Logarithmetics of Finite Quasigroups (II)
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1. Introduction.

In the first paper of this series (L.Q.I)* we have shown that the
logarithmetic Ly of a finite quasigroup @ is a quasigroup with respect to
addition and that it is a subdirect union of the logarithmetics of the elements
of Q.

In this second part we shall discuss further the structure of L, in its
additive aspect, and obtain results concerning the order N of L,. For plain
quasigroups (§3) the structure of Ly(+) is studied in more detail and it is
shown that N is a power of n, the order of Q.

2. The structure of Lg(+).

Let @=(1, 2, ..., n) be a quasigroup of order n. As in L.Q.I an
element of L, is called a quasi-integer.

If r is the index of a power a7, the corresponding quasi-integer is repre-
sented as the column vector {17, 27, ..., w}. Such columns form the
additive quasigroup Lg(+) in which vectors are added by forming
products in @ of their corresponding elements:

&, .3+, 3=, ..} (1)
Let the element 1 of @ generate a subquasigroup @, = (ay, @y, ..., @,,) of
order n,, where a;a;, = a;; (¢,j =1, ..., n;). Since 1" generates ¢, as r varies,

L, must possess quasi-integers with a,, as, ..., @, in the first row. Let the
quasi-integers be collected into classes, 4,, 4,,, ..., 4,, where 4, is the
class of integers with ¢; in the first row; and let Aa‘_—{-Aaj denote the class
of sums {a;, ...}4-{a;, ...}. Let the orders of 4,, Ag 4,14, bep, gt
respectively.

! H. Popova, ‘‘ Logarithmetics of finite quasigroups (I)”, Proc. Edinburgh Math.
Soc. (2), 9 (1954), 74-81,
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It follows from (1) that Aai—}-Aa,',c 4,,; and also, by keeping {a;, ...}
fixed, and letting {a;, ...} run through 4,, that ¢ <t.
But since Ly(4-) is a quasigroup

{a, ..} +{z, ..} ={a;, ..}
has a unique solution of the form {z, ...} = {a,, ...}, and hence
A,,C A+ 4, 9>t
Consequently, the addition table (1) of Ly can be partitioned into
Ay, =A4,+A4,; (2)
and (by similar reasoning comparing p and )
p=q=t.

The same argument can be applied to any row, and the result may be
formulated as follows:

TaEoREM 1. Let @ be a quasigroup (1, ..., n) and let the element m of
Q generate o subquasigroup Q= (@, @, ..., &, ), of order n,. Thenif 4,
denotes the set of all quasi-integers having a; in their m-th row

(i) Ly is homomorphic to @, by the correspondence
(all quasi-integers of Aa'_)—m,‘;
(ii) all A, are of the same order, say P,,;
(iii) the order of Ly is N =, P,,.
It follows that
(iv) N 2s a multiple of the least common multiple of all the n,,:
[7y, By, oooy Nyl | V.

As before, let 1 generate @, = (ay, ay, ..., @, ), and let 4, denote the class
of quasi-integers represented by vectors whose first element is @;, say
{a;, b, ...}. Keeping @ fixed suppose that the element b;, takes k; distinct

values, and let B% denote the corresponding class of k; subvectors
{a;, b;}. We may define

{a,, b }+-{a;, b} = {a;a , b,b;,}
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and define B%-B% as the class of such sums. Then a repetition of an
argument which led to Theorem 1 shows that

B%+ B%= B%, ky=k,=..=Fk. (3)

We have seen that all 4, are of the same order (Theorem 1) and
that their quasi-integers have the same number, say k, of distinct elements
in their second rows. We shall next show that the order of each 4, is a
multiple of k. Inorder words, if 4, ,, denotes the class of all quasi-integers
with {a;, b, ...} in their first two rows, then all 4, , are of the same order,
and have the same number of distinct elements in their third rows.

Consider the classes 4,, 4,,. Let their quasi-integers be classified
according to their second element b,,, b,,, into classes

Cs, B
respectively. By the same method it can be shown that
Cit-QF = Fii
and that these classes are all of the same order, say p,. Thus,

Lemma 1. The order of A, is

pr=kg (4)
where k is the number of distinct elements of Q in the second row of all vectors

representing the quasi-integers of A,, and q, is the number of quasi-integers
having {1, 2, ...} in their first two rows.

The last lemma may be generalised as follows:

Lemma 2. Let there be just p quasi-integers of Ly for which the first m
rows are the same row by row; then for any other quasi-integer there are p
(¢ncluding itself) whose first m rows are identical with it row by row.

The lemma is true if any m rows are chosen.

We denote by B; the set a4, a;,, ..., a;, of all distinct elements in the
second rows of the vectors representing the quasi-integers of 4,. If the
element 2 generates @, of order n, then

(By, By ..., B,)=(by, by, ..., b,)

where ( ) denotes union. If k=1, B; have no elements in common; but
if £>1, there must exist B; with common elements, for otherwise
(B, ..., B,)) would have kn, distinct elements, which is impossible, the

https://doi.org/10.1017/50013091500024883 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500024883

112 HerLex Porova

order of @, being n,. The product of B; and B, may be defined as the set
of distinet products of their elements. Then by (3)

B;B;= By, (5)
a multiplication table which is isomorphic to @.

TueoreM 2. If B, and B, have an element in common, they have all
elements in common.

Let B,= B,,,= B, B,, B,= By,= B, B, (which is always possible by
quasigroup properties), and let a,,a,,3=d.5, a1, =Cu (2, B=1, ..., k).

There being only k distinct elements d;;, forming the set B,, these by
quasigroup properties must appear in each row and column of the kxk
matrix [d,s], which is thus a latin square. Similarly, [c,s] is a kX & latin
square formed from the % elements of B,.

Now, if B,, B, have one common element, say d,;= c¢,;, then we must
have a,;=a,, and consequently

By = C1js doi = Cpjp +ory Bpg= 1ty
that is, B, = B,.

TaeoreEM 3. Ifamongst By, B,, ..., an there are r and only r which are
the same as B, then for every B; (i = 1, 2, ..., n,), there exist r and only r B,’s
which are the same as B;.

This follows from the multiplication table (5). For if (say) B, ..., B,
are the same, then so are B; B,, ..., B; B,, thatis B, ..., B, (1 =1, 2, ..., n,).
Thus there exist at least r B;;’s which are the same as B;. Suppose there
are r+1 such, say B, ..., B;,,;; then

B,By=B,By=...=BB; ., (=12,.., n)
and consequently
Bz Bil = B:t Bi2 = ... = Bz Bz',r+1 Where .Bx Bil == Bl‘

Thus, there are r+1 B,’s which are the same as B; — a contradiction.
Therefore each B, (:=1, 2, ..., n,) has r and only r B;;’s which consist of
the same elements; and since By, ..., B, is a permutation of B, ..., B,,
the theorem is proved.

3. Plain quastgroups.
According to Bruck!, a quasigroup @ = (1, 2, ..., n) is simple if it has

1 R. H. Bruck, “ Simple quasigroups »’, Bull. American Math. Soc., 50 (1944), 769-781.

https://doi.org/10.1017/50013091500024883 Published online by Cambridge University Press


https://doi.org/10.1017/S0013091500024883

LocarrramETIics OF FINiTE QUAasicrours (I1) 113

no proper homomorph. A simple quasigroup which has no subquasi-
groups except itself will be called plain. If @ is plain, every element is a
generator of @, for otherwise it would generate a subquasigroup.

Let @ be a plain quasigroup, and let N be the order of L;. We know
that N <{n" (a stronger result was proved in L.Q.I), and we shall prove
that N is always some power of n. As examples, the plain quasigroups
with multiplication tables
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have logarithmetics of orders 4, 42, 43, 4% This was found by actually
constructing the logarithmetics. On the other hand the simple (not plain)
quasigroup given by

12345
1121453
2112534
3145312
4153241
5{34125

has logarithmetic of order 2, all powers a” being equal to either z or z?
(=1, 2,3, 4, 5).
If @ is plain Theorem 1 becomes:

THEOREM 4. If @=(1, 2, ..., n) is a plain quasigroup of order n, and
A; denotes the set of all quasi-integers having ¢ in their m-th row, then

(i) Ly(+) 28 homomorphic to @ by
(all quasi-integers of A;,)—1;
(ii) all A; are of the same order, say p;
(iii) the order of Lyis N = np.
THEOREM 5. In a plain quasigroup the orders of B; are either 1 or n.

Since @ is plain, 2 is a generator of Q. Consequently, the elements of
the classes B,, ..., B, exhaust Q. Itfollowsatonce thatifall B;are mutually
exclusive, then each B; consists of one and only one element.
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Suppose B; are of order £ > 1; then there exist at least two B;s, say
B, and B,, with elements in common. By Theorem 2, B, and B, are the
same. Let r be the number of B;’s which are the same as B, say

B]_=B2= cen =‘BT‘

If r=mn, all B; are the same; consequently @ — B; and the order of
B;is n. Sosuppose r <n. Then there exists at least one B, distinct from
B,, ..., B,, and, by Theorem 3, r such: say

Br+1 == BZr’ Br+1 #* Bl'

It follows from Theorem 3 that B;nB,=0 for all i=1, ..., r and
j=r+1, ..., 2r. Continuing this process we find that » divides »:

n=rs,

and that all B;s fall into s mutually exclusive classes, each consisting of
r identical B;’s:

D= (By, ..., B), Dy=(B,,, ..., By), ..., D= (B,_,11, --+; B,)-
The same classification divides the » elements of ¢ into s classes, so that r

must be the same as k, the order of each B,
Hence the multiplication table (5) can be replaced by

.Da.Dﬂz.Daﬁ ((Z Bz 1, cery 8),

showing that the D,’s form a homomorph of . Since ¢ is simple, s =n
or s=1,and k=r=1 or n.

TarorREM 6. Let Q= (1, 2, ..., n) be a plain quasigroup of prime order
n, such that 2 generates Q. If B, and B, are the same, then all B; (i =1, ..., n)
are the same.

If the order k of B; is less than », then by the proof of Theorem 5,
n==FKs

and this, since n is prime, is only possible if k = 1 or k= . Since 2 generates
@, the B/s exhaust @, and if two B;’s are the same, k cannot equal 1.
Consequently k = n, and each of the B;’s consists of all the n elements of @,

TaeorEM 7. The order of the logarithmetic of a plain quasigroup is a
power of the order of the quasigroup.
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By combining N = np (Theorem 4) and Lemma 1, the order of I, can
be expressed as N = nkq where N, n, k are the orders of Ly, ), B;respectively
and q is the order of the class of all the quasi-integers with {1, 2, ...} in the
first two rows. We denote by B, , , , the set of all distinct elements
of @ in the k-th row of the quasi-integers {1, 2, ..., k—1, ..} (k=2, ..., n).
Then if the orders of B, _;are m; we have (Lemma 2)

N=nmymy...m,_,

where, by Theorem 5, m; are either 1 or n. The theorem follows.
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