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Size, Order, and Connected Domination
Simon Mukwembi

Abstract. We give a sharp upper bound on the size of a triangle-free graph of a given order and con-
nected domination. Our bound, apart from strengthening an old classical theorem of Mantel and of
Turán improves on a theorem of Sanchis. Further, as corollaries, we settle a long standing conjecture
of Graffiti on the leaf number and local independence for triangle-free graphs and answer a question
of Griggs, Kleitman, and Shastri on a lower bound of the leaf number in triangle-free graphs.

1 Introduction

Let G = (V, E) be a connected graph of order n and size m. We say that G is triangle
free if it does not contain C3, i.e., the cycle on three vertices, as a subgraph. A domi-
nating set of G is a set S ⊂ V of vertices of G such that every vertex v ∈ V is either in S
or adjacent to a vertex of S. The connected domination number γc(G) of G is the min-
imum order of a connected dominating set of G. On the other hand, the leaf number
L(G) of G is defined as the maximum number of leaf vertices contained in a spanning
tree of G, a leaf vertex being a vertex of degree 1 in G. The leaf and the connected
domination number, whose applications in the optimization of centralized terminal
networks are legion [3], are much studied graph invariants that determine each other
(see, for example, [2]):

(1.1) L(G) = n− γc(G).

A subset S of V is independent if no two vertices in S are adjacent. The indepen-
dence number of G is defined as the cardinality of a largest independent set in G. The
local independence α(v) of a vertex v is the independence number of the subgraph
induced by its neighborhood. The average local independence α(G) of G is defined as
1
n

∑
x∈V α(x).

Fajtlowicz and Waller’s computer program, Graffiti (see, for example, [2]), which
sorts through various graphs and looks for simple relations among parameters, posed
the following conjecture, which, for a human mathematician, relates two seemingly
unrelated quantities.

Conjecture 1.1 Let G be a connected graph. Then L(G) ≥ 2(α(G)− 1).

To date, no attempt on this long standing open conjecture of Graffiti has been
reported. In [4], Griggs, Kleitman, and Shastri, concerned about lower bounds on the
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leaf number in triangle-free graphs, remarked “it could be that triangle-free graphs
contain significantly more leaves”.

In this note, we are particularly interested, among other things, in the maximum
number of links of a network in which the connected domination number of the
underlying graph is limited. Several upper and lower bounds on the size of a graph
in terms of other graph parameters have been investigated. For instance, as early as
1907 Mantel [5], and subsequently Turán [9] in 1941, showed that the size m of a
general triangle-free graph of order n is at most

(1.2) m ≤
⌊

n2

4

⌋
,

with equality holding if and only if G is the Turán graph T2(n), i.e., the complete
bipartite graph whose classes are as nearly equal as possible. An upper bound on the
size in terms of order and diameter was determined by Ore [7] in 1968, while Viz-
ing [10] gave an upper bound in terms of order and radius. Recently, Dankelmann,
and Volkmann [1] reported lower bounds in terms of order, radius, and minimum
degree. In 2000, Sanchis [8] proved the bound

(1.3) m ≤ (n− γc)2

2
+ O(n)

for a general graph G of order n, size m, and connected domination number γc.
In this note, we present a strengthening of the bound (1.2) if connected domi-

nation is prescribed. Our result also improves on the bound (1.3) by Sanchis for
triangle-free graphs. As corollaries, we settle Conjecture 1.1 for this class of graphs
and confirm Griggs, Kleitman, and Shastri’s speculation [4] that triangle-free graphs
contain significantly more leaves.

We denote the degree of a vertex u in G by deg u. If H is a subgraph of G, we write
H ≤ G. The following simple observation, which we use in this work, was proved
in [6].

Lemma 1.2 Let G be a connected graph and T ′ ≤ G a tree. Then L(G) ≥ L(T ′).

2 Results

We begin by reporting on a strengthening of the theorem by Mantel [5], and by
Turán [9] if connected domination is prescribed.

Theorem 2.1 Let G be a connected triangle-free graph of order n, size m and connected
domination number γc. Then

m ≤ (n− γc)2

4
+ n− 1,

and this bound is tight.
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Proof Suppose, to the contrary, that there exists a counterexample G for which

(2.1) |E(G)| > (|V (G)| − γc(G))2

4
+ |V (G)| − 1.

Of all such counterexamples, choose G to have the smallest order, n, maximizing size.

Claim Let uv be any edge in G. Then deg u + deg v ≤ n− γc + 2.

Proof. Let T ′ be the subgraph of G with vertex set all vertices in the neighbourhood
of u or v and edge set all edges incident with either u or v. Since G is triangle-free,
T ′ is a tree with deg u + deg v − 2 end vertices. By Lemma 1.2, L(G) ≥ L(T ′) =
deg u + deg v − 2. Hence from (1.1) we have

n− γc(G) = L(G) ≥ L(T ′) = deg u + deg v − 2.

It follows that deg u + deg v ≤ n− γc + 2, and the claim is proved.
Now let uv be any edge in G such that G ′ = G − {u, v} is connected. Then G ′ is

triangle-free, has order n − 2, and γc(G) ≤ γc(G ′). By our choice of G, G ′ is not a
counterexample. It follows that

|E(G ′)| ≤ ((n− 2)− γc(G ′))2

4
+ (n− 2)− 1 ≤ (n− 2− γc)2

4
+ n− 3.

Hence, in conjunction with the above claim, we have

m = |E(G ′)| + [deg u + deg v]− 1

≤ (n− 2− γc)2

4
+ n− 3 + [n− γc + 2]− 1

=
(n− γc)2

4
+ n− 1,

which is a contradiction to (2.1), and so the bound in the theorem is proved.
To see that the bound is tight, for integers n and γc, where n− γc is even, consider

the graph Gn,γc obtained by taking the path Pγc = v1, v2, . . . , vγc , a complete bipartite
graph K n−γc

2 , n−γc
2

with partite sets V1 and V2, and joining v1 to every vertex in V1 and

joining vγc to every vertex in V2. Then Gn,γc is triangle-free, has order n, and

m(Gn,γc ) =
[n− γc(Gn,γc )]2

4
+ n− 1,

as desired.

We now settle Conjecture 1.1 for triangle-free graphs.

Corollary 2.2 Let G be a connected triangle-free graph. Then L(G) ≥ 2(α(G)− 1).
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Proof Let v be a vertex in G. Since G is triangle free, α(v) = deg v. It follows that
α(G) = 1

n

∑
x∈V α(x) = 1

n

∑
x∈V deg x = 2m

n , where n is the order and m is the size
of G. From (1.1) and Theorem 2.1, we have, for γc ∈ [2, n− 2],

m ≤ (n− γc)2

4
+ n− 1 ≤ n(n− γc + 2)

4
=

n(L + 2)

4
.

Hence, for 2 ≤ γc ≤ n− 2, we have

L ≥ 4m

n
− 2 = 2α(G)− 2,

and the corollary is proven. Using (1.1), we see that γc ≤ n − 2. Finally, if γc = 1,
then since G is triangle-free, it is a star. Thus, L = n− 1 and α(G) = 2− 2

n . An easy
calculation shows that the corollary holds.

Finally, we confirm Griggs, Kleitman, and Shastri’s speculation [4] that trian-
gle-free graphs contain significantly more leaves.

Corollary 2.3 Let G be a connected triangle-free graph of order n and size m. Then

L(G) ≥ 4m

n
− 2.

Proof As in Corollary 2.2, since G is triangle free, α(G) = 2m
n . Therefore, by Corol-

lary 2.2,

L(G) ≥ 2(α(G)− 1) =
4m

n
− 2.

We mention that the bounds in the above corollaries are attained by the complete
bipartite graph, K n

2 ,
n
2
.
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