≥ 4𝑘 and
∑3
𝑖=1 |𝐶𝑃,𝑖 | ≤ |𝐶𝐿 | ≤ 2𝑘 + 1, it follows that |𝐶𝑃,2 | ≥ 2𝑘 −

9 ≥ 7 (as 𝑘 ≥ 8). Since 𝑃 has six 2-subsets, there exists a 2-subset 𝑆 of 𝑃 such that
|⋂𝑣∈𝑆 𝐿 (𝑣) ∩ 𝐶𝑃,2 | ≥ 2. Hence Λ𝑃,2 ≥ 2 and therefore Λ𝑃,2 = 2. Moreover, there
exists a 2-subset 𝑆 of 𝑃 such that |⋂𝑣∈𝑆 𝐿 (𝑣) ∩ 𝐶𝑃,2 | = 2. For any 𝑥 ∈ 𝑃 − 𝑆,

|
⋂
𝑣∈𝑆

𝐿 (𝑣) ∪ 𝐿 (𝑥) | ≥ |
⋂
𝑣∈𝑆

𝐿 (𝑣) ∩ 𝐶𝑃,2 | + |𝐿 (𝑥) | ≥ 2 + 𝑘.
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■

Definition 4.1 For 𝑖 = 1, 2, . . . , 𝑖0, we choose a subset 𝑆𝑖 of 𝑃𝑖 of size 2 or 3 as follows:

(1) For 𝑎 + 1 ≤ 𝑖 ≤ 𝑖0, 𝑆𝑖 is a 2-subset of 𝑃𝑖 with |⋂𝑣∈𝑆𝑖 𝐿 (𝑣) | = Λ𝑃𝑖 ,2.
(2) If 𝑎 = 1 and Λ𝑃1 ,3 > 0, then let 𝑆1 be a 3-subset of 𝑃1 with |⋂𝑣∈𝑆1 𝐿 (𝑣) | = Λ𝑃1 ,3.

Otherwise, let 𝑆1 be a 2-subset of 𝑃1 with |⋂𝑣∈𝑆1 𝐿 (𝑣) | = Λ𝑃1 ,2.
(3) Assume 𝑎 = 2.

(i) If Λ𝑃2 ,3 ≥ 2, then for 𝑖 = 1, 2, let 𝑆𝑖 be a 3-subset of 𝑃𝑖 with
|⋂𝑣∈𝑆𝑖 𝐿 (𝑣) | = Λ𝑃𝑖 ,3.

(ii) If Λ𝑃1 ,3 > 0 and Λ𝑃2 ,3 ≤ 1, then let 𝑆1 be a 3-subset of 𝑃1 with
|⋂𝑣∈𝑆1 𝐿 (𝑣) | = Λ𝑃1 ,3, and let 𝑆2 be a 2-subset of 𝑃2 such that

(A) |⋂𝑣∈𝑆2 𝐿 (𝑣) | = Λ𝑃,2,
(B) |⋂𝑣∈𝑆2 𝐿 (𝑣) ∪ 𝐿 (𝑥) | ≥ 𝑘 + 2 for any 𝑥 ∈ 𝑃2 − 𝑆2,
(C) Subject to (A) and (B), |𝐿S (𝑃′

1)
⋃
𝐿 (𝑃2 − 𝑆2) | is maximum.

(iii) If Λ𝑃1 ,3 = 0, then for 𝑖 = 1, 2, let 𝑆𝑖 be a 2-subset of 𝑃𝑖 with
|⋂𝑣∈𝑆𝑖 𝐿 (𝑣) | = Λ𝑃𝑖 ,2, such that |

⋂
𝑣∈𝑆𝑖 𝐿 (𝑣) ∪ 𝐿 (𝑥) | ≥ 𝑘 + 2 for any

𝑥 ∈ 𝑃𝑖 − 𝑆𝑖 and subject to this condition, |𝐿S (𝑃′
1)
⋃
𝐿S (𝑃′

2) | is maximum.

The existence of the 2-subset 𝑆 in (ii) and (iii) has been proved in Claim 4.6.
It follows from the definition of S that for 𝑖 = 1, 2, . . . , 𝑖0, |𝐿S (𝑧𝑖) | ≥ 𝑖.
The same argument as in the previous subsection shows that

|𝑌S | ≥ 𝑘 + 1, |𝑋S | ≥ 𝑘 + 2. (4.5)

Claim 4.7 If |𝑃𝑖 | = 4, then |𝑋S ∩ 𝑃′
𝑖
| ≤ 2.

Proof Assume 𝑃𝑖 = {𝑢𝑖 , 𝑣𝑖 , 𝑥𝑖 , 𝑦𝑖}. Then 2 ≤ |𝑃′
𝑖
| ≤ 3. If |𝑃′

𝑖
| = 2, then the

conclusion is trivial.
Assume |𝑃′

𝑖
| = 3 and assume to the contrary of the claim that 𝑃′

𝑖
= {𝑧𝑖 , 𝑥𝑖 , 𝑦𝑖} ⊆

𝑋S , where 𝑧𝑖 is the identification of 𝑢𝑖 and 𝑣𝑖 . In this case, 𝐿S (𝑧𝑖) = 𝐿 (𝑢𝑖 ∧ 𝑣𝑖) and
𝐿S (𝑥𝑖) = 𝐿 (𝑥𝑖), 𝐿S (𝑦𝑖) = 𝐿 (𝑦𝑖).

IfΛ𝑃𝑖 ,3 = 0, then 𝐿S (𝑧𝑖)∩𝐿 (𝑥𝑖∨𝑦𝑖) = ∅. By the choice of 𝑆𝑖 , |𝐿 (𝑥𝑖∧𝑦𝑖) | ≤ |𝐿S (𝑧𝑖) |
and hence |𝐿 (𝑥𝑖∨ 𝑦𝑖) | ≥ 2𝑘− |𝐿S (𝑧𝑖) |. Therefore |𝑌S | ≥ |𝐿S (𝑧𝑖) | + |𝐿 (𝑥𝑖∨ 𝑦𝑖) | ≥ 2𝑘 ,
in contrary to (4.1).

If Λ𝑃𝑖 ,3 > 0, then by the choice of 𝑆𝑖 , we know that 𝑖 = 𝑎 = 2, Λ𝑃2 ,3 = 1 and
|𝑆1 | = 3, |𝑃′

1 | = 2. Therefore |𝑋S | ≤ |𝑉 (𝐺/S)| ≤ 2𝑘 − 1, and |𝑌S | ≤ 2𝑘 − 2.
Assume 𝑆2 = {𝑢2, 𝑣2}. By the choice of 𝑆2 (see Claim 4.6), |𝐿S (𝑧2) | ≥ |𝐿 (𝑥𝑖 ∧ 𝑦𝑖) |

and |𝐿S (𝑧𝑖) ∩ 𝐿 (𝑥𝑖 ∨ 𝑦𝑖) | ≤ |𝐿S (𝑧𝑖) ∩ 𝐿 (𝑥𝑖) | + |𝐿S (𝑧𝑖) ∩ 𝐿 (𝑦𝑖) | ≤ 2Λ𝑃𝑖 ,3 = 2. Hence
|𝑌S | ≥ |𝐿S (𝑧𝑖) | + |𝐿 (𝑥𝑖 ∨ 𝑦𝑖) | − 2 ≥ 2𝑘 − 2. So |𝑋S | = 2𝑘 − 1 and |𝑌S | = 2𝑘 − 2, and
hence 𝑋S = 𝑉 (𝐺/S). This implies that 𝑖0 = 2.

By Lemma 3.2, 𝐺 has no 2-part. Assume 𝑃3 = {𝑢3, 𝑣3, 𝑤3}. Then since Λ𝑃3 ,2 ≤ 2,
and 𝑃3 has three 2-subsets, we know that |𝐶𝑃3 ,2 | ≤ 6. Therefore

3𝑘 ≤ |𝐿 (𝑢3) | + |𝐿 (𝑣3) | + |𝐿 (𝑤3) | = 2|𝐶𝑃3 ,2 | + |𝐶𝑃3 ,1 | ≤ |𝐶𝐿 | + |𝐶𝑃3 ,2 | ≤ 2𝑘 + 6,
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a contradiction (as 𝑘 ≥ 8). ■

Since 3𝑝+3 + 2𝑝2 + 𝑝1 ≤ 2𝑘 + 2 = 2(𝑝1 + 𝑝2 + 𝑝+3 ) + 2 and𝐺 ≠ 𝐾3★(𝑘/2+1) ,1★(𝑘/2−1)
(i.e., 𝑘 ≠ 2𝑞 − 2), we have

𝐺 ∈ {𝐾4,3★(𝑞−1) ,1★(𝑞−1) , 𝐾3★𝑞,2,1★(𝑞−2) } or 𝑘 ≥ 2𝑞.

Note that 𝑋S contains at most one vertex of any 2-part. Combining with Claim 4.7,
we have

|𝑋S | ≤ 𝑘 + 2𝑞 − 𝑖0.

Claim 4.8 For any 𝑖 ≥ 𝑖0 + 1, |𝑋S ∩ 𝑃𝑖 | ≤ 1.

Proof If 𝑖 ≥ 𝑞+1, then 𝑃𝑖 is 2−-part and hence |𝑃𝑖∩𝑋S | ≤ 1 (by Lemma 3.2 and (4.1).
Assume 𝑖0 + 1 ≤ 𝑖 ≤ 𝑞.
First we prove that |𝑋S ∩ 𝑃𝑖 | ≤ 2. Assume to the contrary that |𝑋S ∩ 𝑃𝑖 | = 3 for

some 𝑖 ≥ 𝑖0 + 1. Assume 𝑃𝑖 = {𝑢𝑖 , 𝑣𝑖 , 𝑤𝑖}. Then

|𝑌S | ≥ |𝐿 (𝑃𝑖) | = |𝐿 (𝑢𝑖) | + |𝐿 (𝑣𝑖) | + |𝐿 (𝑤𝑖) |
− (|𝐿 (𝑢𝑖 ∧ 𝑣𝑖) | + |𝐿 (𝑢𝑖) ∩ 𝐿 (𝑤𝑖) | + |𝐿 (𝑣𝑖) ∩ 𝐿 (𝑤𝑖) |)
≥ 3𝑘 − 3𝑖0.

Hence 𝑘 + 2𝑞 − 𝑖0 ≥ |𝑋S | ≥ 3𝑘 − 3𝑖0 + 1, which implies that 2𝑘 + 1 ≤ 2𝑞 + 2𝑖0 ≤ 4𝑞.
As 𝑘 ≥ 2𝑞 − 1, we have 𝑘 = 2𝑞 − 1. Hence 𝑞 = 𝑖0, in contrary to 𝑖0 + 1 ≤ 𝑖 ≤ 𝑞.

Since |𝑋S ∩ 𝑃𝑖 | ≤ 2 for all 𝑖 ≥ 𝑖0 + 1, we know that |𝑋S | ≤ 𝑘 + 𝑞 (by Claim 4.7).
If |𝑋S ∩ 𝑃𝑖 | = 2 for some 𝑞 ≥ 𝑖 ≥ 𝑖0 + 1, then |𝑌S | ≥ 2𝑘 − 𝑖0. Hence 𝑘 + 𝑞 ≥

|𝑋S | ≥ 2𝑘 − 𝑖0 + 1, which implies that 𝑘 = 2𝑞 − 1 and 𝑖0 = 𝑞, again in contrary to
𝑖0 + 1 ≤ 𝑖 ≤ 𝑞. ■

It follows fromClaim 4.7 andClaim 4.8 that |𝑋S | ≤ 𝑘+𝑖0 and hence |𝑌S | ≤ 𝑘+𝑖0−1.
Thus |𝑋S ∩𝑃′

𝑖
| ≤ 1 for any 𝑎 +1 ≤ 𝑖 ≤ 𝑖0. Combining with Claim 4.8, we know that

|𝑋S ∩ 𝑃′
𝑖
| ≤ 1 for any 𝑖 ≥ 𝑎 + 1. Since |𝑋S | ≥ 𝑘 + 2 (by (4.5)), it follows from Claim 4.7

that 𝑎 = 2 and |𝑋S ∩ 𝑃′
𝑖
| = 2 for 𝑖 = 1, 2, and

|𝑋S | = 𝑘 + 2, |𝑌S | = 𝑘 + 1 and𝑌S = 𝐿S (𝑋S ∩ 𝑃′
1) = 𝐿S (𝑋S ∩ 𝑃′

2). (4.6)

For 𝑖 = 1, 2, assume 𝑃𝑖 = {𝑢𝑖 , 𝑣𝑖 , 𝑥𝑖 , 𝑦𝑖}.
If Λ𝑃2 ,3 ≥ 2, then |𝑆2 | = 3, say 𝑆2 = {𝑢2, 𝑣2, 𝑥2}. Then |𝑌S | ≥ |𝐿S (𝑧2) | + |𝐿 (𝑃2 −

𝑆2) | ≥ 𝑘 + 2, a contradiction.
AssumeΛ𝑃2 ,3 ≤ 1. Then (ii) or (iii) holds, and |𝑆2 | = 2, say 𝑆2 = {𝑢2, 𝑣2}. If 𝑧2 ∈ 𝑋S ,

say 𝑃′
2 ∩ 𝑋S = {𝑧2, 𝑥2}, then |𝑌S | ≥ |𝐿S (𝑧2) ∪ 𝐿 (𝑥2) | ≥ 𝑘 + 2 (by Claim 4.6), contrary

to (4.6).
Assume 𝑧2 ∉ 𝑋S . Then 𝑥2, 𝑦2 ∈ 𝑋S . Now |𝐿 (𝑥2 ∨ 𝑦2) | ≤ |𝑌S | = 𝑘 + 1 implies that

|𝐿 (𝑥2∨ 𝑦2) | = 𝑘 +1 and |𝐿 (𝑥2∧ 𝑦2) | = 𝑘 −1. This implies thatΛ𝑃2 ,2 = 𝑘 −1 and hence
|𝐿 (𝑢2 ∧ 𝑣2) | = 𝑘 − 1. As 𝑘 ≥ 8, i.e., Λ𝑃2 ,2 = 𝑘 − 1 ≥ 7, it follows from Claim 4.6 that
|𝐿 (𝑥2 ∧ 𝑦2) | = Λ𝑃,2 ≥ 2 and |𝐿 (𝑥2 ∧ 𝑦2) ∪ 𝐿 (𝑣) | ≥ 𝑘 + 2 for any 𝑣 ∈ 𝑃2 − {𝑥2, 𝑦2}.

If (ii) holds, say 𝑆1 = {𝑢1, 𝑣1, 𝑥1}, then 𝐿 (𝑢2 ∨ 𝑣2) = 𝐿S (𝑧1) ∪ 𝐿 (𝑦1). This implies
that 𝐿 (𝑥2 ∨ 𝑦2) = 𝐿S (𝑧1) ∪ 𝐿 (𝑦1), for otherwise, by see (ii), we should have chosen
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𝑆2 = {𝑥2, 𝑦2}. So |𝐿 (𝑃2) | = 𝑘 + 1. Hence

2𝑘 − 2 = |𝐿 (𝑥2 ∧ 𝑦2) | + |𝐿 (𝑢2 ∧ 𝑣2) |
= |𝐿 (𝑥2 ∧ 𝑦2) ∩ 𝐿 (𝑢2 ∧ 𝑣2) | + |𝐿 (𝑥2 ∧ 𝑦2) ∪ 𝐿 (𝑢2 ∧ 𝑣2) |
≤ |𝐿 (𝑥2 ∧ 𝑦2) ∩ 𝐿 (𝑢2 ∧ 𝑣2) | + 𝑘 + 1.

This implies that 𝐿 (𝑥2 ∧ 𝑦2) ∩ 𝐿 (𝑢2 ∧ 𝑣2) ≠ ∅, in contrary to Lemma 3.2.
Assume (iii) holds, and for 𝑖 = 1, 2, 𝑃𝑖 = {𝑢𝑖 , 𝑣𝑖 , 𝑥𝑖 , 𝑦𝑖} and 𝑆𝑖 = {𝑢𝑖 , 𝑣𝑖}. If 𝑧𝑖 ∈ 𝑋S

for some 𝑖 = 1, 2, then by Claim 4.6, |𝐿S (𝑧𝑖) | ≥ 2 and hence |𝑌S | ≥ |𝐿S (𝑃′
𝑖
) | ≥ 𝑘 + 2,

contrary to (4.6).
Assume 𝑧1, 𝑧2 ∉ 𝑋S . Then again by the choice of 𝑆2, we have 𝐿 (𝑢2 ∨ 𝑣2) = 𝐿 (𝑥1 ∨

𝑦1) = 𝐿 (𝑥2 ∨ 𝑦2), |𝐿 (𝑥2 ∧ 𝑦2) | = |𝐿 (𝑢2 ∧ 𝑣2) | = 𝑘 − 1, and |𝐿 (𝑃2) | = 𝑘 + 1. This leads
to the same contradiction. This completes the proof of Theorem 4.1.

It was proved in [23] that 𝐾6,2★(𝑘−3) ,1★2 is 𝑘-choosable. Combining with Theorem
4.1, we conclude that

𝑝1 ≥ 3, 𝑝+3 ≤ 𝑝1 − 1, 3𝑝+3 + 2𝑝2 + 𝑝1 ≤ |𝑉 | − 3. (4.7)

5 Pseudo-𝐿-colouring

As described in Section 1, our strategy for proving Theorem 1.2 is to partition 𝑉 (𝐺)
into a familyS of independent sets, so that either there is amatching𝑀S in the bipartite
graph 𝐵S that covers𝑉 (𝐺/S) and hence produce an 𝐿-colouring of𝐺 , or using Hall’s
Theorem to produce a good partial 𝐿-colouring of 𝐺 that leads to an 𝐿-colouring of
𝐺 by using induction. The partition S is obtained by constructing a proper colouring
𝑓 of 𝐺 , and the parts in S are the colour classes of 𝑓 . For this strategy to succeed, the
colouring 𝑓 needs to have some nice property. In this section, we define the concept of
pseudo-𝐿-colouring of 𝐺 , and study properties of the partition S of 𝑉 (𝐺) induced by
such colourings.

Definition 5.1 A pseudo 𝐿-colouring of𝐺 is a proper colouring 𝑓 of𝐺 such that 𝑓 (𝑣) ∈
𝐶𝐿 for every vertex 𝑣, and if 𝑓 (𝑣) = 𝑐 ∉ 𝐿 (𝑣), then 𝑓 −1 (𝑐) = {𝑣} is a singleton 𝑓 -class.

In a pseudo 𝐿-colouring 𝑓 of𝐺 , if 𝑓 (𝑣) ∉ 𝐿 (𝑣), then we say 𝑣 is badly 𝑓 -coloured (or
badly coloured if 𝑓 is clear from the context).

By Observation 3.1, if 𝑓 is a pseudo-𝐿-colouring of 𝐺 , then there is a pseudo-𝐿-
colouring 𝑔 of 𝐺 such that 𝑔(𝐺) = 𝐶𝐿 and for every badly 𝑔-coloured vertex 𝑣 of
𝐺 , 𝑔(𝑣) = 𝑓 (𝑣). In the following, we may assume that all the pseudo-𝐿-colourings 𝑓
satisfy 𝑓 (𝐺) = 𝐶𝐿 . However, when we construct a pseudo-𝐿-colouring 𝑓 of 𝐺 , we do
not need to verify that 𝑓 (𝐺) = 𝐶𝐿 (because if 𝑓 (𝐺) ≠ 𝐶𝐿 , then we change it to the
pseudo-𝐿-colouring 𝑔 described above).

Definition 5.2 Assume 𝑓 is a pseudo 𝐿-colouring of 𝐺 . Let S 𝑓 be the family of 𝑓 -
classes, which is a partition of𝑉 (𝐺), i.e., S 𝑓 = { 𝑓 −1 (𝑐) : 𝑐 ∈ 𝐶𝐿} where 𝑓 −1 (𝑐) is the
set of all vertices coloured by 𝑐 under 𝑓 . We denote 𝐺/S 𝑓 , 𝐿S 𝑓

, 𝐵S 𝑓
, 𝑋S 𝑓

and 𝑌S 𝑓
by

𝐺 𝑓 , 𝐿 𝑓 , 𝐵 𝑓 , 𝑋 𝑓 and by𝑌 𝑓 , respectively.
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Figure 1: The bipartite graph 𝐵 𝑓 with partite sets𝐺 𝑓 and𝐶𝐿 . Vertices in𝐺 𝑓 are 𝑓 -classes, some
of them are singleton classes represented by solid circles, and other are 2+-classes, represented by
solid squares. The broken arrowed line indicate the colouring 𝑓 . The edges of 𝐵 𝑓 are not drawn,
and 𝑌S = 𝑁𝐵S (𝑋S). Vertex 𝑣∗ is contained in 𝑋S but 𝑓 (𝑣∗) = 𝑐∗ ∉ 𝑌S . So 𝑣★ is a badly 𝑓 -
coloured vertex..

In the remainder of this section, assume 𝑓 is a pseudo 𝐿-colouring of𝐺 . In the graph
𝐺 𝑓 , 𝑓 −1 (𝑐) is identified into a single vertex. For simplicity, we denote this vertex by
𝑓 −1 (𝑐). So 𝑓 −1 (𝑐) is both a subset of𝑉 (𝐺) and a vertex of𝐺 𝑓 . It will be clear from the
context which one it is.

Since |𝑋 𝑓 | > |𝑌 𝑓 |, there is a colour class 𝑓 −1 (𝑐) ∈ 𝑋 𝑓 such that 𝑐 ∉ 𝑌 𝑓 . Hence
𝑓 −1 (𝑐) is a singleton 𝑓 -class {𝑣} and 𝑣 is badly coloured by 𝑓 .

For a subset𝑄 of𝑉 (𝐺 𝑓 ), let𝑉 (𝑄) be the subset of𝑉 (𝐺) defined as

𝑉 (𝑄) =
⋃

𝑓 −1 (𝑐) ∈𝑄
𝑓 −1 (𝑐).

Let ℓ be the number of 𝑓 -classes 𝑓 −1 (𝑐) of size | 𝑓 −1 (𝑐) | ≥ 2. As |𝑉 | > |𝐶𝐿 |, ℓ ≥ 1.
On the other hand, 𝜆 = |𝑉 | − |𝐶𝐿 | ≥ ℓ and equality holds if and only if 𝑓 (𝐺) = 𝐶𝐿 and
each 𝑓 -class has size at most 2.

Recall that there is a matching 𝑀S 𝑓
in 𝐵 𝑓 − (𝑋 𝑓 ∪ 𝑌 𝑓 ) that covers all

vertices in 𝑉 (𝐺 𝑓 ) − 𝑋 𝑓 . The matching 𝑀S 𝑓
defines a partial 𝐿-colouring of

𝐺 [⋃ 𝑓 −1 (𝑐)∉𝑋 𝑓
𝑓 −1 (𝑐)] that colours vertices in 𝑓 −1 (𝑐)with 𝑐′, where {𝑐′, 𝑓 −1 (𝑐)} is an

edge in𝑀S 𝑓
. We denote this partial 𝐿-colouring of𝐺 by𝜓 𝑓 . The matching𝑀S 𝑓

maybe
not unique. In this case, we let 𝑀S 𝑓

be an arbitrary matching that covers𝑉 (𝐺 𝑓 ) − 𝑋 𝑓 .
We extend𝜓 𝑓 to a partial 𝐿-colouring 𝜙 𝑓 of𝐺 by colouring each 𝑓 -classes 𝑓 −1 (𝑐) ∈

𝑋 𝑓 of size at least 2 by colour 𝑐. By definition of pseudo-𝐿-colouring, for such an 𝑓 -class
𝑓 −1 (𝑐), 𝑐 ∈ 𝐿S ( 𝑓 −1 (𝑐)). So 𝜙 𝑓 is a proper 𝐿-colouring of 𝐺 . Denote by 𝑋 the set of
vertices of 𝐺 coloured by 𝜙 𝑓 . Note that only those 𝑓 -classes 𝑓 −1 (𝑐) of size at least 2
contained in 𝑋 𝑓 are coloured by colours from𝑌 𝑓 . So

|𝜙 𝑓 (𝑋) ∩ 𝑌 𝑓 | ≤ ℓ.

If 𝐺 − 𝑋 has an 𝐿𝜙 𝑓 -colouring 𝜃, then 𝜙 𝑓 ∪ 𝜃 would be an 𝐿-colouring of 𝐺 . Thus
𝐺 − 𝑋 is not 𝐿𝜙 𝑓 -colourable.
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Lemma 5.1 𝑉 𝑓 − 𝑋 𝑓 contains at most 𝜆− 1 singletons of𝐺 . Moreover, if𝑉 𝑓 − 𝑋 𝑓 contains
𝜆 − 1 ≥ 1 singletons of 𝐺 , then ℓ = 𝜆 and the following hold:

(1) All 𝑓 -classes have size 2 or 1, and there are exactly ℓ 𝑓 -classes of size 2.
(2) All the ℓ 𝑓 -classes of size 2 are contained in 𝑋 𝑓 .
(3) For each non-singleton part 𝑃 of𝐺 , there is a singleton 𝑓 -class {𝑣} ∈ 𝑋 𝑓 such that 𝑣 ∈ 𝑃.
(4) If 𝑓 has exactly one badly coloured vertex, then |𝑌 𝑓 | ≥ 𝑘 + 1.

Proof It follows from the definition of 𝜙 𝑓 that for each vertex 𝑣 of 𝐺 − 𝑋 , {𝑣} ∈ 𝑋 𝑓
is a singleton 𝑓 -class, and 𝐿 (𝑣) ⊆ 𝑌 𝑓 . As |𝐿𝜙 𝑓 (𝑋) ∩ 𝑌 𝑓 | ≤ ℓ,

|𝐿𝜙 𝑓 (𝑣) | ≥ 𝑘 − ℓ,∀𝑣 ∈ 𝑉 (𝐺 − 𝑋).

If𝐺 𝑓 − 𝑋 𝑓 contains ℓ singletons of𝐺 , then

𝜒(𝐺 − 𝑋) ≤ 𝑘 − ℓ and |𝑉 (𝐺 − 𝑋) | ≤ 2𝑘 + 2 − 2ℓ − 𝜆 ≤ 2(𝑘 − ℓ) + 1.

By Noel-Reed-Wu Theorem,𝐺 − 𝑋 is 𝐿𝜙 𝑓 -colourable, a contradiction.
So𝐺 𝑓 − 𝑋 𝑓 contains at most ℓ − 1 singletons of𝐺 .
Assume 𝐺 𝑓 − 𝑋 𝑓 contains 𝜆 − 1 singletons of 𝐺 . Since ℓ ≤ 𝜆, we have ℓ = 𝜆 and

hence each 𝑓 -class has size at most 2, and there are exactly ℓ 𝑓 -classes of size 2, i.e., (1)
holds. We shall prove that (2)-(4) hold.

(2): Assume to the contrary that there is an 𝑓 -class of size 2 not in 𝑋 𝑓 . Then at most
ℓ − 1 𝑓 -classes are coloured by colours from𝑌S . Hence

|𝐿𝜙 𝑓 (𝑣) | ≥ 𝑘 − (ℓ − 1),∀𝑣 ∈ 𝑉 (𝐺 − 𝑋).

As

|𝑉 (𝐺 − 𝑋) | ≤ 2𝑘 + 2 − 2ℓ = 2(𝑘 − ℓ) + 2 = 2(𝑘 − ℓ + 1) and 𝜒(𝐺 − 𝑋) ≤ 𝑘 − ℓ + 1,

𝐺 − 𝑋 with list assignment 𝐿𝜙 𝑓 satisfy the condition of Noel-Reed-Wu Theorem, and
hence𝐺 − 𝑋 has an 𝐿𝜙-colouring, a contradiction.

(3): If (3) does not hold, then there is a non-singletone part𝑃 of𝐺 such that all vertices
of 𝑃 are colourd, i.e., 𝑃 is a non-singleton part of 𝐺 contained in 𝑋 , and hence 𝜒(𝐺 −
𝑋) ≤ 𝑘 − 𝜆 = 𝑘 − ℓ. We still have |𝑉 (𝐺 − 𝑋) | ≤ 2𝑘 + 2 − 2ℓ − (𝜆 − 1) ≤ 2(𝑘 − ℓ) + 1.
Hence by Noel-Reed-Wu Theorem,𝐺 − 𝑋 has an 𝐿𝜙 𝑓 -colouring, a contradiction.

(4): Assume 𝑣∗ is the only badly coloured vertex. Then {𝑣∗} is an 𝑓 -class of size 1 in
𝑋 𝑓 . This implies that |𝑌 𝑓 | ≥ |𝐿 (𝑣∗) | ≥ 𝑘 . Assume to the contrary that |𝑌 𝑓 | = 𝑘 . This
implies that for all singleton 𝑓 -classes {𝑣} ∈ 𝑋 𝑓 , 𝐿 (𝑣) = 𝑌 𝑓 .

Assume 𝑓 −1 (𝑐) ∈ 𝑋 𝑓 is an 𝑓 -class of size at least 2, and 𝑃𝑖 is the part of𝐺 containing
𝑓 −1 (𝑐). As the size of 𝑓 −1 (𝑐) is at least 2, 𝑃𝑖 is not singleton-part and hence it follows
from (3) that there is an 𝑓 -class {𝑣} ∈ 𝑋 𝑓 such that 𝑣 ∈ 𝑃𝑖 . Thus, 𝐿 (𝑣) = 𝑌 𝑓 , 𝑐 ∈ 𝐿 (𝑣)
and we can colour 𝑣 with colour 𝑐, and colour 𝑣∗ with 𝑓 (𝑣). The resulting colouring is
a pseudo 𝐿-colouring of𝐺 with no badly coloured vertices, i.e., an 𝐿-colouring of𝐺 , a
contradiction.

This completes the proof of Lemma 5.1. ■

Lemma 5.2 Assume 𝜆 ≥ 2 and 𝐺 has at most 𝜆 − 1 singletons. Then 𝐺 𝑓 − 𝑋 𝑓 contains at
most 𝜆 − 2 singletons of 𝐺 .
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Proof If 𝐺 has at most 𝜆 − 2 singletons, then the conclusion is trivial. Assume 𝐺 has
exactly 𝜆 − 1 singletons (i.e., 𝑝1 = 𝜆 − 1), and assume to the contrary that all the 𝜆 − 1
singletons of𝐺 are contained in𝐺 𝑓 − 𝑋 𝑓 . By (3) of Lemma 5.1, for each of the 𝑘 −𝜆 + 1
2+-parts 𝑃 of 𝐺 , 𝑋 𝑓 has a singleton 𝑓 -class {𝑣} with 𝑣 ∈ 𝑃. By Lemma 5.1, we have
ℓ = 𝜆. By (2) of Lemma 5.1, all the ℓ 𝑓 -classes of size 2 are contained in 𝑋 𝑓 . Thus

|𝑉 (𝑋 𝑓 ) | ≥ 2ℓ + 𝑘 − 𝜆 + 1 = 𝜆 + 𝑘 + 1. (5.1)

If a 2-part 𝑃 of𝐺 is contained in𝑉 (𝑋 𝑓 ), then 𝐿 (𝑃) ⊆ 𝑌 𝑓 . By Lemma 3.2,

2𝑘 ≤ |𝐿 (𝑃) | ≤ |𝑌 𝑓 |.

This contradicts to the fact that |𝑌 𝑓 | < |𝐶𝐿 | = |𝑉 | − 𝜆 ≤ 2𝑘 .
Thus for each 2-part 𝑃 of 𝐺 , |𝑃 ∩ 𝑉 (𝐺 𝑓 − 𝑋 𝑓 ) | ≥ 1. (Note that a 2-part has no

common colour in the lists of its vertices, so 𝑃 is not an 𝑓 -class). Hence

|𝑉 (𝐺 𝑓 − 𝑋 𝑓 ) | ≥ 𝜆 − 1 + 𝑝2. (5.2)

As 𝑝1 = 𝜆 − 1, it follows from (5.1) and (5.2) that

2𝑘+2 = |𝑉 | = |𝑉 (𝑋 𝑓 ) |+|𝑉 (𝐺 𝑓−𝑋 𝑓 ) | ≥ (𝜆+𝑘+1)+(𝜆−1+𝑝2) = 2𝜆+𝑘+𝑝2 = 2𝑝1+2+𝑘+𝑝2.

So
𝑝+3 + 𝑝2 + 𝑝1 = 𝑘 ≥ 2𝑝1 + 𝑝2,

which implies that 𝑝+3 ≥ 𝑝1, in contrary to (4.7).
This completes the proof of Lemma 5.2. ■

6 Near acceptable colourings

We have shown in the previous section that the partition S of 𝑉 (𝐺) induced by a
pseudo-𝐿-colouring of𝐺 has some nice properties. However, for the proof of Theorem
1.2, one more restriction need to be added to a pseudo-𝐿-colouring. In this section, we
define the concept of near acceptable 𝐿-colouring of 𝐺 , and prove that the partition S
of 𝐺 induced by a near acceptable 𝐿-colouring of 𝐺 enables us to construct a proper
𝐿-colouring.

Definition 6.1 A colour 𝑐 is called frequent if one of the following holds:

(1) |𝐿−1 (𝑐) | ≥ 𝑘 + 2.
(2) |𝐿−1 (𝑐) ∩ 𝑇 | ≥ 𝜆.
(3) |𝑇 | = 𝜆 − 1 ≥ 1 and 𝑇 ⊆ 𝐿−1 (𝑐).

Definition 6.2 A pseudo 𝐿-colouring 𝑓 of 𝐺 is near acceptable if each badly coloured
vertex is coloured by a frequent colour.

The concept of near acceptable 𝐿-colouring was first used in [17] for the proof of
Noel-Reed-Wu Theorem. For the proof of Theorem 1.2, as 𝐺 has one more vertex, the
definition of frequent colours is different from that in [17]. Thus the near acceptable 𝐿-
colouring in this paper is different from the one in [17]. The difference makes it more
difficult to find a near acceptable 𝐿-colouring of 𝐺 . Nevertheless, we shall show that
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analog to [17], the existence of a near acceptable 𝐿-colouring of𝐺 implies the existence
of an 𝐿-colouring of𝐺 .

Lemma 6.1 𝐺 has no near acceptable 𝐿-colouring.

Proof Assume to the contrary that 𝑓 is a near acceptable 𝐿-colouring of 𝐺 . Since
|𝑋 𝑓 | > |𝑌 𝑓 |, there is a colour class 𝑓 −1 (𝑐∗) ∈ 𝑋 𝑓 with 𝑐∗ ∉ 𝑌 𝑓 . Hence 𝑓 −1 (𝑐∗) = {𝑣∗}
is a badly coloured singleton 𝑓 -class.

Since 𝑓 −1 (𝑐∗) = {𝑣∗} ∈ 𝑋 𝑓 , we have 𝐿 (𝑣∗) ⊆ 𝑌 𝑓 , and hence

𝑘 ≤ |𝐿 (𝑣∗) | ≤ |𝑌 𝑓 | < |𝑋 𝑓 |.

On the other hand, 𝑐∗ ∉ 𝑌 𝑓 implies that for each 𝑓 −1 (𝑐) ∈ 𝑋 𝑓 , there exists 𝑣 ∈ 𝑓 −1 (𝑐),
such that 𝑐∗ ∉ 𝐿 (𝑣). Thus

|𝐿−1 (𝑐∗) | ≤ 2𝑘 + 2 − |𝑋 𝑓 | ≤ 𝑘 + 1.

So 𝑐∗ is not a frequent colour of Type (1).
By Lemma 5.1,𝑉 𝑓 − 𝑋 𝑓 contains at most 𝜆 − 1 singletons of𝐺 . Hence

|𝐿−1 (𝑐∗) ∩ 𝑇 | ≤ 𝜆 − 1.

So 𝑐∗ is not a frequent colour of Type (2).
If |𝑇 | = 𝜆 − 1 ≥ 1, then by Lemma 5.2, |𝐿−1 (𝑐∗) ∩𝑇 | ≤ |𝑉 (𝑉 𝑓 − 𝑋 𝑓 ) ∩𝑇 | ≤ 𝜆 − 2.

Hence 𝑇 ⊈ 𝐿−1 (𝑐∗). So 𝑐∗ is not a frequent colour of Type (3).
Therefore, 𝑐∗ is not frequent, a contradiction. ■

7 Upper bound on the number frequent colours

This section proves that there are at most 𝑘−1 frequent colours. Assume to the contrary
that there is a set 𝐹 of 𝑘 frequent colours. We will construct a near acceptable colouring
𝑓 of𝐺 in the following three steps:

(1) Construct a partial 𝐿-colouring 𝑓1 of𝐺 using colours from𝐶𝐿 − 𝐹 , that colours as
many vertices as possible, and subject to this, the coloured vertices are distributed
among the parts of𝐺 as evenly as possible. Let𝑉1 be the set of vertices coloured by 𝑓1.

(2) Order the parts of𝐺 as 𝑃1, 𝑃2, . . . , 𝑃𝑘 so that |𝑃𝑖 −𝑉1 | ≥ |𝑃𝑖+1 −𝑉1 | for
𝑖 = 1, 2, . . . , 𝑘 − 1. Colour greedily in this order the vertices of 𝑃𝑖 −𝑉1 by a common
permissible colour from 𝐹 , until this process cannot be carried out any more. This
partial 𝐿-colouring will be denoted by 𝑓2. Let𝑉2 be the set of vertices coloured by 𝑓2.

(3) Extend 𝑓1 ∪ 𝑓2 to a near acceptable 𝐿-colouring (for example, if for each remaining
part 𝑃𝑖 , 𝑃𝑖 −𝑉1 contains at most one vertex, then we arbitrarily colour that vertex
by a remaining colour from 𝐹 to obtain a near acceptable 𝐿-colouring of𝐺).

The difficult part is to prove that 𝑓1 ∪ 𝑓2 can be extended to a near acceptable 𝐿-
colouring. What we really proved is that if this cannot be done, then every part of 𝐺
is a 3−-part, which is in contrary to Theorem 4.1.

In the proof, we often need to modify a partial 𝐿-colouring.
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Definition 7.1 Assume 𝑓 is a partial 𝐿-colourings of 𝐺 . For distinct colours
𝑐1, 𝑐2, . . . , 𝑐𝑡 ∈ 𝐶𝐿 , and distinct indices 𝑖1, 𝑖2, . . . , 𝑖𝑡 ∈ {1, 2, . . . , 𝑘}, we denote by

𝑓 (𝑐1 → 𝑃𝑖1 , 𝑐2 → 𝑃𝑖2 , . . . , 𝑐𝑡 → 𝑃𝑖𝑡 )

the partial 𝐿 colouring of𝐺 obtained from 𝑓 by the following operation:

• First, for 𝑗 = 1, 2, . . . , 𝑡, uncolour vertices in 𝑓 −1 (𝑐 𝑗 ) (it is allowed that
𝑓 −1 (𝑐 𝑗 ) = ∅, i.e., 𝑐 𝑗 is not used by 𝑓 ).

• Second, for 𝑗 = 1, 2, . . . , 𝑡, colour vertices in 𝐿−1 (𝑐 𝑗 ) ∩ 𝑃𝑖 𝑗 by colour 𝑐 𝑗 .

Now we are ready to prove the following lemma.

Lemma 7.1 There are at most 𝑘 − 1 frequent colours.

Proof Assume to the contrary that there is a set 𝐹 of 𝑘 frequent colours. A valid partial
𝐿-colouring 𝑓 of𝐺 is a partial 𝐿-colouring of𝐺 using colours from𝐶𝐿 − 𝐹 .

For a valid partial 𝐿-colouring 𝑓 of𝐺 , for 𝑖 = 1, 2, . . . , 𝑘 , let

𝑆 𝑓 ,𝑖 = 𝑃𝑖 ∩ 𝑓 −1 (𝐶𝐿 − 𝐹)

be the set of coloured vertices in 𝑃𝑖 . Let

𝜏1 ( 𝑓 ) =

𝑘∑︁
𝑖=1

|𝑆 𝑓 ,𝑖 |,

𝜏2 ( 𝑓 ) =

𝑘∑︁
𝑖=1

|𝑆 𝑓1 ,𝑖 |2.

We choose a valid partial 𝐿-colouring 𝑓1 of𝐺 such that

𝜏( 𝑓1) = (𝜏1 ( 𝑓1),−𝜏2 ( 𝑓1))

is lexicographically maximum, i.e., the number of coloured vertices 𝜏( 𝑓1) is maximum,
and subject to this, 𝜏2 ( 𝑓 ) =

∑𝑘
𝑖=1 |𝑆 𝑓1 ,𝑖 |2 is minimum, which means that the coloured

vertices are distributed among the parts of𝐺 as evenly as possible.
Let 𝑉1 = 𝑓 −11 (𝐶𝐿 − 𝐹) =

⋃𝑘
𝑖=1 𝑆 𝑓 ,𝑖 be the set of vertices coloured by 𝑓1. By the

maximality of 𝜏1 ( 𝑓1),𝑉1 must have used all the colours in𝐶𝐿−𝐹 , and hence |𝐶𝐿−𝐹 | ≤
|𝑉1 |.

If |𝑉 −𝑉1 | ≤ 𝑘 , then let 𝑔 : 𝑉 −𝑉1 → 𝐹 be an arbitrary injectivemapping. The union
𝑓1∪𝑔 is a near acceptable 𝐿-colouring of𝐺 , and we are done. Thus wemay assume that

|𝑉 −𝑉1 | ≥ 𝑘 + 1, and hence |𝑉1 | ≤ 𝑘 + 1. (7.1)

For 𝑖 = 1, 2, . . . , 𝑘 , let

𝑅 𝑓1 ,𝑖 = 𝑃𝑖 − 𝑆 𝑓 ,𝑖 .
For a colour 𝑐 ∈ 𝐶𝐿 , let

𝑅𝑖 (𝑐) = |𝐿−1 (𝑐) ∩ 𝑅 𝑓1 ,𝑖 |
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be the number of vertices in 𝑅 𝑓1 ,𝑖 that can be coloured by 𝑐, and

𝑅𝑖 (𝐶𝐿 − 𝐹) =
∑︁

𝑐∈𝐶𝐿−𝐹
𝑅𝑖 (𝑐)

be the total number of vertices in 𝑅 𝑓1 ,𝑖 that can be coloured by colours from𝐶𝐿 − 𝐹 .
If 𝑐 ∈ 𝐶𝐿 − 𝐹 , then

𝑅𝑖 (𝑐) ≤ | 𝑓 −11 (𝑐) |,

for otherwise, 𝑓1 (𝑐 → 𝑃𝑖) is a valid partial 𝐿-colouring of 𝐺 which colours more
vertices than 𝑓1, in contrary to the choice of 𝑓1.

Definition 7.2 A colour 𝑐 ∈ 𝐶𝐿 −𝐹 is said to bemovable to 𝑃𝑖 if 𝑅𝑖 (𝑐) = | 𝑓 −11 (𝑐) |. ■

Observation 7.2 The following facts will be used frequently in the argument below.

(1) If 𝑐 ∈ 𝐶𝐿 − 𝐹 is movable to 𝑃𝑖 , then 𝑓1 (𝑐 → 𝑃𝑖) is a valid partial 𝐿-colouring of𝐺 with
𝜏1 ( 𝑓1 (𝑐 → 𝑃𝑖)) = 𝜏1 ( 𝑓1).

(2) 𝑅𝑖 (𝐶𝐿 − 𝐹) ≤ |𝑉1 − 𝑃𝑖 |, and if 𝑅𝑖 (𝐶𝐿 − 𝐹) = |𝑉1 − 𝑃𝑖 |, then

every colour 𝑐 ∈ 𝐶𝐿 − 𝐹 with 𝑓 −11 (𝑐) ∩ 𝑃𝑖 = ∅ is movable to 𝑃𝑖 . (P1)

(3) If 𝑓 −11 (𝑐) is a singleton 𝑓1-class, then 𝑐 is movable to 𝑃𝑖 if and only if 𝑐 ∈ 𝐿 (𝑅 𝑓 ,𝑖).
(4) For any choices of distinct colours 𝑐1, 𝑐2, . . . , 𝑐𝑡 ∈ 𝐶𝐿 and indices 𝑖1, 𝑖2, . . . , 𝑖𝑡 , 𝑓1 (𝑐1 →

𝑃𝑖1 , 𝑐2 → 𝑃𝑖2 , . . . , 𝑐𝑡 → 𝑃𝑖𝑡 ) is a partial 𝐿-colouring of 𝐺 .

Proof (1),(3), (4) are trivial.
(2): If 𝑐 ∈ 𝐶𝐿 −𝐹 and 𝑓 −1 (𝑐) ∩𝑃𝑖 ≠ ∅, then 𝑅𝑖 (𝑐) = 0, for otherwise, we can colour

vertices in {𝑣 ∈ 𝑅 𝑓1 ,𝑖 : 𝑐 ∈ 𝐿 (𝑣)} with colour 𝑐. By the fact that 𝑅𝑖 (𝑐) ≤ | 𝑓 −11 (𝑐) |,
we have 𝑅𝑖 (𝑐) ≤ | 𝑓 −11 (𝑐) − 𝑃𝑖 | for any colour 𝑐 ∈ 𝐶𝐿 − 𝐹 . Hence 𝑅𝑖 (𝐶𝐿 − 𝐹) =∑
𝑐∈𝐶𝐿−𝐹 𝑅𝑖 (𝑐) ≤ |𝑉1 − 𝑃𝑖 |, and equality holds only if 𝑅𝑖 (𝑐) = | 𝑓 −11 (𝑐) | for all 𝑐 ∈

𝐶𝐿 − 𝐹 with 𝑓 −11 (𝑐) ∩ 𝑃𝑖 = ∅. ■

Claim 7.3 If |𝑃𝑖 | = 2, then 𝑆 𝑓1 ,𝑖 ≠ ∅.

Proof Assume to the contrary that 𝑃𝑖 = {𝑢, 𝑣} and 𝑆 𝑓1 ,𝑖 = ∅. By Lemma 3.2, 𝐿 (𝑢 ∧
𝑣) = ∅. Hence |𝐶𝐿 | ≥ 2𝑘 and |𝑉1 | ≥ |𝐶𝐿 − 𝐹 | ≥ 𝑘 . So there are at least 𝑘 𝑓1-classes. As
|𝑉1 | ≤ 𝑘+1 (see (7.1)), each 𝑓1-class is a singleton, except atmost one 𝑓1-class is of size 2.

Since 𝑆 𝑓1 ,𝑖 = ∅, there is an index 𝑗0 such that | 𝑓1 (𝑆 𝑓1 , 𝑗0 )) | ≥ 2. Assume 𝑐1, 𝑐2 ∈
𝑓1 (𝑆 𝑓1 , 𝑗0 ). At least one of 𝑓 −11 (𝑐1), 𝑓 −11 (𝑐2) is a singleton 𝑓1-class.

If |𝐶𝐿 | = 2𝑘 , then 𝐿 (𝑢 ∨ 𝑣) = 𝐶𝐿 and by (3) of Observation 7.2, one of 𝑐1, 𝑐2, say
𝑐1, is movable to 𝑃𝑖 and 𝑓 −11 (𝑐1) is a singleton 𝑓1-class. If |𝐶𝐿 | = 2𝑘 + 1, then there are
𝑘 + 1 𝑓1-classes, and hence each 𝑓1-class is a singleton. So both 𝑓 −11 (𝑐1), 𝑓 −11 (𝑐2) are
singleton 𝑓1-classes, and at least one of 𝑐1, 𝑐2 belongs to 𝐿 (𝑅 𝑓1 ,𝑖) and hence is movable
to 𝑃𝑖 .

Assume 𝑓 −11 (𝑐1) is a singleton 𝑓1-class and 𝑐1 is movable to 𝑃𝑖 .
Then 𝜏1 ( 𝑓1 (𝑐1 → 𝑃𝑖)) = 𝜏1 ( 𝑓1), 𝜏2 ( 𝑓1 (𝑐1 → 𝑃𝑖)) < 𝜏2 ( 𝑓1). This is in contrary to

our choice of 𝑓1. ■
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By a re-ordering, if needed, we assume that

|𝑅 𝑓1 ,1 | ≥ |𝑅 𝑓1 ,2 | ≥ . . . ≥ |𝑅 𝑓1 ,𝑘 |. (R1)

In the second step, starting from 𝑖 = 1 to 𝑘 , we do the following: If there is a colour
𝑐 ∈ 𝐹 such that 𝑐 ∈ ⋂

𝑣∈𝑅 𝑓1 ,𝑖
𝐿 (𝑣) and 𝑐 is not used by 𝑅 𝑓1 , 𝑗 for 𝑗 < 𝑖, then we colour

𝑅 𝑓1 ,𝑖 with 𝑐. The step terminates when such a colour does not exist.
Assume the second step stopped at 𝑖0 +1, and hence 𝑅 𝑓1 ,1, . . . , 𝑅 𝑓1 ,𝑖0 are coloured in

the second step.
Note that in the ordering of 𝑅 𝑓1 ,1, 𝑅 𝑓1 ,2, . . . , 𝑅 𝑓1 ,𝑘 , if someof the 𝑅 𝑓1 , 𝑗 ’s has the same

cardinality, then we can choose different ordering so that (R1) still holds. Also with a
given ordering of 𝑅 𝑓1 ,1, 𝑅 𝑓1 ,2, . . . , 𝑅 𝑓1 ,𝑘 , when we colour all the vertices of 𝑅 𝑓1 ,𝑖 , there
may be more than one choice of the colours. We assume that

Subject to (R1), the ordering of 𝑅 𝑓1 ,1, 𝑅 𝑓1 ,2, . . . , 𝑅 𝑓1 ,𝑘 and
the colouring of the 𝑅 𝑓1 ,𝑖 ’s are chosen so that 𝑖0 is maximum .

(R2)

We denote by 𝑓2 the colouring constructed in the second step, and by 𝑉2 the set of
vertices coloured in this step, and let𝑉3 = 𝑉 −𝑉1 −𝑉2 be the set of uncoloured vertices
after the second step. Let 𝐹1 be the frequent colours used in second step, and let 𝐹2 =

𝐹 − 𝐹1. So |𝐹1 | = 𝑖0 and |𝐹2 | = 𝑘 − 𝑖0. Note that it is possible that 𝑖0 = 0 and𝑉2 = ∅.
If |𝑅 𝑓1 ,𝑖0+1 | ≤ 1, then |𝑉3 | ≤ 𝑘 − 𝑖0 = |𝐹2 |, and 𝑓1 ∪ 𝑓2 can be extended to a near

acceptable 𝐿-colouring of𝐺 by colouring𝑉3 injectively by 𝐹2, and we are done.
Therefore the following hold:

|𝑅 𝑓1 ,𝑖0+1 | ≥ 2,
|𝑉2 | ≥ 2𝑖0,
|𝑉3 | ≥ 𝑘 − 𝑖0 + 1,
|𝑉1 | = |𝑉 | − |𝑉2 | − |𝑉3 | ≤ 𝑘 − 𝑖0 + 1.

(7.2)

Observe that for each colour 𝑐 ∈ 𝐹2,

𝑅𝑖0+1 (𝑐) ≤ |𝑅 𝑓1 ,𝑖0+1 | − 1,

and for each colour 𝑐 ∈ 𝐹1,
𝑅𝑖0+1 (𝑐) ≤ |𝑅 𝑓1 ,𝑖0+1 |.

Hence

𝑅𝑖0+1 (𝐶𝐿 − 𝐹) =
∑︁

𝑐∈𝐶𝐿−𝐹
𝑅𝑖0+1 (𝑐)

=
∑︁
𝑐∈𝐶𝐿

𝑅𝑖0+1 (𝑐) −
∑︁

𝑐∈𝐹1∪𝐹2
𝑅𝑖0+1 (𝑐)

≥ 𝑘 |𝑅 𝑓1 ,𝑖0+1 | − (|𝑅 𝑓1 ,𝑖0+1 | − 1) (𝑘 − 𝑖0) − |𝑅 𝑓1 ,𝑖0+1 |𝑖0 = 𝑘 − 𝑖0,

(7.3)

and if the equality holds, then

∀𝑐 ∈ 𝐹2, 𝑅𝑖0+1 (𝑐) = |𝑅 𝑓1 ,𝑖0+1 | − 1, (7.4)
∀𝑐 ∈ 𝐹1, 𝑅𝑖0+1 (𝑐) = |𝑅 𝑓1 ,𝑖0+1 |. (7.5)
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Combining (7.2) with (7.3) and by (2) of Observation 7.2, we have

𝑘 − 𝑖0 + 1 ≥ |𝑉1 | ≥ |𝑉1 − 𝑃𝑖0+1 | ≥ 𝑅𝑖0+1 (𝐶𝐿 − 𝐹) ≥ 𝑘 − 𝑖0. (7.6)

So |𝑉1 | = 𝑘 − 𝑖0 or |𝑉1 | = 𝑘 − 𝑖0 + 1.

Case 1: |𝑉1 | = 𝑘 − 𝑖0.

In this case,

|𝑉1 | = |𝑉1 − 𝑃𝑖0+1 | = 𝑅𝑖0+1 (𝐶𝐿 − 𝐹) = 𝑘 − 𝑖0,
𝑆 𝑓1 ,𝑖0+1 = 𝑉1 ∩ 𝑃𝑖0+1 = ∅, and 𝑃𝑖0+1 = 𝑅 𝑓1 ,𝑖0+1.

(7.7)

So (P1) and (P2) holds for 𝑖0+1. By Claim 7.3, |𝑃𝑖0+1 | = |𝑅 𝑓1 ,𝑖0+1 | ≥ 3. Hence |𝑉2 | ≥ 3𝑖0.
This implies that

𝑘 − 𝑖0 = |𝑉1 | ≤ 𝑘 − 2𝑖0 + 1,
and hence 𝑖0 ≤ 1.

Case 1.1: 𝑖0 = 1.

In this case, |𝑉1 | = 𝑘 − 1, |𝑉2 | ≥ 3 and |𝑉3 | ≥ 𝑘 (by (7.2), i.e. |𝑉3 | ≥ 𝑘 − 𝑖0 + 1 = 𝑘 ).
Since |𝑉 | = 2𝑘 + 2, we conclude that |𝑉2 | = |𝑅 𝑓1 ,1 | = 3 and |𝑉3 | = 𝑘 .

By (7.7), 𝑅2 (𝐶𝐿 − 𝐹) = |𝑉1 | = 𝑘 − 1. This implies that∑︁
𝑐∈𝐹

𝑅2 (𝑐) =
∑︁
𝑐∈𝐶

𝑅2 (𝑐) −
∑︁

𝑐∈𝐶−𝐹
𝑅2 (𝑐) = 3𝑘 − 𝑅2 (𝐶𝐿 − 𝐹) = 2𝑘 + 1.

Hence there is a colour 𝑐1 ∈ 𝐹 such that 𝑅2 (𝐶𝐿 − 𝐹) (𝑐1) = |𝐿−1 (𝑐1) ∩ 𝑅 𝑓1 ,2 | ≥ 3 =

|𝑅 𝑓1 ,1 | ≥ |𝑅 𝑓1 ,2 |. So 𝑐1 ∈ ⋂
𝑣∈𝑅 𝑓1 ,2

𝐿 (𝑣). On the other hand, by (7.7), 𝑃2 = 𝑅 𝑓1 ,2, and
by Lemma 3.2,

⋂
𝑣∈𝑃2 𝐿 (𝑣) = ∅, a contradiction.

Case 1.2: 𝑖0 = 0.

In this case,

|𝑉1 | = 𝑅1 (𝐶𝐿 − 𝐹) = 𝑘, |𝑉2 | = 0, |𝑉3 | = 𝑘 + 2. (7.8)

Combining with 𝑖0 = 0 and (P2), for each colour 𝑐 ∈ 𝐹 , 𝑅1 (𝑐) = |𝑅 𝑓1 ,1 | − 1.

Claim 7.4 |𝑃1 | = |𝑅 𝑓1 ,1 | = 3 and 𝑅1 (𝑐) = 2 for any colour 𝑐 ∈ 𝐹 .

Proof If |𝑅 𝑓1 ,1 | ≥ 4, then for any colour 𝑐 ∈ 𝐹 , 𝑓1 (𝑐 → 𝑃1) can be extended to a near
acceptable 𝐿-colouring of𝐺 by colouring the remaining 𝑘 − 1 vertices of𝑉3 injectively
with the remaining 𝑘 − 1 colours of 𝐹 (note that |𝐿−1 (𝑐) ∩ 𝑃1 | = |𝑅 𝑓1 ,1 | − 1 ≥ 3).

Thus |𝑃1 | = |𝑅 𝑓1 ,1 | = 3 (cf. (7.7)). This implies that 𝑅1 (𝑐) = 2 for any colour 𝑐 ∈
𝐹 . ■

If there is a colour 𝑐 ∈ 𝐹 such that 𝑅2 (𝑐) ≥ 2, then 𝑓1 can be extended to a near
acceptable 𝐿-colouring of 𝐺 by colouring a 2-subset 𝑈1 of of 𝑅 𝑓1 ,2 with a colour 𝑐 ∈⋂
𝑣∈𝑈1 𝐿 (𝑣) ∩ 𝐹 , colouring a 2-subset𝑈2 of 𝑅 𝑓1 ,1 by a colour from 𝑐′ ∈ ⋂

𝑣∈𝑈2 𝐿 (𝑣) ∩
(𝐹−{𝑐}), and colouring the remaining 𝑘−2 vertices of𝑉3 injectivelywith the remaining
𝑘 − 2 colours of 𝐹 .
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Thus
𝑅2 (𝑐) ≤ 1,∀𝑐 ∈ 𝐹 and

∑︁
𝑐∈𝐹

𝑅2 (𝑐) ≤ 𝑘. (7.9)

This implies that |𝑅 𝑓1 ,2 | ≤ 2, for otherwise interchanging the roles of 𝑅 𝑓1 ,1 and 𝑅 𝑓1 ,2,
we would have 𝑅2 (𝑐) = |𝑅 𝑓1 ,2 | − 1 ≥ 2 for all 𝑐 ∈ 𝐹 , in contrary to (7.9).

Claim 7.5 |𝑅 𝑓1 ,𝑖 | = 1 for 𝑖 = 2, 3, . . . , 𝑘 .

Proof Assume to the contrary that |𝑅 𝑓1 ,2 | = 2 (as |𝑅 𝑓1 ,2 | ≤ 2), then by Observation
7.2, 𝑅2 (𝐶𝐿 − 𝐹) ≤ |𝑉1 − 𝑃2 | = |𝑉1 | − |𝑆 𝑓1 ,2 | = 𝑘 − |𝑆 𝑓1 ,2 | and∑︁

𝑐∈𝐹
𝑅2 (𝑐) =

∑︁
𝑐∈𝐶𝐿

𝑅2 (𝑐) −
∑︁

𝑐∈𝐶𝐿−𝐹
𝑅2 (𝑐) = 2𝑘 − 𝑅2 (𝐶𝐿 − 𝐹) ≥ 𝑘 + |𝑆 𝑓1 ,2 |.

(7.10)
Combining with (7.9), we have |𝑆 𝑓1 ,2 | = 0 and hence 𝑅 𝑓1 ,2 = 𝑃2, in contrary to Claim
7.3. By Claim 7.3, |𝑆 𝑓1 ,2 | ≥ 1, in contrary to (7.9).

Therefore |𝑅 𝑓1 ,2 | = 1 and hence |𝑅 𝑓1 ,𝑖 | = 1 for 𝑖 = 2, 3, . . . , 𝑘 (note that |𝑉3 | =
𝑘 + 2). ■

Claim 7.6 |𝑆 𝑓1 , 𝑗 | ≤ 2 for 𝑗 = 2, 3, . . . , 𝑘 .

Proof If | 𝑓1 (𝑆 𝑓1 , 𝑗 ) | ≥ 2 for some 𝑗 , say 𝑐1, 𝑐2 ∈ 𝑓1 (𝑆 𝑓1 , 𝑗 ), then 𝜏1 ( 𝑓1 (𝑐1 → 𝑃1)) =
𝜏1 ( 𝑓1) (as (P1) holds) and 𝜏2 ( 𝑓1 (𝑐 → 𝑃1)) < 𝜏2 ( 𝑓1), because

|𝑆 𝑓1 ,1 | = 0 ( by 7.7), |𝑆 𝑓1 (𝑐1→𝑃1 ) ,1 | = 𝑅1 (𝐶𝐿 − 𝐹) (𝑐1),

and
|𝑆 𝑓1 (𝑐1→𝑃1 ) , 𝑗 | = |𝑆 𝑓1 , 𝑗 | − 𝑅1 (𝐶𝐿 − 𝐹) (𝑐1) > 0,

since | 𝑓1 (𝑆 𝑓1 , 𝑗 ) | ≥ 2. This is in contrary to our choice of 𝑓1.
Hence for each 𝑗 ∈ {2, 3, . . . , 𝑘}, | 𝑓1 (𝑆 𝑓1 , 𝑗 ) | ≤ 1, and |𝑆 𝑓1 , 𝑗 | ≤ | 𝑓 −11 (𝑐 𝑗 ) | for some

𝑐 𝑗 ∈ 𝐶𝐿 − 𝐹 . As (P1) holds, | 𝑓 −11 (𝑐 𝑗 ) | = 𝑅1 (𝐶𝐿 − 𝐹) (𝑐 𝑗 ) ≤ 2. So |𝑆 𝑓1 , 𝑗 | ≤ 2. ■

Combining with Claim 7.4, 7.5 and 7.6, we have

|𝑅 𝑓1 ,1 | = 3, |𝑆 𝑓1 ,1 | = 0, and for 2 ≤ 𝑗 ≤ 𝑘, |𝑅 𝑓1 , 𝑗 | = 1, |𝑆 𝑓1 , 𝑗 | ≤ 2.

So each part of𝐺 is 3−-part, in contrary to Theorem 4.1.

Case 2: |𝑉1 | = 𝑘 − 𝑖0 + 1.

If 𝑃𝑖0+1 = 𝑅 𝑓1 ,𝑖0+1, then by Claim 7.3, |𝑅 𝑓1 ,𝑖0+1 | ≥ 3 and |𝑉2 | ≥ 3𝑖0. By (7.2), |𝑉1 | =
|𝑉 | − |𝑉2 | − |𝑉3 | ≤ 2𝑘 + 2 − 3𝑖0 − (𝑘 − 𝑖0 + 1) = 𝑘 − 2𝑖0 + 1, and hence 𝑖0 = 0. This
implies that

|𝑉1 | = 𝑘 + 1, |𝑉2 | = 0, |𝑉3 | = 𝑘 + 1.
By Observation 7.2, 𝑅1 (𝐶𝐿 − 𝐹) ≤ |𝑉1 | = 𝑘 + 1, we conclude that∑︁
𝑐∈𝐹

𝑅1 (𝑐) ≥
∑︁
𝑐∈𝐶𝐿

𝑅1 (𝑐) −
∑︁

𝑐∈𝐶𝐿−𝐹
𝑅1 (𝑐) ≥ 3𝑘 − 𝑅1 (𝐶𝐿 − 𝐹) ≥ 2𝑘 − 1 ≥ 𝑘 + 1.
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So there is a colour 𝑐 ∈ 𝐹 such that 𝑅1 (𝑐) ≥ 2. We can extend 𝑓1 to a near acceptable
𝐿-colouring of 𝐺 by colouring two vertices of 𝑅 𝑓1 ,1 with 𝑐, and the remaining 𝑘 − 1
vertices of𝑉3 injectively with the remaining 𝑘 − 1 colours of 𝐹 .

Thus 𝑃𝑖0+1 ≠ 𝑅 𝑓1 ,𝑖0+1, i.e., 𝑆 𝑓1 ,𝑖0+1 ≠ ∅.
As 𝑆 𝑓1 ,𝑖0+1 ≠ ∅, |𝑉1 − 𝑃𝑖0+1 | = |𝑉1 | − |𝑆 𝑓1 ,𝑖0+1 | < |𝑉1 | and by (7.6), we have

|𝑉1 − 𝑃𝑖0+1 | = 𝑘 − 𝑖0 = 𝑅𝑖0+1 (𝐶𝐿 − 𝐹), |𝑆 𝑓1 ,𝑖0+1 | = 1. (7.11)

So (P1) and (P2) holds for 𝑖0 + 1.

Claim 7.7 For each 1 ≤ 𝑖 ≤ 𝑖0 + 1, |𝑅 𝑓1 ,𝑖 | = 2 and for 𝑗 ≥ 𝑖0 + 2, |𝑅 𝑓1 ,𝑖 | ≤ 2.

Proof By (7.2), we have |𝑉2 | ≥ 2𝑖0, |𝑉3 | ≥ 𝑘 − 𝑖0 + 1. Since |𝑉1 | + |𝑉2 | + |𝑉3 | = 2𝑘 + 2,
we conclude that

|𝑉1 | = 𝑘 − 𝑖0 + 1, |𝑉2 | = 2𝑖0, |𝑉3 | = 𝑘 − 𝑖0 + 1.

So ∀ 𝑗 ≤ 𝑖0 + 1, |𝑅 𝑓1 , 𝑗 | = 2, and ∀ 𝑗 ≥ 𝑖0 + 2, |𝑅 𝑓1 , 𝑗 | ≤ 2. ■

Claim 7.8 For 1 ≤ 𝑖 ≤ 𝑘 , if |𝑅 𝑓1 ,𝑖 | = 2, then |𝑆 𝑓1 ,𝑖 | = 1.

Proof By Claim 7.7, |𝑅 𝑓1 ,1 | = . . . = |𝑅 𝑓1 ,𝑖0+1 |. As (P2) holds, there are 𝑖0 colours 𝑐 ∈
𝐹1 ⊆ 𝐹 such that 𝑅𝑖0+1 (𝑐) = |𝑅 𝑓1 ,𝑖0+1 |. Therefore, for any index 𝑗 with |𝑅 𝑓1 , 𝑗 | = 2, if we
re-order the parts so that 𝑅 𝑓1 , 𝑗 and 𝑅 𝑓1 ,𝑖0+1 interchange positions (while the other parts
stay at their position), (R1) and (R2) are satisfied. So the conclusions we have obtained
for 𝑃𝑖0+1 hold for 𝑃 𝑗 . In particular, for any 𝑗 with |𝑅 𝑓1 , 𝑗 | = 2, we have |𝑆 𝑓1 , 𝑗 | = 1. ■

Claim 7.9 |𝑆 𝑓1 , 𝑗 | ≤ 2 for all 𝑗 .

Proof As (𝑃1) holds for 𝑖0 + 1, | 𝑓 −11 (𝑐) | = 𝑅𝑖0+1 (𝑐) ≤ |𝑅 𝑓1 ,𝑖0+1 | = 2 for any 𝑐 ∈
𝐶𝐿 − 𝐹 . If |𝑆 𝑓1 , 𝑗 | ≥ 3 for some 𝑗 , then there is a colour 𝑐 ∈ 𝐶𝐿 − 𝐹 for which the
following holds:

• | 𝑓 −11 (𝑐) ∩ 𝑃 𝑗 | = 1, or
• |𝑆 𝑓1 , 𝑗 | ≥ 4, and | 𝑓 −11 (𝑐) ∩ 𝑃 𝑗 | = 2.

Let

𝑓 ′1 = 𝑓1 (𝑐 → 𝑃𝑖0+1).

Then 𝑓 ′1 is a valid partial 𝐿-colouring of 𝐺 with 𝜏1 ( 𝑓 ′1 ) = 𝜏1 ( 𝑓1) (as (P1) holds). By
(7.11), |𝑆 𝑓1 ,𝑖0 | = 1. Thus either |𝑆 𝑓 ′1 , 𝑗 | = |𝑆 𝑓1 , 𝑗 | − 1 ≥ 2 and |𝑆 𝑓 ′1 ,𝑖0+1 | = 2, or |𝑆 𝑓 ′1 , 𝑗 | =
|𝑆 𝑓1 , 𝑗 | − 2 ≥ 2 and |𝑆 𝑓 ′1 ,𝑖0+1 | = 3. Hence 𝜏2 ( 𝑓 ′1 )) < 𝜏2 ( 𝑓1), in contrary to our choice of
𝑓1. ■

It follows from Claims 7.8 and 7.9 that each part of 𝐺 is 3−-part, in contrary to
Theorem 4.1.

This completes the proof of Lemma 7.1.
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8 Tighter upper bound for the number of frequent colours

In this section and the next section, we assume that (𝐺, 𝐿) is a minimum counterexam-
ple to Theorem 1.2 with

∑
𝑣∈𝑉 (𝐺) |𝐿 (𝑣) | maximum.

This section proves that there are at most 𝑘 − 𝑝1 − 1 frequent colours. Assume to
the contrary that there are 𝑘 − 𝑝1 frequent colours. We shall construct another 𝑘-list
assignment 𝐿′ of 𝐺 that has 𝑘 frequent colours. By Lemma 7.1, (𝐺, 𝐿′) is not a coun-
terexample to Theorem 1.2. Hence there is an 𝐿′-colouring 𝑓 of𝐺 . Using this colouring
𝑓 , we construct a near-acceptable 𝐿-colouring of𝐺 , which contradicts Lemma 6.1.

Let 𝐹 be the set of frequent colours, and 𝐹′ ⊆ 𝐹 be the set of frequent colours of
Type (1).

By Lemma 7.1, we may assume that |𝐹 | ≤ 𝑘 − 1. If 𝜆 = 1, then for any 𝑣 ∈ 𝑇 , all
colours in 𝐿 (𝑣) are frequent of Type (2), a contradiction (note that 𝑝1 ≥ 3, so 𝑇 ≠ ∅).
Thus 𝜆 ≥ 2.

Lemma 8.1 𝜆 ≤ 𝑝1 + 1.

Proof For 𝑐 ∈ 𝐶𝐿 − 𝐹′, by definition, |𝐿−1 (𝑐) | ≤ 𝑘 + 1. By Lemma 3.2, for each
𝑐 ∈ 𝐹′, |𝐿−1 (𝑐) | ≤ 𝑘 + 𝑝1 + 2. Therefore

𝑘 |𝑉 | ≤
∑︁
𝑣∈𝑉

|𝐿 (𝑣) | =
∑︁
𝑐∈𝐶𝐿

|𝐿−1 (𝑐) | ≤ |𝐹′ | (𝑘 + 𝑝1 + 2) + |𝐶𝐿 − 𝐹′ | (𝑘 + 1).

Hence

|𝐹′ | ≥ 𝑘 |𝑉 | − (𝑘 + 1) |𝐶𝐿 |
𝑝1 + 1

=
𝑘𝜆 − |𝐶𝐿 |
𝑝1 + 1

. (8.1)

As |𝐹′ | < 𝑘 , we have
|𝐶𝐿 | > 𝑘 (𝜆 − 𝑝1 − 1). (8.2)

Since 𝜆 ≥ 2, we have |𝐶𝐿 | ≤ 2𝑘 . Plug this into (8.2), we have 𝜆 ≤ 𝑝1 + 2.
If 𝜆 = 𝑝1+2, then |𝐶𝐿 | = |𝑉 | −𝜆 = 2𝑘 +2− (𝑝1+2) = 2𝑘 − 𝑝1 ≤ 2𝑘 −3 (as 𝑝1 ≥ 3).

This implies that 𝐺 has no 2-part (if {𝑢, 𝑣} is a 2-part of 𝐺 , then 𝐿 (𝑢) ∩ 𝐿 (𝑣) = ∅ and
hence |𝐶𝐿 | ≥ 2𝑘 ). By (4.7), 2𝑘 − 1 = |𝑉 | − 3 ≥ 3(𝑘 − 𝑝1) + 𝑝1. Hence

𝑝1 ≥
𝑘 + 1
2

. (8.3)

By (8.1),

|𝐹′ | ≥ 𝑘𝜆 − |𝐶𝐿 |
𝑝1 + 1

=
𝑘 (𝑝1 + 2) − (2𝑘 − 𝑝1)

𝑝1 + 1
=

(𝑘 + 1)𝑝1
𝑝1 + 1

= 𝑘 − 𝑘 − 𝑝1
𝑝1 + 1

> 𝑘 − 1.

Hence |𝐹′ | ≥ 𝑘 , a contradiction. Thus 𝜆 ≤ 𝑝1 + 1. ■

Lemma 8.2 𝐹 =
⋂
𝑣∈𝑇 𝐿 (𝑣).

Proof If 𝑝1 = 𝜆 − 1, then each colour in
⋂
𝑣∈𝑇 𝐿 (𝑣) is contained in at least 𝜆 − 1

singleton lists, and hence is a frequent colour of Type (3).
If 𝑝1 ≥ 𝜆, then each colour in

⋂
𝑣∈𝑇 𝐿 (𝑣) is contained in at least 𝜆 singleton lists,

and hence is a frequent colour of Type (2).
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In any case, ⋂
𝑣∈𝑇

𝐿 (𝑣) ⊆ 𝐹.

On the other hand, assume there is a frequent colour 𝑐 ∉
⋂
𝑣∈𝑇 𝐿 (𝑣), say 𝑐 ∉ 𝐿 (𝑣)

for some 𝑣 ∈ 𝑇 , then let 𝐿′ be the list assignment of𝐺 defined as 𝐿′ (𝑥) = 𝐿 (𝑥) for 𝑥 ≠ 𝑣
and 𝐿′ (𝑣) = 𝐿 (𝑣) ∪ {𝑐}. By our assumption that (𝐺, 𝐿) is a minimum counterexample
with

∑
𝑣∈𝑉 (𝐺) |𝐿 (𝑣) | maximum,𝐺 and 𝐿′ is not a counterexample to Theorem 1.2. So

𝐺 has an 𝐿′-colouring 𝑓 . But then 𝑓 is a near acceptable 𝐿-colouring of𝐺 , in contrary
to Lemma 6.1. Therefore 𝐹 ⊆ ⋂

𝑣∈𝑇 𝐿 (𝑣). ■

Lemma 8.3 There are at most 𝑘 − 𝑝1 − 1 frequent colours.

Proof Assume to the contrary that {𝑐𝑝1+1, 𝑐𝑝1+2, . . . , 𝑐𝑘} is a set of 𝑘 − 𝑝1 frequent
colours.

Assume 𝑇 = {𝑣1, 𝑣2, . . . , 𝑣𝑝1 }. We choose 𝑝1 colours 𝑐1, 𝑐2, . . . , 𝑐𝑝1 so that for 𝑖 =
1, 2, . . . , 𝑝1,

𝑐𝑖 ∈ 𝐿 (𝑣𝑖) − {𝑐𝑝1+1, . . . , 𝑐𝑘} − {𝑐1, . . . , 𝑐𝑖−1}.

As |𝐿 (𝑣𝑖) | ≥ 𝑘 , the colour 𝑐𝑖 exists.
Let𝐶′ = {𝑐1, 𝑐2, . . . , 𝑐𝑘} and define 𝐿′ as follows:

𝐿′ (𝑣) =
{
𝐶′ if 𝑣 ∈ 𝑇,
𝐿 (𝑣) otherwise.

By Lemma 8.1, 𝑝1 ≥ 𝜆− 1. If 𝑝1 ≥ 𝜆, then each colour in𝐶′ is Type-2 frequent with
respect to 𝐿′. If 𝑝1 = 𝜆 − 1, then each colour in 𝐶′ is Type-3 frequent with respect to
𝐿′. By Lemma 7.1, (𝐺, 𝐿′) is not a mimnimum counterexample to Theorem 1.2. Since
𝐶𝐿′ ⊆ 𝐶𝐿 , we know that (𝐺, 𝐿′) is not a counterexample to Theorem 1.2. Hence𝐺 has
an 𝐿′-colouring 𝑓 .

Note that if 𝑣 ∉ 𝑇 , then 𝑓 (𝑣) ∈ 𝐿 (𝑣). We shall modify 𝑓 to obtain a near acceptable
𝐿-colouring of𝐺 .

Let 𝑇 ′ = {𝑣𝑖 : 1 ≤ 𝑖 ≤ 𝑝1, 𝑐𝑖 ∈ 𝑓 (𝑇)}. As |𝑇 − 𝑇 ′ | = | 𝑓 (𝑇) − {𝑐1, 𝑐2, . . . , 𝑐𝑝1 }|,
there is a bijection 𝑔 : 𝑇 − 𝑇 ′ → 𝑓 (𝑇) − {𝑐1, 𝑐2, . . . , 𝑐𝑝1 }.

Let 𝑓 ′ : 𝑉 → 𝐶𝐿 be defined as follows:

𝑓 ′ (𝑣) =

𝑓 (𝑣) if 𝑣 ∉ 𝑇 ,
𝑐𝑖 if 𝑣 = 𝑣𝑖 ∈ 𝑇 ′ ,

𝑔(𝑣) if 𝑣 ∈ 𝑇 − 𝑇 ′ .

Then 𝑓 ′ is a near acceptable 𝐿-colouring of𝐺 , in contradiction to Lemma 6.1. ■

9 Final contradiction

We shall find a subset 𝑋 of 𝑇 and a set 𝐹′′ of 𝑘 − 𝑝1 colours so that for each 𝑐 ∈ 𝐹′′,

|𝐿−1 (𝑐) ∩ 𝑋 | ≥ 𝜆.
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This would imply that all the 𝑘 − 𝑝1 colours in 𝐹′′ are frequent (of Type (2)). This is in
contrary to Lemma 7.1.

For any colour 𝑐 ∈ 𝐶𝐿 − 𝐹 , |𝐿−1 (𝑐) | ≤ 𝑘 + 1. Let

𝑏 = min{𝑘 + 1 − |𝐿−1 (𝑐) | : 𝑐 ∈ 𝐶𝐿 − 𝐹}.

Lemma 9.1 There is a subset 𝑋 of 𝑇 such that

(1) |𝑋 | ≥ 𝑝1 − 𝜆 + 1.
(2) |𝐿 (𝑋) | ≤ 𝑘 + 𝑏.

Moreover, if 𝑏 = 0 or 𝑝1 = 𝜆 − 1, then |𝑋 | ≥ 𝑝1 − 𝜆 + 2.

Proof Let 𝑐′ ∈ 𝐶𝐿 − 𝐹 be a colour with |𝐿−1 (𝑐′) | = 𝑘 + 1 − 𝑏. By Lemma 8.2, there
is a vertex 𝑤 ∈ 𝑇 such that 𝑐′ ∉ 𝐿 (𝑤). Define a list assignment 𝐿′ as follows:

𝐿′ (𝑣) =
{
𝐿 (𝑣) ∪ {𝑐′} 𝑣 = 𝑤 ,

𝐿 (𝑣) otherwise.

By the maximality of
∑
𝑣∈𝑉 (𝐺) |𝐿 (𝑣) |,𝐺 has an 𝐿′-colouring 𝑓 . We must have 𝑓 (𝑤) =

𝑐′ and𝑤 is the only badly coloured vertex, for otherwise 𝑓 is a proper 𝐿-colouring of𝐺 .
Now 𝑓 is a pseudo 𝐿-colouring of 𝐺 . By Lemma 5.1, in the bipartite graph 𝐵 𝑓 , 𝑉 𝑓

has a subset 𝑋 𝑓 such that |𝑋 𝑓 | > |𝑌 𝑓 | = |𝑁𝐵 𝑓
(𝑋 𝑓 ) |, and𝑉 𝑓 −𝑋 𝑓 contains at most 𝜆−1

singletons of𝐺 .
It is easy to see that 𝑤 ∈ 𝑋 𝑓 and 𝑐′ ∉ 𝑌 𝑓 . Let

𝑋 = {𝑣 ∈ 𝑇 : {𝑣} is an 𝑓 -class in 𝑋 𝑓 }.

Then |𝑋 | = |𝑇 | − |(𝑉 𝑓 − 𝑋 𝑓 ) ∩ 𝑇 | ≥ 𝑝1 − 𝜆 + 1 and by Lemma 5.2, if 𝑝1 = 𝜆 − 1, then
|𝑋 | = |𝑇 | − |(𝑉 𝑓 − 𝑋 𝑓 ) ∩ 𝑇 | ≥ 𝑝1 − 𝜆 + 2.

Since each 𝑓 -class in 𝑋 𝑓 contains a vertex 𝑣 for which 𝑐′ ∉ 𝐿 (𝑣), we have

|𝐿 (𝑋) | ≤ |𝑌 𝑓 | < |𝑋 𝑓 | ≤ |𝑉 | − |𝐿−1 (𝑐′) | = 𝑘 + 1 + 𝑏.

So |𝐿 (𝑋) | ≤ 𝑘 + 𝑏.
It remains to prove that if 𝑏 = 0, i.e., |𝐿−1 (𝑐′) | = 𝑘 + 1, then |𝑋 | ≥ 𝑝1 − 𝜆 + 2.
Assume to the contrary that |𝐿−1 (𝑐′) | = 𝑘 + 1 and |𝑋 | = 𝑝1 − 𝜆 + 1. By Lemma 5.1,

|𝑌 𝑓 | ≥ 𝑘 + 1 and hence |𝑋 𝑓 | ≥ 𝑘 + 2, in contrary to |𝑋 𝑓 | ≤ |𝑉 | − |𝐿−1 (𝑐′) | = 𝑘 + 1.
This completes the proof of Lemma 9.1. ■

We order the colours in 𝐿 (𝑋) as 𝑐1, 𝑐2, . . . , 𝑐𝑡 , so that

|𝐿−1 (𝑐1) ∩ 𝑋 | ≥ |𝐿−1 (𝑐2) ∩ 𝑋 | ≥ . . . ≥ |𝐿−1 (𝑐𝑡 ) ∩ 𝑋 |,

where 𝑡 = |𝐿 (𝑋) |. Let 𝐹′′ = {𝑐1, 𝑐2, . . . , 𝑐𝑘−𝑝1 }.
It suffices to show that

|𝐿−1 (𝑐𝑘−𝑝1 ) ∩ 𝑋 | ≥ 𝜆,

and hence each colour 𝑐𝑖 ∈ 𝐹′′ is a frequent of Type (2).
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Let 𝑍 = {𝑐𝑘−𝑝1 , 𝑐𝑘−𝑝1+1, . . . , 𝑐𝑡 }. For each 𝑣 ∈ 𝑋 , |𝐿 (𝑣) ∩ 𝑍 | ≥ |𝐿 (𝑣) | − (𝑘 − 𝑝1 −
1) ≥ 𝑝1 + 1. Hence

|𝑍 | |𝐿−1 (𝑐𝑘−𝑝1 ) ∩ 𝑋 | ≥
𝑡∑︁

𝑖=𝑘−𝑝1
|𝐿−1 (𝑐𝑖) ∩ 𝑋 | =

∑︁
𝑣∈𝑋

|𝐿 (𝑣) ∩ 𝑍 | ≥ |𝑋 | (𝑝1 + 1). (9.1)

By Lemma 9.1,

|𝑍 | = |𝐿 (𝑋) | − (𝑘 − 𝑝1 − 1) ≤ 𝑝1 + 1 + 𝑏.

Plugging this into (9.1), we have

(𝑝1 + 1 + 𝑏) |𝐿−1 (𝑐𝑘−𝑝1 ) ∩ 𝑋 | ≥ |𝑋 | (𝑝1 + 1).

This implies that

|𝐿−1 (𝑐𝑘−𝑝1 ) ∩ 𝑋 | ≥
|𝑋 | (𝑝1 + 1)
𝑝1 + 1 + 𝑏 . (9.2)

For each 𝑐 ∈ 𝐶𝐿 − 𝐹 , |𝐿−1 (𝑐) | ≤ 𝑘 + 1 − 𝑏 (by definition of 𝑏). By Lemma 3.2, for
𝑐 ∈ 𝐹 , |𝐿−1 (𝑐) | ≤ 𝑘 + 𝑝1 + 2. Hence

(2𝑘 +2)𝑘 ≤
∑︁
𝑣∈𝑉

|𝐿 (𝑣) | =
∑︁
𝑐∈𝐶𝐿

|𝐿−1 (𝑐) | ≤ |𝐶𝐿−𝐹 | (𝑘 +1−𝑏) + |𝐹 | (𝑘 + 𝑝1+2). (9.3)

Plugging |𝐶𝐿 | = |𝑉 | − 𝜆 = 2𝑘 + 2 − 𝜆 and |𝐹 | ≤ 𝑘 − 𝑝1 − 1 into (9.3), we have

(2𝑘 + 2)𝑘 ≤ (2𝑘 + 2− 𝜆 − (𝑘 − 𝑝1 − 1)) (𝑘 + 1− 𝑏) + (𝑘 − 𝑝1 − 1) (𝑘 + 𝑝1 + 2). (9.4)

(Note that the coefficient of |𝐹 | in the right hand side of (9.3) is positive.)
This implies

𝑏 ≤ (𝑝1 + 3 − 𝜆 − 𝑘) (𝑘 + 1) + (𝑘 − 𝑝1 − 1) (𝑘 + 𝑝1 + 2)
𝑘 + 𝑝1 + 3 − 𝜆 . (9.5)

If 𝜆 = 2, then since 𝑝1 ≥ 3, by plugging |𝑋 | ≥ 𝑝1 − 𝜆 + 1 (see Lemma 9.1) into (9.2),
we have

|𝐿−1 (𝑐𝑘−𝑝1 )∩𝑋 | ≥
(𝑝1 − 𝜆 + 1) (𝑝1 + 1)

𝑝1 + 1 + 𝑏 ≥ (𝑝1 − 1) (𝑝1 + 1)
𝑝1 + 1 + (𝑝1+1) (𝑘−𝑝1−1)

𝑘+𝑝1+1
=

(𝑝1 − 1) (𝑘 + 𝑝1 + 1)
2𝑘

≥ 2(𝑘 + 𝑝1 + 1)
2𝑘

> 1.

Since |𝐿−1 (𝑐𝑘−𝑝1 ) ∩ 𝑋 | is an integer, |𝐿−1 (𝑐𝑘−𝑝1 ) ∩ 𝑋 | ≥ 2 = 𝜆 and we are done.
Therefore 𝜆 ≥ 3 and |𝐶𝐿 | ≤ 2𝑘 − 1. By Lemma 3.2, 𝐺 has no 2-parts. By the same

reason as (8.3), we have

𝑝1 ≥
𝑘 + 1
2

.

Combining (8.1) with Lemma 8.3, together with 𝑝1 ≥ 𝑘+1
2 , we have

𝑘 − 3
2

≥ 𝑘 − 𝑝1 − 1 ≥ |𝐹′ | ≥ 𝑘𝜆 − |𝐶𝐿 |
𝑝1 + 1

=
𝑘𝜆 − (2𝑘 + 2 − 𝜆)

𝑝1 + 1
=

(𝑘 + 1)𝜆 − 2𝑘 − 2
𝑝1 + 1

.

Hence

𝜆 ≤
(𝑘−3) (𝑝1+1)

2 + 2𝑘 + 2
𝑘 + 1

=
𝑝1 + 1
2

+ 2 − 2(𝑝1 + 1)
𝑘 + 1

<
𝑝1 + 1
2

+ 1.
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Since 𝜆 is an integer,

𝜆 ≤ 𝑝1

2
+ 1. (9.6)

Therefore
𝑝1 ≥ 2𝜆 − 2 ≥ 𝜆 + 1.

Plugging this into (9.5), we have

𝑏 ≤ (𝑝1 + 3 − 𝜆 − 𝑘) (𝑘 + 1) + (𝑘 − 𝑝1 − 1) (𝑘 + 𝑝1 + 2)
𝑘 + 𝑝1 + 3 − 𝜆

≤ (𝑝1 + 3 − 𝜆 − 𝑘) (𝑘 + 1) + (𝑘 − 𝑝1 − 1) (𝑘 + 𝑝1 + 2)
𝑘 + 4

( as 𝑝1 ≥ 𝜆 + 1 )

=
(𝑝1 + 1) (𝑘 − 𝑝1 − 1) + (𝑘 + 1) (2 − 𝜆)

𝑘 + 4

≤
𝑘−3
2 (𝑝1 + 1) + (𝑘 + 1) (2 − 𝜆)

𝑘 + 4
(by (8.3), i.e., 𝑝1 ≥

𝑘 + 1
2

)

=
1
2
(𝑝1 + 1 − 2𝜆) +

2𝑘 + 2 + 3𝜆 − 7
2 (𝑝1 + 1)

𝑘 + 4

≤ 1
2
(𝑝1 + 1 − 2𝜆) + 𝑘 + 1/2

𝑘 + 4

<
1
2
(𝑝1 + 1 − 2𝜆) + 1.

It follows from (9.6) that 𝑝1 ≥ 2𝜆 − 2.
If 𝑝1 ∈ {2𝜆 − 2, 2𝜆 − 1}, then 𝑏 = 0. This implies that |𝑋 | ≥ 𝑝1 − 𝜆 + 2.
It follows from (9.2) that

|𝐿−1 (𝑐𝑘−𝑝1 ) ∩ 𝑋 | ≥
|𝑋 | (𝑝1 + 1)
𝑝1 + 1 + 𝑏 ≥ (𝑝1 − 𝜆 + 2) (𝑝1 + 1)

𝑝1 + 1
≥ 𝜆.

If 𝑝1 ≥ 2𝜆, then

𝑏 ≤ 1
2
(𝑝1 + 1 − 2𝜆) + 1

2
≤ 1

2
(𝑝1 + 1 − 2𝜆) + 1

2
(𝑝1 + 1 − 2𝜆) = 𝑝1 + 1 − 2𝜆.

Hence

|𝐿−1 (𝑐𝑘−𝑝1 ) ∩ 𝑋 | ≥
(𝑝1 − 𝜆 + 1) (𝑝1 + 1)

𝑝1 + 1 + 𝑏 ≥ (𝑝1 − 𝜆 + 1) (𝑝1 + 1)
2(𝑝1 + 1 − 𝜆) =

𝑝1 + 1
2

≥ 𝜆.

This completes the whole proof of Theorem 1.2.
This paper characterizes all non-𝑘-choosable complete 𝑘-partite graphs𝐺 with 2𝑘 +

2 vertices. If the number of vertices of𝐺 increases, and the chromatic number remains 𝑘 ,
then the choice number of𝐺may increase. It was proved in [16] that 𝑘-chromatic graphs
with 𝑛 ≥ 2𝑘 + 1 vertices have choice number at most ⌈ 𝑛+𝑘−13 ⌉. It would be interesting
to characterize graphs for which this upper bound on the choice number is sharp.
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