

Size, Order, and Connected Domination

Simon Mukwembi

Abstract. We give a sharp upper bound on the size of a triangle-free graph of a given order and connected domination. Our bound, apart from strengthening an old classical theorem of Mantel and of Turán improves on a theorem of Sanchis. Further, as corollaries, we settle a long standing conjecture of Graffiti on the leaf number and local independence for triangle-free graphs and answer a question of Griggs, Kleitman, and Shastri on a lower bound of the leaf number in triangle-free graphs.

1 Introduction

Let G = (V, E) be a connected graph of order n and size m. We say that G is triangle free if it does not contain C_3 , i.e., the cycle on three vertices, as a subgraph. A dominating set of G is a set $S \subset V$ of vertices of G such that every vertex $v \in V$ is either in S or adjacent to a vertex of S. The connected domination number $\gamma_c(G)$ of G is the minimum order of a connected dominating set of G. On the other hand, the leaf number G of G is defined as the maximum number of leaf vertices contained in a spanning tree of G, a leaf vertex being a vertex of degree 1 in G. The leaf and the connected domination number, whose applications in the optimization of centralized terminal networks are legion [3], are much studied graph invariants that determine each other (see, for example, [2]):

$$(1.1) L(G) = n - \gamma_c(G).$$

A subset S of V is *independent* if no two vertices in S are adjacent. The *independence number* of G is defined as the cardinality of a largest independent set in G. The *local independence* $\alpha(v)$ of a vertex v is the independence number of the subgraph induced by its neighborhood. The *average local independence* $\overline{\alpha}(G)$ of G is defined as $\frac{1}{n} \sum_{x \in V} \alpha(x)$.

Fajtlowicz and Waller's computer program, Graffiti (see, for example, [2]), which sorts through various graphs and looks for simple relations among parameters, posed the following conjecture, which, for a human mathematician, relates two seemingly unrelated quantities.

Conjecture 1.1 Let G be a connected graph. Then $L(G) \ge 2(\overline{\alpha}(G) - 1)$.

To date, no attempt on this long standing open conjecture of Graffiti has been reported. In [4], Griggs, Kleitman, and Shastri, concerned about lower bounds on the

Received by the editors June 26, 2012; revised June 5, 2013.

Published electronically July 19, 2013.

This material is based upon work supported financially by the National Research Foundation.

AMS subject classification: 05C69.

Keywords: size, connected domination, local independence number, leaf number.

S. Mukwembi

leaf number in triangle-free graphs, remarked "it could be that triangle-free graphs contain significantly more leaves".

In this note, we are particularly interested, among other things, in the maximum number of links of a network in which the connected domination number of the underlying graph is limited. Several upper and lower bounds on the size of a graph in terms of other graph parameters have been investigated. For instance, as early as 1907 Mantel [5], and subsequently Turán [9] in 1941, showed that the size m of a general triangle-free graph of order n is at most

$$(1.2) m \le \left\lfloor \frac{n^2}{4} \right\rfloor,$$

with equality holding if and only if G is the Turán graph $T_2(n)$, *i.e.*, the complete bipartite graph whose classes are as nearly equal as possible. An upper bound on the size in terms of order and diameter was determined by Ore [7] in 1968, while Vizing [10] gave an upper bound in terms of order and radius. Recently, Dankelmann, and Volkmann [1] reported lower bounds in terms of order, radius, and minimum degree. In 2000, Sanchis [8] proved the bound

$$(1.3) m \leq \frac{(n-\gamma_c)^2}{2} + O(n)$$

for a general graph G of order n, size m, and connected domination number γ_c .

In this note, we present a strengthening of the bound (1.2) if connected domination is prescribed. Our result also improves on the bound (1.3) by Sanchis for triangle-free graphs. As corollaries, we settle Conjecture 1.1 for this class of graphs and confirm Griggs, Kleitman, and Shastri's speculation [4] that triangle-free graphs contain significantly more leaves.

We denote the degree of a vertex u in G by deg u. If H is a subgraph of G, we write $H \leq G$. The following simple observation, which we use in this work, was proved in [6].

Lemma 1.2 Let G be a connected graph and $T' \leq G$ a tree. Then $L(G) \geq L(T')$.

2 Results

We begin by reporting on a strengthening of the theorem by Mantel [5], and by Turán [9] if connected domination is prescribed.

Theorem 2.1 Let G be a connected triangle-free graph of order n, size m and connected domination number γ_c . Then

$$m \le \frac{(n - \gamma_c)^2}{4} + n - 1,$$

and this bound is tight.

Proof Suppose, to the contrary, that there exists a counterexample *G* for which

(2.1)
$$|E(G)| > \frac{(|V(G)| - \gamma_c(G))^2}{4} + |V(G)| - 1.$$

Of all such counterexamples, choose *G* to have the smallest order, *n*, maximizing size.

Claim Let uv be any edge in G. Then $\deg u + \deg v \le n - \gamma_c + 2$.

Proof. Let T' be the subgraph of G with vertex set all vertices in the neighbourhood of u or v and edge set all edges incident with either u or v. Since G is triangle-free, T' is a tree with deg u + deg v – 2 end vertices. By Lemma 1.2, $L(G) \ge L(T') = \deg u + \deg v - 2$. Hence from (1.1) we have

$$n - \gamma_c(G) = L(G) \ge L(T') = \deg u + \deg v - 2.$$

It follows that deg $u + \deg v \le n - \gamma_c + 2$, and the claim is proved.

Now let uv be any edge in G such that $G' = G - \{u, v\}$ is connected. Then G' is triangle-free, has order n - 2, and $\gamma_c(G) \le \gamma_c(G')$. By our choice of G, G' is not a counterexample. It follows that

$$|E(G')| \le \frac{((n-2)-\gamma_c(G'))^2}{4} + (n-2) - 1 \le \frac{(n-2-\gamma_c)^2}{4} + n - 3.$$

Hence, in conjunction with the above claim, we have

$$m = |E(G')| + [\deg u + \deg v] - 1$$

$$\leq \frac{(n - 2 - \gamma_c)^2}{4} + n - 3 + [n - \gamma_c + 2] - 1$$

$$= \frac{(n - \gamma_c)^2}{4} + n - 1,$$

which is a contradiction to (2.1), and so the bound in the theorem is proved.

To see that the bound is tight, for integers n and γ_c , where $n - \gamma_c$ is even, consider the graph G_{n,γ_c} obtained by taking the path $P_{\gamma_c} = v_1, v_2, \dots, v_{\gamma_c}$, a complete bipartite graph $K_{\frac{n-\gamma_c}{2},\frac{n-\gamma_c}{2}}$ with partite sets V_1 and V_2 , and joining v_1 to every vertex in V_1 and joining v_{γ_c} to every vertex in V_2 . Then G_{n,γ_c} is triangle-free, has order n, and

$$m(G_{n,\gamma_c}) = \frac{[n - \gamma_c(G_{n,\gamma_c})]^2}{4} + n - 1,$$

as desired.

We now settle Conjecture 1.1 for triangle-free graphs.

Corollary 2.2 Let G be a connected triangle-free graph. Then $L(G) \geq 2(\overline{\alpha}(G) - 1)$.

144 S. Mukwembi

Proof Let ν be a vertex in G. Since G is triangle free, $\alpha(\nu) = \deg \nu$. It follows that $\overline{\alpha}(G) = \frac{1}{n} \sum_{x \in V} \alpha(x) = \frac{1}{n} \sum_{x \in V} \deg x = \frac{2m}{n}$, where n is the order and m is the size of G. From (1.1) and Theorem 2.1, we have, for $\gamma_c \in [2, n-2]$,

$$m \le \frac{(n-\gamma_c)^2}{4} + n - 1 \le \frac{n(n-\gamma_c+2)}{4} = \frac{n(L+2)}{4}.$$

Hence, for $2 \le \gamma_c \le n - 2$, we have

$$L \ge \frac{4m}{n} - 2 = 2\overline{\alpha}(G) - 2,$$

and the corollary is proven. Using (1.1), we see that $\gamma_c \le n-2$. Finally, if $\gamma_c = 1$, then since G is triangle-free, it is a star. Thus, L = n-1 and $\overline{\alpha}(G) = 2 - \frac{2}{n}$. An easy calculation shows that the corollary holds.

Finally, we confirm Griggs, Kleitman, and Shastri's speculation [4] that triangle-free graphs contain significantly more leaves.

Corollary 2.3 Let G be a connected triangle-free graph of order n and size m. Then

$$L(G) \ge \frac{4m}{n} - 2.$$

Proof As in Corollary 2.2, since *G* is triangle free, $\overline{\alpha}(G) = \frac{2m}{n}$. Therefore, by Corollary 2.2,

$$L(G) \ge 2(\overline{\alpha}(G) - 1) = \frac{4m}{n} - 2.$$

We mention that the bounds in the above corollaries are attained by the complete bipartite graph, $K_{\frac{n}{2},\frac{n}{3}}$.

References

- P. Dankelmann and L. Volkmann, Minimum size of a graph or digraph of given radius. Inform. Process. Lett. 109(2009), no. 16, 971–973. http://dx.doi.org/10.1016/j.ipl.2009.06.001
- [2] E. DeLaViña and B. Waller, Spanning trees with many leaves and average distance. Electron. J. Combin. 15(2008), no. 1, Research Paper 33.
- [3] L. M. Fernandes and L. Gouveia, Minimal spanning trees with a constraint on the number of leaves. European J. Operational Research 104(1998), 250–261.
- [4] J. R. Griggs, D. J. Kleitman, and A. Shastri, Spanning trees with many leaves in cubic graphs. J. Graph Theory 13(1989), no. 6, 669–695. http://dx.doi.org/10.1002/jgt.3190130604
- [5] W. Mantel, Problem 28, soln. by H. Gouventak, W. Mantel, J. Teixeira de Mattes, F. Schuh and W. A. Wythoff. Wiskundige Opgaven 10(1907), 60–61.
- [6] S. Mukwembi and S. Munyira, Radius, diameter and the leaf number. Quaest. Math. (submitted).
- O. Ore, Diameters in graphs. J. Combin. Theory 5(1968), 75–81.
 http://dx.doi.org/10.1016/S0021-9800(68)80030-4
- [8] L. A. Sanchis, On the number of edges of a graph with a given connected domination number. Discrete Math. 214(2000), no. 1–3, 193–210. http://dx.doi.org/10.1016/S0012-365X(99)00143-0
- [9] P. Turán, On an extremal problem in graph theory. (Hungarian). Mat. és Fiz. Lapok 48(1941), 436–452.
- [10] V. Vizing, The number of edges in a graph of given radius. Soviet Math. Dokl. 8(1967), 535–536.

University of KwaZulu-Natal, Durban, South Africa e-mail: mukwembi@ukzn.ac.za