1 Preliminaries

1.1 Notation

We denote by \mathcal{L}^n the Lebesgue measure in the Euclidean *n*-space \mathbb{R}^n . In a metric space *X*, $d(A)$ stands for the diameter of A , $d(A, B)$ the minimal distance between the sets *A* and *B*, and $d(x, A)$ the distance from a point *x* to a set *A*. The closed ball with centre $x \in X$ and radius $r > 0$ is denoted by $B(x, r)$ and the open ball by $U(x, r)$. In \mathbb{R}^n we sometimes denote $B^n(x, r)$. The unit sphere in R*ⁿ* is *S ⁿ*[−]1. The Grassmannian manifold of linear *m*-dimensional subspaces of \mathbb{R}^n is $G(n, m)$. It is equipped with an orthogonally invariant Borel probability measure $\gamma_{n,m}$. For $V \in G(n,m)$, we denote by P_V the orthogonal projection onto *V*.

For $A \subset X$, we denote by $\mathcal{M}(A)$ the set of non-zero finite Borel measures μ on *X* with support spt $\mu \subset A$. We shall denote by $f_{\#}\mu$ the push-forward of a measure μ under a map $f: f_{\#}\mu(A) = \mu(f^{-1}(A))$. The restriction of μ to a set *A* is defined by $\mu \perp A(B) = \mu(A \cap B)$. The notation \ll stands for absolute continuity.

The characteristic function of a set *A* is χ_A . By the notation $M \leq N$, we mean that $M \leq CN$ for some constant *C*. The dependence of *C* should be clear from the context. The notation $M \sim N$ means that $M \le N$ and $N \le M$. By *c* and *C*, we mean positive constants with obvious dependence on the related parameters.

1.2 Hausdorff **Measures**

For $m \ge 0$, the *m*-dimensional Hausdorff measure $\mathcal{H}^m = \mathcal{H}^m_d$ in a metric space (X, d) is defined by

$$
\mathcal{H}^m(A)=\lim_{\delta\to 0}\inf\left\{\sum_{i=1}^\infty\alpha(m)2^{-m}d(E_i)^m\colon A\subset \bigcup_{i=1}^\infty E_i, d(E_i)<\delta\right\}.
$$

Then \mathcal{H}^0 is the counting measure. Usually *m* will be a positive integer and then $\alpha(m) = \mathcal{L}^m(B^m(0, 1))$, from which it follows by the isodiametric inequality that $\mathcal{H}^m = \mathcal{L}^m$ in \mathbb{R}^m . The isodiametric inequality says that among the subsets of \mathbb{R}^m with a given diameter, the ball has the largest volume; see, for example, [203, 2.10.33]. For non-integral values of *m* the choice of $\alpha(m)$ does not really matter. We denote by dim the Hausdorff dimension. The *spherical Hausdor*ff *measure* S^m is defined in the same way but using only balls as covering sets.

The lower and upper *m*-densities of $A \subset X$ are defined by

$$
\Theta_*^m(A, x) = \liminf_{r \to 0} \alpha(m)^{-1} r^{-m} \mathcal{H}^m(A \cap B(x, r)),
$$

$$
\Theta^{*m}(A, x) = \limsup_{r \to 0} \alpha(m)^{-1} r^{-m} \mathcal{H}^m(A \cap B(x, r)).
$$

The density $\Theta^{m}(A, x)$ is defined as their common value if they are equal. We have

Theorem 1.1 *If A is* \mathcal{H}^m *measurable and* $\mathcal{H}^m(A) < \infty$ *, then*

 2^{-m} ≤ $\Theta^{*m}(A, x)$ ≤ 1 *for* \mathcal{H}^m *almost all* $x \in A$,

 $\Theta^{*m}(A, x) = 0$ *for* \mathcal{H}^m *almost all* $x \in X \setminus A$.

When $m \leq 1$ the constant 2^{-m} is sharp; for $m > 1$ the best constant is not known.

We also have

Theorem 1.2 *If* $A \subset X$ *is* \mathcal{H}^m *measurable and* $\mathcal{H}^m(A) < \infty$ *, then*

lim sup{ $d(B)^{-m}H^m(A \cap B)$: *x* ∈ *B*, $d(B) < δ$ } = 1 *for* H^m *almost all x* ∈ *A*.

For general measures, we have

Theorem 1.3 *Let* $\mu \in \mathcal{M}(X)$, $A \subset X$, and $0 < \lambda < \infty$.

- (1) *If* $\Theta^{*m}(A, x) \leq \lambda$ *for* $x \in A$ *, then* $\mu(A) \leq 2^m \lambda \mathcal{H}^m(A)$.
- (2) *If* $\Theta^{*m}(A, x) \ge \lambda$ *for* $x \in A$ *, then* $\mu(A) \ge \lambda \mathcal{H}^m(A)$.

For the above results, see [203, 2.10.17–19], [190, Section 2.2] or [321, Chapter 6].

We say that a closed set *E* is AD-*m*-regular (AD for Ahlfors and David) if there is a positive number *C* such that

$$
r^m/C \le \mathcal{H}^m(E \cap B(x,r)) \le Cr^m \text{ for } x \in E, 0 < r < d(E).
$$

A measure μ is said to be AD-*m*-regular if

$$
r^m/C \le \mu(B(x,r)) \le Cr^m \text{ for } x \in \text{spt}\,\mu, 0 < r < d(\text{spt}\,\mu),
$$

which means that $spt \mu$ is an AD-*m*-regular set.

1.3 Lipschitz Maps

Since Lipschitz maps are at the heart of rectifiability, we state here some basic well-known facts about them. We say that a map $f: X \rightarrow Y$ between metric spaces *X* and *Y* is *Lipschitz* if there is a positive number *L* such that

$$
d(f(x), f(y)) \le Ld(x, y) \text{ for } x, y \in X.
$$

The smallest such *L* is the Lipschitz constant of f , which is denoted by $Lip(f)$.

Euclidean valued Lipschitz maps $f: A \rightarrow \mathbb{R}^k, A \subset X$, can be extended: there is a Lipschitz map $g: X \to \mathbb{R}^k$ such that $g|A = f$, see [203, 2.10.43–44] or [321, Chapter 7].

Any Lipschitz map $g: \mathbb{R}^m \to \mathbb{R}^k$ is almost everywhere differentiable by Rademacher's theorem, see [203, 3.1.6] or [321, 7.3].

There is the Lusin type property: if $f: A \to \mathbb{R}^k, A \subset \mathbb{R}^m$ is Lipschitz, then for every $\varepsilon > 0$ there is a C^1 map $g: \mathbb{R}^m \to \mathbb{R}^k$ such that

$$
\mathcal{L}^m\left(\{x \in A : g(x) \neq f(x)\}\right) < \varepsilon,\tag{1.1}
$$

see [203, 3.1.16].