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We study anti-symmetric solutions about the hyperplane {xn = 0} for the following
fractional Hardy–Hénon system:

⎧⎨
⎩

(−Δ)s1u(x) = |x|αvp(x), x ∈ R
n
+,

(−Δ)s2v(x) = |x|βuq(x), x ∈ R
n
+,

u(x) � 0, v(x) � 0, x ∈ R
n
+,

where 0 < s1, s2 < 1, n > 2 max{s1, s2}. Nonexistence of anti-symmetric solutions
are obtained in some appropriate domains of (p, q) under some corresponding
assumptions of α, β via the methods of moving spheres and moving planes.
Particularly, for the case s1 = s2, one of our results shows that one domain of (p, q),
where nonexistence of anti-symmetric solutions with appropriate decay conditions at
infinity hold true, locates at above the fractional Sobolev’s hyperbola under
appropriate condition of α, β.
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1. Introduction

In this paper, we study anti-symmetric solutions about the hyperplane {xn = 0}
for the following system involving fractional Laplacian⎧⎪⎪⎨

⎪⎪⎩
(−Δ)s1u(x) = |x|αvp(x), x ∈ R

n
+,

(−Δ)s2v(x) = |x|βuq(x), x ∈ R
n
+,

u(x) � 0, v(x) � 0, x ∈ R
n
+,

u(x′, xn) = −u(x′,−xn), v(x′, xn) = −v(x′,−xn), x = (x′, xn) ∈ R
n,

(1.1)

where s1, s2 ∈ (0, 1), n > max{2s1, 2s2}, R
n
+ = {x = (x′, xn) ∈ R

n|xn > 0} and
x′ = (x1, x2, . . . , xn−1).

The fractional Laplacian (−Δ)s (0 < s < 1) is a nonlocal operator defined by

(−Δ)su(x) = C(n, s)P.V.

∫
Rn

u(x) − u(y)
|x − y|n+2s

dy,
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Nonexistence of anti-symmetric solutions 863

where P.V. stands for the Cauchy principal value and C(n, s) = (
∫

Rn
1−cos ξ
|ξ|n+2s dξ)−1

(see [2, 11]). Let

L2s =
{

u : R
n → R|

∫
Rn

|u(x)|
1 + |x|n+2s

dx < +∞
}

.

Then for u ∈ L2s, (−Δ)su can be defined in distributional sense (see [34])∫
Rn

(−Δ)suϕ dx =
∫

Rn

u(−Δ)sϕ dx, for any ϕ ∈ S.

Moreover, (−Δ)su is well defined for u ∈ L2s ∩ C1,1
loc (Rn). We call (u, v) a clas-

sical solution of (1.1) if (u, v) ∈ (L2s1 ∩ C1,1
loc (Rn

+) ∩ C(Rn)) × (L2s2 ∩ C1,1
loc (Rn

+) ∩
C(Rn)) and satisfies (1.1).

As is well known, the method of moving planes and moving spheres play an impor-
tant role in proving the nonexistence of solutions. Chen et al. [3, 4] introduced
a direct method of moving planes and moving spheres for fractional Laplacian,
which have been widely applied to derive the symmetry, monotonicity and nonexis-
tence and even a prior estimates of solutions for some equations involving fractional
Laplacian. In such process, some suitable forms of maximum principles are the key
ingredients. The method of moving planes in integral forms is also a vital tool for
classification of solutions (see [5]).

Recently, Li and Zhuo [20] classified anti-symmetric classical solutions of
Lane–Emden system (1.1) in the case of s1 = s2 =: s ∈ (0, 1) and α = β = 0. They
established the following Liouville type theorem.

Proposition 1.1 ([20]). Given 0 < p, q � n+2s
n−2s , assume that (u, v) is an anti-

symmetric classical solution of system (1.1). If 0 < pq < 1 or p + 2s > 1 and
q + 2s > 1, then (u, v) ≡ (0, 0).

As a corollary of proposition 1, the nonexistence results in the larger space L2s+1

follows immediately for the case p + 2s > 1, q + 2s > 1.

Proposition 1.2 ([20]). Assume that u and v ∈ L2s+1 ∩ C1,1
loc (Rn

+) ∩ C(Rn) satisfy
system (1.1). Then if 0 < p, q � n+2s

n−2s , p + 2s > 1 and q + 2s > 1, (u, v) ≡ (0, 0) is
the only solution.

The nonexistence of anti-symmetric classical solutions to the corresponding scalar
problem were given in [37].

The following Hardy–Hénon system with homogeneous Dirichlet boundary
conditions has been investigated widely⎧⎨

⎩
(−Δ)s1u(x) = |x|αup, u(x) � 0, x ∈ Ω,
(−Δ)s2v(x) = |x|βvq, v(x) � 0, x ∈ Ω,
u(x) = v(x) = 0, x ∈ R

n \ Ω.
(1.2)

There are enormous nonexistence results of (1.2) for the case Ω = R
n. We list some

main results as follows.
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If s1 = s2 = 1, for α, β � 0, system (1.2) is the well-known Hénon–Lane–Emden
system. It has been conjectured that the Sobolev’s hyperbola{

p > 0, q > 0 :
n + α

p + 1
+

n + β

q + 1
= n − 2

}

is the critical dividing curve between existence and nonexistence of solutions to
(1.2). Particularly, the Hénon–Lane–Emden conjecture states that system (1.2)
admits no nonnegative non-trivial solutions if p > 0, q > 0 and n+α

p+1 + n+β
q+1 > n − 2.

For α = β = 0, this conjecture has been completely proved for radial solutions (see
[23, 32]). However, for non-radial solutions, the conjecture is only fully answered
when n � 4 (see [29, 33, 35]). In higher dimensions, the conjecture was partially
solved. Figueiredo and Felmer [14] showed that system (1.2) admits no classical
positive solutions if

0 < p, q � n + 2
n − 2

and (p, q) �=
(

n + 2
n − 2

,
n + 2
n − 2

)
.

Busca and Manásevich [1] proved the conjecture if

α1, α2 � n − 2
2

and (α1, α2) �=
(

n − 2
2

,
n − 2

2

)
,

where

α1 =
2(p + 1)
pq − 1

, α2 =
2(q + 1)
pq − 1

, pq > 1.

When α, β > 0, Fazly and Ghoussoub [13] showed that the conjecture holds for
dimension n = 3 under the assumption of the boundedness of positive solutions, Li
and Zhang [22] removed this assumption and proved this conjecture for dimension
n = 3. When min{α, β} > −2, the conjecture is proved for bounded solutions in
n = 3 (see [27]).

If s1 = s2 =: s ∈ (0, 1), α, β � 0, there are fewer nonexistence results of solu-
tions to system (1.2) in the case of p > 0, q > 0 and n+α

p+1 + n+β
q+1 > n − 2s, namely

the case that (p, q) locates at bottom left of the fractional Sobolev’s hyperbola{
p > 0, q > 0 : n+α

p+1 + n+β
q+1 = n − 2s

}
. For α = β = 0, Quaas and Xia in [30] proved

that there exist no classical positive solutions to (1.2) provided that

αs
1, α

s
2 ∈

[
n − 2s1

2
, n − 2s1

)
, and (αs

1, α
s
2) �=

(
n − 2s

2
,
n − 2s

2

)
, (1.3)

where

αs
1 =

2s(q + 1)
pq − 1

, αs
2 =

2s(p + 1)
pq − 1

, p, q > 0, pq > 1.

Note that region (1.3) of (p, q) contains the following region:{
(p, q) :

n

n − 2s
< p, q � n + 2s

n − 2s
, and (p, q) �=

(
n + 2s

n − 2s
,
n + 2s

n − 2s

)}
.

As min{α, β} > −2s, Peng [26] derived that system (1.2) admits no nonnegative
classical solutions if 0 < p < n+2s+2α

n−2s and 0 < q < n+2s+2β
n−2s .
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For scalar equation (i.e. s1 = s2 := s, α = β, p = q, u = v), in the Laplacian case,
if α = 0, a celebrated Liouville type theorem was showed by Gidas and Spruck [17]
for 1 < p < n+2

n−2 ; if α � −2 and p > 1, there is no any positive solution (see [16, 25]);
if α > −2 and 1 < p < n+2+2α

n−2 , Phan and Souplet [28] derived a Liouville theorem
for bounded solutions; if 0 < p � 1, the nonexistence result was proved by Dai and
Qin [8] for any α. We also refer to [15, 24] and references therein. For the scalar
fractional Laplacian case, Chen et al. [3], Jin et al. [18] proved the nonexistence
results for α = 0 and 0 < p < n+2s

n−2s . If α > −2s, Dai and Qin [9] showed a Liouville
type theorem for optimal range 0 < p < n+2s+2α

n−2s .
For the case Ω = R

n
+, the following several main results exist.

If s1 = s2 = 1, α = β = 0, min{p, q} > 1, a Liouville theorem is proved for
bounded solutions by Chen et al. [6]. If s1 = s2 =: s ∈ (0, 1), for α = β = 0, the
nonexistence of positive viscosity-bounded solutions to system (1.2) was showed
by Quaas and Xia in [31]. For α, β > −2s, if p � n+2s+α

n−2s and q � n+2s+β
n−2s , Duong

and Le [12] obtained the nonexistence of solutions satisfying the following decay at
infinity:

u(x) = o
(
|x|− 4s+β

q−1

)
and v(x) = o

(
|x|− 4s+α

p−1

)
.

For general s1, s2 ∈ (0, 1), Le in [19] concluded a Liouville type theorem. Pre-
cisely, they obtained that if 1 � p � n+2s1+2α

n−2s2
, 1 � q � n+2s2+2α

n−2s1
and (p, q) �=

(n+2s1+2α
n−2s2

, n+2s2+2α
n−2s1

), α > −2s1 and β > −2s2, then (u, v) ≡ (0, 0) is the only non-
negative classical solutions to system (1.2). More nonexistence results for general
nonlinearities in a half space can be seen in [10, 36]. For the corresponding scalar
problem of (1.2) with Laplacian and α = β = 0, Gidas and Spruck [17] obtained the
nonexistence of nontrivial nonnegative classical solution of (1.2) for 1 < p � n+2

n−2 .
For the corresponding scalar problem (1.2) with fractional Laplacian and α = β = 0,
Chen et al. [3] showed that u ≡ 0 is the only nonnegative solution to (1.2)
for 1 < p � n+2s

n−2s . Recently, a Liouville type theorem of the corresponding scalar
problem for 1 < p < n+2s+2α

n−2s , α > −2s and s ∈ (0, 1] was established by Dai and
Qin in [9].

In this paper, we will study nonexistence of anti-symmetric classical solutions to
system (1.1) for general α, β, p, q.

For α > −2s1 and β > −2s2, we denote

Rsub :=
{

(p, q)|0 < p � n + 2s1 + 2α

n − 2s2
, 0 < q

� n + 2s2 + 2β

n − 2s1
, (p, q) �=

(
n + 2s1 + 2α

n − 2s2
,
n + 2s2 + 2β

n − 2s1

)}
.

Note that for the case s1 = s2, the set Rsub locates at bottom left of the preceding
fractional Sobolev’s hyperbola.

Throughout this paper, we always assume s1, s2 ∈ (0, 1), n > max{2s1, 2s2} and
use C to denote a general positive constant whose value may vary from line to line
even the same line. Our main results are as follows.
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Theorem 1.1. For (p, q) ∈ Rsub, assume that (u, v) is a classical solution of system
(1.1). For either one of the following two cases:

(i) min{p + 2s1, p + 2s1 + α} > 1 and min{q + 2s2, q + 2s2 + β} > 1,

(ii) 0 < pq < 1 with α � −2s1pq, β � −2s2pq,
we have that (u, v) = (0, 0).

The nonexistence results (i) of theorem 1 can be extended to a larger space.

Theorem 1.2. Assume that (p, q) ∈ Rsub and (u, v) ∈ (L2s1+1 ∩ C1,1
loc (Rn

+) ∩
C(Rn)) × (L2s2+1 ∩ C1,1

loc (Rn
+) ∩ C(Rn)) satisfies system (1.1). Then for the case

that min{p + 2s1, p + 2s1 + α} > 1 and min{q + 2s2, q + 2s2 + β} > 1, (u, v) ≡
(0, 0) is the only solution.

Combining our anti-symmetric property, in the proof of theorem 1.1, we only
utilized the extended spaces L2s1+1, L2s2+1 instead of the usual spaces L2s1 , L2s2

in the case that min{p + 2s1, p + 2s1 + α} > 1 and min{q + 2s2, q + 2s2 + β} > 1.
One can see that theorem 1.2 is a direct corollary of (i) of theorem 1.1.

Remark 1.1. Our results of theorems 1.1 and 1.2 are the extension to gen-
eral s1, s2, α, β of the nonexistence results of Li and Zhuo [20] (see preceding
propositions 1.1 and 1.2) except one critical point of (p, q).

Remark 1.2. When s1 = s2, p = q, α = β and u = v, the results of theorems 1.1
and 1.2 are the nonexistence of nontrivial classical solutions to the corresponding
scalar problem.

Under appropriate decay conditions of u and v at infinity, we can extend the
nonexistence result of classical solutions of (1.1) to an unbounded domain of (p, q).
Particularly, this unbounded domain, except at most a bounded sub-domain, locates
at above the preceding fractional Sobolev’s hyperbola for the case s1 = s2.

Theorem 1.3. Suppose p � n+2s1+α
n−2s2

, q � n+2s2+β
n−2s1

, α > −2s2, β > −2s1. Assume
(u, v) is a classical solution of system (1.1) satisfying

lim
x→∞

u(x)
|x|a � C and lim

x→∞
v(x)
|x|b � C,

for some C > 0, where a = − 2s1+2s2+β
q−1 and b = − 2s1+2s2+α

p−1 . Then (u, v) ≡ (0, 0).

Remark 1.3. The results of theorem 1.3 are new even if for the corresponding
scalar problem with α = 0.
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Remark 1.4. When α, β are positive, define the region

Rsup :=
{

(p, q)|n + 2s1 + α

n − 2s2
� p � n + 2s1 + 2α

n − 2s2
,
n + 2s2 + β

n − 2s1
� q � n + 2s2 + 2β

n − 2s1
,

(p, q) �=
(

n + 2s1 + 2α

n − 2s2
,
n + 2s2 + 2β

n − 2s1

)}
.

Note that Rsup is contained in the nonexistence region of (p, q) obtained in
theorem 1.1. Hence, if (p, q) ∈ Rsup, theorem 1.1 tells us that the results of theorem
1.3 still hold true without the decay conditions.

2. Preliminaries

In this section, we introduce and prove some necessary lemmas.

Proposition 2.1 ([12]). Let s ∈ (0, 1) and w(y) ∈ L2s ∩ C1,1
loc (Rn) satisfy w(y) =

−w(y−
λ ), where y−

λ = (y′, 2λ − yn) for any real number λ. Assume there exists x ∈
Σλ such that

w(x) = inf
Σλ

w(y) < 0 and (−Δ)sw(x) + c(x)w(x) � 0,

where Σλ = {x ∈ R
n|xn < λ}. Then we have the following claims:

(i) if

lim inf
|x|→∞

|x|2sc(x) � 0,

there exists a constant R0 > 0 (depending on c, but independent of w) such
that

|x| < R0,

(ii) if c is bounded below in Σλ, there exists a constant � > 0 (depending on the
lower bound of c, but independent of w) such that

d(x, Tλ) > �,

where Tλ = {x ∈ R
n|xn = λ}.

We want to point out that the constant � is non-increasing about λ, since � is
non-decreasing about the lower bound of c, which can be seen from the proof of
proposition 2.1 in [12].

In order to apply the method of moving planes to prove the nonexistence, we
need to establish the following estimate.
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Lemma 2.1. Let s ∈ (0, 1) and w(y) ∈ L2s ∩ C1,1
loc (Rn) satisfy w(y) = −w(y−

λ ).
Assume there exists x ∈ Σλ such that w(x) = infΣλ

w(y) < 0. Then we have

(−Δ)sw(x) � C(n, s)
[
w(x) d−2s

+
∫

Σλ

(w(x) − w(y))
(

1
|x − y|n+2s

− 1
|x − y−

λ |n+2s

)
dy

]
,

where d = d(x, Tλ) and the constant C(n, s) is positive.

Proof. Applying the definition of fractional Laplacian, we have

(−Δ)sw(x) = C(n, s)
∫

Rn

w(x) − w(y)
|x − y|n+2s

dy

= C(n, s)
∫

Σλ

w(x) − w(y)
|x − y|n+2s

dy + C(n, s)
∫

Rn\Σλ

w(x) − w(y)
|x − y|n+2s

dy

= C(n, s)
∫

Σλ

w(x) − w(y)
|x − y|n+2s

dy + C(n, s)
∫

Σλ

w(x) + w(y)
|x − y−

λ |n+2s
dy

= C(n, s)
[∫

Σλ

(w(x) − w(y))
(

1
|x − y|n+2s

− 1
|x − y−

λ |n+2s

)
dy

+
∫

Σλ

2w(x)
|x − y−

λ |n+2s
dy

]
. (2.1)

By an elementary calculation (see [7]), we derive

∫
Σλ

2w(x)
|x − y−

λ |n+2s
dy ∼= C(n, s)w(x) d−2s.

Hence, combining this and (2.1), we complete the proof of lemma 2.1. �

In order to apply the method of moving spheres to prove the nonexistence, we
need to establish a similar estimate as that of lemma 2.1. To this end, we need to
introduce some notations. For any real number λ > 0, we denote

Sλ = {x ∈ R
n | |x| = λ},

B+
λ =B+

λ (0) = {|x| < λ |xn > 0}.

Let xλ = λ2x
|x|2 be the inversion of the point x = (x′, xn) about the sphere Sλ and

x∗ = (x′,−xn). Denote

B−
λ ={x|x∗ ∈ B+

λ }, (B+
λ )C = {x|xλ ∈ B+

λ }, (B−
λ )C = {x|xλ ∈ B−

λ }.
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Lemma 2.2. Let w(x) ∈ L2s ∩ C1,1
loc (Rn

+) satisfy

w(x) = −w(x∗) and w(x) = −
(

λ

|x|
)n−2s

w(xλ), ∀x ∈ R
n
+. (2.2)

Assume there exists x̃ ∈ B+
λ such that w(x̃) = infB+

λ
w(x) < 0. Then we have

(−Δ)sw(x̃) � C(n, s)
[
w(x̃)

(
(λ − |x̃|)−2s +

δn

x̃n+2s
n

)

+
∫

B+
λ

(w(x̃) − w(y))hλ(x̃, y) dy

]
,

where hλ(x̃, y) = 1
|x̃−y|n+2s − 1

| |y|
λ x̃− λ

|y|y|n+2s
+ 1

| |y|
λ x̃− λ

|y|y
∗|n+2s

− 1
|x̃−y∗|n+2s > 0 for

x̃, y ∈ B+
λ , δ = min{x̃n, λ − |x̃|} and C(n, s) is a positive constant.

Proof. By the definition of fractional Laplacian and assumptions (2.2), we derive

(−Δ)sw(x̃)

= C(n, s)
∫

Rn

w(x̃) − w(y)
|x̃ − y|n+2s

dy

= C(n, s)

(∫
B+

λ

+
∫

(B+
λ )C

+
∫

B−
λ

+
∫

(B−
λ )C

)
w(x̃) − w(y)
|x̃ − y|n+2s

dy

= C(n, s)

⎛
⎝∫

B+
λ

w(x̃) − w(y)
|x̃ − y|n+2s

dy +
∫

B+
λ

( λ
|y| )

n−2sw(x̃) + w(y)

| |y|λ x̃ − λ
|y|y|n+2s

dy

+
∫

B−
λ

w(x̃) − w(y)
|x̃ − y|n+2s

dy +
∫

B−
λ

(
λ
|y|

)n−2s

w(x̃) + w(y)

| |y|λ x̃ − λ
|y|y|n+2s

dy

⎞
⎟⎠

= C(n, s)

⎡
⎢⎢⎣

∫
B+

λ

(w(x̃) − w(y))hλ(x̃, y) dy +
∫

B+
λ

(
1 +

(
λ
|y|

)n−2s
)

w(x̃)

| |y|λ x̃ − λ
|y|y|n+2s

dy

+
∫

B+
λ

2w(x̃)
|x̃ − y∗|n+2s

dy +
∫

B+
λ

(
λ
|y|

)n−2s

− 1)w(x̃)

| |y|λ x̃ − λ
|y|y

∗|n+2s
dy

⎤
⎥⎦ . (2.3)

Using similar arguments in [21], we can obtain that hλ(x, y) > 0 for x, y ∈ B+
λ .
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Furthermore, choose r < x̃n small such that H := {x ∈ Bδ(x̃)|xn > x̃n} ⊂ {x ∈
R

n|xn > x̃n} ⊂ (B+
r (0))C where δ = min{x̃n, λ − |x̃|}, then we calculate

∫
B+

λ

(
1 +

(
λ
|y|

)n−2s
)

w(x̃)∣∣∣ |y|λ x̃ − λ
|y|y

∣∣∣n+2s dy �
∫

B+
r

(
1 +

(
λ
|y|

)n−2s
)

w(x̃)∣∣∣ |y|λ x̃ − λ
|y|y

∣∣∣n+2s dy

=
∫

(B+
r )C

(
1 +

(
λ

|yλ|
)n−2s

)
w(x̃)(

|yλ|
λ

)n+2s

|x̃ − y|n+2s

(
λ

|y|
)2n

dy

= w(x̃)
∫

(B+
r )C

1
|x̃ − y|n+2s

(
1 +

(
λ

|y|
)n−2s

)
dy

� w(x̃)
∫
{x∈Rn|xn>x̃n}\H

1
|x̃ − y|n+2s

dy

� C(n)w(x̃)
∫ +∞

δ

r−2s−1 dr

� C(n, s)w(x̃)δ−2s

� C(n, s)w(x̃)(λ − |x̃|)−2s. (2.4)

From the definition δ = min{x̃n, λ − |x̃|}, we have |x̃ − y∗| < Cx̃n for any y ∈
B+

δ (x̃). Simple calculations imply that

∫
B+

λ

2w(x̃)
|x̃ − y∗|n+2s

dy � Cw(x̃)
∫

B+
δ (x̃)

1
x̃n+2s

n

dy � C(n)w(x̃)
δn

x̃n+2s
n

. (2.5)

It is easy to see that

∫
B+

λ

((
λ
|y|

)n−2s

− 1
)

w(x̃)∣∣∣ |y|λ x̃ − λ
|y|y

∗
∣∣∣n+2s � 0. (2.6)

Therefore, from (2.3)–(2.6), we conclude the proof. �

Lemma 2.3. Let α, β > −n. Suppose that (u, v) is a nonnegative classical solution
for the following system:

⎧⎨
⎩

(−Δ)s1u(x) = |x|αvp(x), u(x) � 0, x ∈ R
n
+,

(−Δ)s2v(x) = |x|βuq(x), v(x) � 0, x ∈ R
n
+,

u(x) = −u(x∗), v(x) = −v(x∗), x ∈ R
n.

(2.7)
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Then for x ∈ R
n
+, we have⎧⎪⎪⎪⎨

⎪⎪⎪⎩
u(x) � C

∫
R

n
+

(
1

|x − y|n−2s1
− 1

|x∗ − y|n−2s1

)
|y|αvp(y) dy,

v(x) � C

∫
R

n
+

(
1

|x − y|n−2s2
− 1

|x∗ − y|n−2s2

)
|y|βup(y) dy,

where C is a positive constant.

Proof. Define a cut-off function η(x) ∈ C∞
0 (Rn) satisfying η(x) = 0 for |x| > 1 and

η(x) = 1 for |x| < 1
2 . Denote ηR(x) = η( x

R ) for large R and

uR(x) = C

∫
R

n
+

(
1

|x − y|n−2s1
− 1

|x∗ − y|n−2s1

)
ηR(y)|y|αvp(y) dy,

vR(x) = C

∫
R

n
+

(
1

|x − y|n−2s2
− 1

|x∗ − y|n−2s2

)
ηR(y)|y|βuq(y) dy.

Note that (uR(x), vR(x)) is a solution for the following system:⎧⎨
⎩

(−Δ)s1uR(x) = ηR(x)|x|αvp(x), x ∈ R
n
+,

(−Δ)s2vR(x) = ηR(x)|x|βuq(x), x ∈ R
n
+,

uR(x) = −uR(x∗), vR(x) = −vR(x∗), x ∈ R
n.

(2.8)

Let UR(x) = u(x) − uR(x) and VR(x) = v(x) − vR(x). From (2.7) and (2.8), we
derive ⎧⎨

⎩
(−Δ)s1UR(x) = |x|αvp(x) − ηR(x)|x|αvp(x) � 0, x ∈ R

n
+,

(−Δ)s2VR(x) = |x|βuq(x) − ηR(x)|x|βuq(x) � 0, x ∈ R
n
+,

UR(x) = −UR(x∗), VR(x) = −VR(x∗), x ∈ R
n.

(2.9)

By the definitions of UR(x) and VR(x), obviously, for x ∈ R
n
+,

lim
|x|→∞

UR(x) � 0 and lim
|x|→∞

VR(x) � 0, (2.10)

where we used the assumptions α, β > −n.
Next, we claim that UR(x) � 0 and VR(x) � 0 for x ∈ R

n
+. If not, from (2.10) we

know that there exists some x̂ ∈ R
n
+ such that UR(x̂) = infR

n
+

UR(x) < 0. Then,

(−Δ)s1UR(x̂) = C(n, s1)
∫

Rn

UR(x̂) − UR(y)
|x̂ − y|n+2s1

dy

= C(n, s1)
∫

R
n
+

UR(x̂) − UR(y)
|x̂ − y|n+2s1

dy + C(n, s1)
∫

R
n
+

UR(x̂) + UR(y)
|x̂ − y∗|n+2s1

dy

= C(n, s1)

[∫
R

n
+

(UR(x̂) − UR(y))
(

1
|x̂ − y|n+2s1

− 1
|x̂ − y∗|n+2s1

)

+
2UR(x̂)

|x̂ − y∗|n+2s1

]
dy

< 0.
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This leads a contradiction with the first equation in (2.9). Thus, UR(x) � 0 holds
true for any x ∈ R

n
+, that is, u(x) � uR(x) in R

n
+. Letting R → ∞, we obtain

u(x) � C

∫
R

n
+

(
1

|x − y|n−2s1
− 1

|x∗ − y|n−2s1

)
|y|αvp(y) dy.

Similarly, one has

v(x) � C

∫
R

n
+

(
1

|x − y|n−2s2
− 1

|x∗ − y|n−2s2

)
|y|βuq(y) dy. �

3. Proof of theorem 1.1

In this section, we are ready to prove theorem 1.1. For (i) of theorem 1.1, namely
the case min{p + 2s1, p + 2s1 + α} > 1 and {q + 2s2, q + 2s2 + β} > 1, we use the
method of moving spheres to derive a lower bound for u(x) and v(x). Then, lemma
2.3 and a ‘bootstrap’ iteration process will give the better lower-bound estimates
which can imply the nonexistence result. For (ii) of theorem 1.1, namely the case
0 < pq < 1, α � −2s1pq and β � −2s2pq, a direct application of lemma 2.3 and
iteration technique may give its proof.

3.1. Proof of (i) of theorem 1.1

Proof. By contradiction, assume that (u, v) �≡ (0, 0), then we can derive that u > 0
and v > 0 in R

n
+. Indeed, if there exists some x̂ ∈ R

n
+ such that u(x̂) = 0, from the

anti-symmetry of u, we have

(−Δ)s1u(x̂) =
∫

Rn

−u(y)
|x̂ − y|n+2s1

dy < 0,

which contradicts with the equation

(−Δ)s1u(x̂) = |x̂|αvp(x̂) � 0.

Thus u(x) > 0, and using the same arguments as above, we easily obtain v(x) > 0.
Therefore, we may assume that u(x) > 0 and v(x) > 0 in the rest proof of (i) of
theorem 1.

Let uλ(x) and vλ(x) be the Kelvin transform of u(x) and v(x) centred at origin,
respectively

uλ(x) =
(

λ

|x|
)n−2s1

u

(
λ2x

|x|2
)

,

vλ(x) =
(

λ

|x|
)n−2s2

v

(
λ2x

|x|2
)
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for arbitrary x ∈ R
n \ {0}. By an elementary calculation, uλ(x) and vλ(x) satisfy

the following system:⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(−Δ)s1uλ(x) = |x|α
(

λ

|x|
)τ1

vp
λ(x), x ∈ R

n
+,

(−Δ)s2vλ(x) = |x|β
(

λ

|x|
)τ2

uq
λ(x), x ∈ R

n
+,

where

τ1 = n + 2s1 + 2α − p(n − 2s2) and τ2 = n + 2s2 + 2β − q(n − 2s1).

Note that both τ1 and τ2 are nonnegative and they will not be zero simultaneously,
since (p, q) ∈ Rsub.

Denote

Uλ(x) = uλ(x) − u(x) and Vλ(x) = vλ(x) − v(x).

By elementary calculations and the mean value theorem, for x ∈ B+
λ , there holds

(−Δ)s1Uλ(x) = |x|α
(

λ

|x|
)τ1

vp
λ(x) − |x|αvp(x)

= |x|α
[
(vp

λ(x) − vp(x)) +
((

λ

|x|
)τ1

− 1
)

vp
λ(x)

]

� |x|αpξp−1
λ (x)Vλ(x), (3.1)

(−Δ)s2Vλ(x) � |x|βqηq−1
λ (x)Uλ(x), (3.2)

where ξλ(x) is between v(x) and vλ(x), ηλ(x) is between u(x) and uλ(x). Note that

Uλ(x) = −
(

λ

|x|
)n−2s1

Uλ(xλ) and Vλ(x) = −
(

λ

|x|
)n−2s2

Vλ(xλ). (3.3)

Next, we will use the method of moving spheres to claim that Uλ(x) � 0 and
Vλ(x) � 0 in B+

λ for any λ > 0.
Step 1. Give a start point. We show that for sufficiently small λ > 0,

Uλ(x) � 0 and Vλ(x) � 0, x ∈ B+
λ . (3.4)

Suppose (3.4) is not true, there must exist a point x̄ ∈ B+
λ such that at least one

of Uλ(x̄) and Vλ(x̄) is negative at this point. Without loss of generality, we assume

Uλ(x̄) = inf
x∈B+

λ

{Uλ(x), Vλ(x)} < 0.

We will obtain contradictions for all four possible cases, respectively.
Case 1. (p, q) ∈ Rsub and p � 1, q � 1. Due to p � 1, by the convexity of the

function f(t) = tp, then we can take ξλ(x) = v(x) in (3.1). From equation (3.1) and
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lemma 2.2, we have

|x̄|αpvp−1(x̄)Uλ(x̄) � |x̄|αpvp−1(x̄)Vλ(x̄) � (−Δ)s1Uλ(x̄)

� C(n, s1)Uλ(x̄)
(

(λ − |x̄|)−2s1 +
δn

x̄n+2s1
n

)
. (3.5)

Hence,

vp−1(x̄) �
C(n, s1)

(
(λ − |x̄|)−2s1 + δn

x̄
n+2s1
n

)
p|x̄|α . (3.6)

If δ = min{λ − |x̄|, x̄n} = λ − |x̄|, which implies that λ − |x̄| � x̄n � |x̄|, using the
fact and (3.6), we obtain

vp−1(x̄) � C(λ − |x̄|)−2s1

p|x̄|α � C|x̄|−2s1−α. (3.7)

As λ → 0, the right-hand side of (3.7) will go to infinity since α > −2s1. This is
impossible.

If δ = min{λ − |x̄|, x̄n} = x̄n, from x̄n � |x̄| and (3.6), we derive

vp−1(x̄) � Cx̄−2s1
n

p|x̄|α � C|x̄|−2s1−α, (3.8)

which is also impossible.
Case 2. 0 < p, q < 1. Due to p < 1, we can take ξλ(x) = vλ(x). From equation

(3.1) and lemma 2.2, we have

|x̄|αpvp−1
λ (x̄)Uλ(x̄) � |x̄|αpvp−1

λ (x̄)Vλ(x̄) � (−Δ)s1Uλ(x̄)

� C(n, s1)Uλ(x̄)
(

(λ − |x̄|)−2s1 +
δn

x̄n+2s1
n

)
. (3.9)

Analogous to (3.7) and (3.8), there holds

vp−1
λ (x̄) � Cx̄−2s1

n

|x̄|α , (3.10)

or

vp−1
λ (x̄) � C(λ − |x̄|)−2s1

|x̄|α . (3.11)

Applying lemma 2.3 and the mean value theorem, we obtain that for x ∈ B+
1 ,

u(x) � C

∫
R

n
+

(
1

|x − y|n−2s1
− 1

|x∗ − y|n−2s1

)
|y|αvp(y) dy

� C

∫
B1(2en)

(
1

|x − y|n−2s1
− 1

|x∗ − y|n−2s1

)
dy

� C

∫
B1(2en)

xnyn

|x∗ − y|n−2s1+2
dy

� Cxn.

https://doi.org/10.1017/prm.2023.40 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.40


Nonexistence of anti-symmetric solutions 875

For x ∈ (B+
1 )C , we derive

u(x) � C

∫
R

n
+

(
1

|x − y|n−2s1
− 1

|x∗ − y|n−2s1

)
|y|αvp(y) dy

� C

∫
B1(2en)

xnyn

|x∗ − y|n−2s1+2
dy

� C
xn

|x|n−2s1+2
.

Similarly, we have

v(x) �

⎧⎨
⎩

Cxn, x ∈ B+
1 ,

C
xn

|x|n−2s2+2
, x ∈ (B+

1 )C .

Then by the definition of vλ(x), we obtain

vλ(x) �

⎧⎪⎪⎨
⎪⎪⎩

C

(
λ

|x|
)n−2s2+2

xn, xλ ∈ B+
1 ,

C
xn

λn−2s2+2
, xλ ∈ (B+

1 )C .

(3.12)

If δ = λ − |x̄| � x̄n, that is, |x̄| � λ
2 , combining (3.11) and (3.12), we conclude

that for x̄ ∈ B+
λ and sufficiently small λ,

(λ − |x̄|)−2s1 � Cx̄p−1
n |x̄|α � C(λ − |x̄|)p−1|x̄|α,

which gives that (
λ

|x̄| − 1
)−2s1−p+1

� C|x̄|p+2s1+α−1. (3.13)

Due to min{p + 2s1, p + 2s1 + α} > 1 and λ
|x̄| � 2, inequality (3.13) is impossible

as λ > 0 sufficiently small.
If δ = x̄n, it follows from (3.10) and (3.12) that

Cx̄−2s1
n

|x̄|α � vp−1
λ (x̄) � Cx̄p−1

n ,

which implies that

|x̄|−p−2s1−α+1 � C if α � 0, and x̄−p−2s1−α+1
n � C if α < 0.

Either one of the two inequalities will yield a contradiction since the left terms go
to infinity as min{p + 2s1, p + 2s1 + α} > 1 and λ > 0 small enough.

For case 3: (p, q) ∈ Rsub, p � 1, 0 < q < 1 and case 4: (p, q) ∈ Rsub, 0 < p < 1, q �
1, similar argument as that of cases 1 and 2 can show that Uλ(x) � 0 and Vλ(x) � 0
in B+

λ for sufficiently small λ > 0. Therefore, (3.4) holds.
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Step 2. Now we move the sphere Sλ outwards as long as (3.4) holds. Define

λ0 = sup{λ|Uμ(x) � 0, Vμ(x) � 0, x ∈ B+
μ , ∀ 0 < μ < λ}.

We will show that λ0 = +∞. Suppose on the contrary that 0 < λ0 < +∞. We want
to show that there exists some small ε > 0 such that for any λ ∈ (λ0, λ0 + ε),

Uλ(x) � 0 and Vλ(x) � 0, x ∈ B+
λ . (3.14)

This implies that the plane Sλ0 will be moved outwards a little bit further, which
contradicts with the definition of λ0.

Firstly, we claim that

Uλ0(x) > 0 and Vλ0(x) > 0, x ∈ B+
λ0

. (3.15)

Indeed, if there exists some point x0 ∈ B+
λ0

such that Uλ0(x
0) = 0, we have

(−Δ)s1Uλ0(x
0) = C

∫
Rn

−Uλ0(y)
|x0 − y|n+2s1

dy � 0. (3.16)

On the other hand, it is easy to get that

(−Δ)s1Uλ0(x
0) = |x0|α

(
λ0

|x0|
)τ1

vp
λ0

(x0) − |x0|αvp(x0)

= |x0|α
((

λ0

|x0|
)τ1

− 1
)

vp
λ(x0) + p|x0|αξp−1

λ (x0)Vλ0(x
0). (3.17)

If τ1 > 0, then (−Δ)s1Uλ0(x
0) > 0, where we use the facts that Vλ0 � 0 and v > 0

in R
n
+. If τ1 = 0, then we have that τ2 > 0. Moreover, Vλ0(x

0) = 0 follows from
(3.16) and (3.17). Using an argument similar to (3.16) and (3.17), we derive

0 � (−Δ)s2Vλ0(x
0) = |x0|β

((
λ0

|x0|
)τ2

− 1
)

uq
λ(x0) + |x0|βηq−1

λ (x0)Uλ0(x
0)

= |x0|β
((

λ0

|x0|
)τ2

− 1
)

uq
λ(x0) > 0,

which is absurd. Thus, Uλ0(x) > 0 is proved. Similarly, we derive that Vλ0(x) > 0.
Hence, (3.15) holds.

Next, we will show that the sphere can be moved further outwards. The continuity
of u(x) and (3.15) yield that there exists some sufficiently small l ∈ (0, λ0

2 ) and
ε1 ∈ (0, λ0

2 ) such that for λ ∈ (λ0, λ0 + ε1),

Uλ(x) � 0, x ∈ B+
λ0−l. (3.18)

For x ∈ B+
λ \ B+

λ0−l, using the similar proof of (3.4), we can deduce that

Uλ(x) � 0, x ∈ B+
λ \B+

λ0−l. (3.19)

Note that the distance between x̄ and Sλ, i.e. λ − |x̄|, plays an important role in
this process.
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Hence, it follows from (3.18) and (3.19) that for all λ ∈ (λ0, λ0 + ε1),

Uλ(x) � 0, x ∈ B+
λ .

Similarly, we can also prove that there exists ε2 > 0 such that for all λ ∈ (λ0,
λ0 + ε2),

Vλ(x) � 0, x ∈ B+
λ .

Let ε = min{ε1, ε2}, therefore, (3.14) can be completely concluded. This contradicts
with the definition of λ0. So λ0 = +∞.

Then, we have for every λ > 0,

Uλ(x) � 0, Vλ(x) � 0, x ∈ B+
λ ,

which gives that,

u(x) �
(

λ

|x|
)n−2s1

u

(
λ2x

|x|2
)

, ∀ |x| � λ, x ∈ R
n
+, ∀ 0 < λ < +∞. (3.20)

v(x) �
(

λ

|x|
)n−2s2

v

(
λ2x

|x|2
)

, ∀ |x| � λ, x ∈ R
n
+, ∀ 0 < λ < +∞. (3.21)

For any given |x| � 1, let λ =
√|x|, then it follows from (3.20) that

u(x) �
(

min
x∈S+

1

u(x)

)
1

|x|n−2s1
2

:=
C

|x|n−2s1
2

� Cxn

|x|n−2s1
2 +1

, (3.22)

and similarly from (3.21), we obtain

v(x) � Cxn

|x|n−2s2
2 +1

. (3.23)

Now we make full use of the above properties to derive some lower-bound
estimates of solutions to (1.1) through iteration technique.

Let θ0 = n−2s1
2 + 1, σ0 = n−2s2

2 + 1. From lemma 2.3, inequality (3.23) and the
mean value theorem, we have for xn > 1,

u(x) � C

∫
R

n
+

(
1

|x − y|n−2s1
− 1

|x∗ − y|n−2s1

)
|y|αvp(y) dy

� C

∫ 4|x|

2|x|

∫
2|x|�|y′|�4|x|

xnyn

|x∗ − y|n−2s1+2

yp
n

|y|pσ0−α
dy′ dyn

� C
xn

|x|(n−2s1+2)+(pσ0−α)

∫ 4|x|

2|x|

∫
2|x|�|y′|�4|x|

yp+1
n dy′ dyn

� C
xn

|x|pσ0−α−2s1+3−(p+2)
. (3.24)
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Similarly, we have

v(x) � C
xn

|x|q(θ0−1)−(β+2s2)+1
(3.25)

Denote θ1 = p(σ0 − 1) − (α + 2s1) + 1 and σ1 = q(θ0 − 1) − (β + 2s2) + 1. Repeat
the above process replacing (3.23) by (3.25), then we have

u(x) � C

∫ 4|x|

2|x|

∫
2|x|�|y′|�4|x|

xnyn

|x∗ − y|n−2s1+2

yp
n

|y|pσ1−α
dy′ dyn � C

xn

|x|θ2
,

and analogously,

v(x) � C
xn

|x|σ2
, (3.26)

where θ2 = p(σ1 − 1) − α − 2s1 + 1 and σ2 = q(θ1 − 1) − β − 2s2 + 1.
After such k iteration steps, we derive

u(x) � C
xn

|x|θk+1
, v(x) � C

xn

|x|σk+1
, (3.27)

where θk+1 = p(σk − 1) − α − 2s1 + 1 and σk+1 = q(θk − 1) − β − 2s2 + 1. Ele-
mentary calculations give that

θ2m =
n − 2s1

2
(pq)m −

[
(p(2s2 + β) + (2s1 + α))

1 − (pq)m

1 − pq

]
+ 1,

θ2m+1 =
(

p(n − 2s2)
2

− 2s1 − α

)
(pq)m

−
[
(p(2s2 + β) + (2s1 + α))

1 − (pq)m

1 − pq

]
+ 1,

σ2m =
n − 2s2

2
(pq)m −

[
(q(2s1 + α) + (2s2 + β))

1 − (pq)m

1 − pq

]
+ 1,

σ2m+1 =
(

q(n − 2s1)
2

− 2s2 − β

)
(pq)m

−
[
(q(2s1 + α) + (2s2 + β))

1 − (pq)m

1 − pq

]
+ 1, (3.28)

where m = 0, 1, 2, . . ..
For the case pq � 1, we claim that both {θk} and {σk} are decreasing sequences

and unbounded from below. Denote

Ae = p
n − 2s2

2
− n − 2s1

2
− 2s1 − α,

Ao = q
n − 2s1

2
− n − 2s2

2
− 2s2 − β.
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Note that Ae, Ao � 0 and they will not be zero simultaneously, since (p, q) ∈ Rsub.
By elementary calculations, we have

θk+1 − θk =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

p

⎡
⎣ k + 1

2

⎤
⎦
q

⎡
⎣ k

2

⎤
⎦
Ae � 0, k is even,

p

⎡
⎣ k + 1

2

⎤
⎦
q

⎡
⎣ k

2

⎤
⎦
Ao � 0, k is odd.

(3.29)

Hence, the sequence {θk} is decreasing.
Combining the above properties of Ae, Ao, the assumption pq � 1 and (3.29),

we deduce that θk → −∞ as k → +∞. Similarly, we can show that {σk} is also
decreasing and σk → −∞. These and (3.27) indicate that u(x) and v(x) do not
belong to any L2s. Hence, the solutions (u, v) ≡ (0, 0) when pq � 1.

Next, we consider the case pq < 1. From (3.28), we can conclude that

θk → 1 − p(2s2 + β) + (2s1 + α)
1 − pq

, σk → 1 − q(2s1 + α) + (2s2 + β)
1 − pq

as k → ∞.

(3.30)

Since p + 2s1 + α > 1 and q + 2s2 + β > 1, we have

p(2s2 + β) + (2s1 + α)
1 − pq

− 1 > 0,
q(2s1 + α) + (2s2 + β)

1 − pq
− 1 > 0.

Hence, from (3.30) and (3.27), we have for xn > 1,

u(x) � cx
p(2s2+β)+(2s1+α)

1−pq +o(1)
n , v(x) � cx

q(2s1+α)+(2s2+β)
1−pq +o(1)

n . (3.31)

Combining this with lemma 2.3, we have

u(x) � C

∫
R

n
+

(
1

|x − y|n−2s1
− 1

|x∗ − y|n−2s1

)
|y|αvp(y) dy

� C

∫ +∞

2xn

∫
Rn−1

(
1

|x − y|n−2s1

− 1
|x∗ − y|n−2s1

)
y

(
q(2s1+α)+(2s2+β)

1−pq +o(1)
)

p+α

n dy′ dyn

� C

∫ +∞

2xn

y

(
q(2s1+α)+(2s2+β)

1−pq +o(1)
)

p+α

n dyn

×
∫

Rn−1

xnyn

(|x′ − y′|2 + |xn + yn|2)
n−2s1+2

2

dy′.
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Let x′ − y′ = (xn + yn)z′, we have

u(x) � C

∫ +∞

2xn

y

(
q(2s1+α)+(2s2+β)

1−pq +o(1)
)

p+α+1

n xn

(xn + yn)3−2s1
dyn

∫
Rn−1

1

(|z′|2 + 1)
n−2s1+2

2

dz′

� C

∫ +∞

2xn

y

(
q(2s1+α)+(2s2+β)

1−pq +o(1)
)

p+α+1

n xn

(xn + yn)3−2s1
dyn.

Let yn = xnzn, one has

u(x) � Cx

(
q(2s1+α)+(2s2+β)

1−pq +o(1)
)

p+2s1+α

n

∫ +∞

2

z
q(2s1+α)+(2s2+β)

1−pq p+α+1
n

(1 + zn)3−2s1
dzn

∼=
∫ +∞

2

1

(zn)3−2s1−
(

q(2s1+α)+(2s2+β)
1−pq p+α+1

) dzn. (3.32)

Due to p + 2s1 + α > 1 and q + 2s2 + β > 1, we have q(2s1+α)+(2s2+β)
1−pq > 1, which

implies that

3 − 2s1 −
(

q(2s1 + α) + (2s2 + β)
1 − pq

p + α + 1
)

< 1.

This yields that the right-hand side of (3.32) is infinity, which is impossible. Hence,
for pq < 1 we also obtain (u, v) ≡ (0, 0).

In sum, we conclude that there is no nontrivial classical solutions to system (1.1)
for the case that (p, q) ∈ Rsub, min{p + 2s1, p + 2s1 + α} > 1, min{q + 2s2, q +
2s2 + β} > 1. �

3.2. Proof of (ii) of theorem 1.1

Proof. Assume that (u, v) �≡ (0, 0), from the proof of (i), we know that u > 0 and
v > 0 in R

n
+. Applying lemma 2.3, for xn > min{2, |x′|

10 }, we have

u(x) � C

∫
R

n
+

(
1

|x − y|n−2s1
− 1

|x∗ − y|n−2s1

)
|y|αvp(y) dy

� C

∫
B1(2en)

(
xnyn

|x∗ − y|n−2s1+2

)
|y|αvp(y) dy

� C
1 + |x|

(1 + |x|)n−2s1+2

∫
B1(2en)

yn|y|αvp(y) dy

� C
1

(1 + |x|)n−2s1+1
. (3.33)

Similarly, for xn > min{2, |x′|
10 }, we have

v(x) � C

(1 + |x|)n−2s2+1
. (3.34)
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Iterating (3.33) with (3.34), for xn > min{2, |x′|
10 }, we get

u(x) � C

∫
B|x|(0,4|x|)

(
1

|x − y|n−2s1
− 1

|x∗ − y|n−2s1

) |y|α
(1 + |y|)p(n−2s2+1)

dy

� C

∫
B3|x|(0,4|x|)\B2|x|(0,4|x|)

xnyn

|x∗ − y|n−2s1+2

|y|α
(1 + |y|)p(n−2s2+1)

dy

� C
(1 + |x|)2+α

(1 + |x|)n−2s1+2+(n−2s2+1)p

∫
B3|x|(0,4|x|)\B2|x|(0,4|x|)

dy

� C
1

(1 + |x|)(n−2s2+1)p−2s1−α
. (3.35)

Using the same argument as that of (3.35), for xn > min
{

2, |x′|
10

}
, we obtain

v(x) � C
1

(1 + |x|)(n−2s1+1)q−2s2−β
.

After k iteration steps, it is easy to see that for |x| large and xn > min
{

2, |x′|
10

}
,

u(x) � C

(1 + |x|)γk
, v(x) � C

(1 + |x|)δk
.

Here,

γk = δk−1p − 2s1 − α, δk = γk−1q − 2s2 − β,

where

γ1 = (n − 2s2 + 1)p − 2s1 − α, δ1 = (n − 2s1 + 1)q − 2s2 − β.

Simple calculations imply that

γ2m = (n − 2s1 + 1)(pq)m −
[
(p(2s2 + β) + (2s1 + α))

1 − (pq)m

1 − pq

]
,

γ2m+1 = [p(n − 2s2 + 1) − (2s1 + α)] (pq)m

−
[
(p(2s2 + β) + (2s1 + α))

1 − (pq)m

1 − pq

]
,

δ2m = (n − 2s2 + 1)(pq)m −
[
(q(2s1 + α) + (2s2 + β))

1 − (pq)m

1 − pq

]
,

δ2m = [q(n − 2s1 + 1) − (2s2 + β)] (pq)m

−
[
(q(2s1 + α) + (2s2 + β))

1 − (pq)m

1 − pq

]
,

where m = 0, 1, 2, . . . .
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From 0 < pq < 1, we obtain

γk → −p(2s2 + β) + (2s1 + α)
1 − pq

, δk → −q(2s1 + α) + (2s2 + β)
1 − pq

, as k → ∞.

This yields that for |x| large,

u(x) � C(1 + |x|) p(2s2+β)+(2s1+α)
1−pq −o(1), v(x) � C(1 + |x|) q(2s1+α)+(2s2+β)

1−pq −o(1),

as k → +∞. Due to 0 < pq < 1 and α � −2s1pq, β � −2s2pq, we have

p(2s2 + β) + (2s1 + α)
1 − pq

> 2s1,
q(2s1 + α) + (2s2 + β)

1 − pq
> 2s2

This contradicts with the assumptions that u(x) ∈ L2s1 and v(x) ∈ L2s2 . Hence,
(u, v) ≡ (0, 0). �

4. Proof of theorem 1.3

In this section, we give the proof of theorem 1.3 by using the method of moving
planes.

Proof. Suppose on the contrary that (u, v) �≡ (0, 0), we know that u > 0 and v > 0
in R

n
+. Let ū(x) and v̄(x) be the Kelvin transform of u(x) and v(x) centred at

origin, respectively

ū(x) =
(

1
|x|

)n−2s1

u

(
x

|x|2
)

,

v̄(x) =
(

1
|x|

)n−2s2

v

(
x

|x|2
)

for arbitrary x ∈ R
n \ {0}. Then, ū(x) and v̄(x) satisfy the following system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−Δ)s1 ū(x) =
(

1
|x|

)τ̄1

v̄p(x), x ∈ R
n
+,

(−Δ)s2 v̄(x) =
(

1
|x|

)τ̄2

ūq(x), x ∈ R
n
+,

ū(x) > 0, v̄(x) > 0, x ∈ R
n
+,

ū(x′, xn) = −ū(x′,−xn), v̄(x′, xn) = −v̄(x′,−xn), x = (x′, xn) ∈ R
n,

where

τ̄1 = n + 2s1 + α − p(n − 2s2) and τ̄2 = n + 2s2 + β − q(n − 2s1).

Note that τ̄1 � 0 and τ̄2 � 0 due to p � n+2s1+α
n−2s2

and q � n+2s2+β
n−2s1

. Obviously, for
|x| large enough,

ū(x) = O

(
1

|x|n−2s1

)
and v̄(x) = O

(
1

|x|n−2s2

)
. (4.1)
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For any real number ρ > 0 and x ∈ Σρ, define

Ūρ(x) = ū(x−
ρ ) − ū(x), V̄ρ(x) = v̄(x−

ρ ) − v̄(x),

where Σρ, Tρ and x−
ρ are defined as in proposition 2.1. Then, for x ∈ Σρ ∩ R

n
+, we

have

(−Δ)s1Ūρ(x) = |x−
ρ |−τ̄1 |v̄(x−

ρ )|p−1v̄(x−
ρ ) − |x|−τ̄1 |v̄(x)|p−1v̄(x)

= |x|−τ̄1
(|v̄(x−

ρ )|p−1v̄(x−
ρ ) − |v̄(x)|p−1v̄(x)

)
+ |v̄(x−

ρ )|p−1v̄(x−
ρ )

(|x−
ρ |−τ̄1 − |x|−τ̄1

)
� |x|−τ̄1

(|v̄(x−
ρ )|p−1v̄(x−

ρ ) − |v̄(x)|p−1v̄(x)
)

� |x|−τ̄1p|v̄|p−1(x)V̄ρ(x), (4.2)

where we use the fact p > 1 in the last inequality. Similarly,

(−Δ)s2 V̄ρ(x) � |x|−τ̄2q|ū|q−1(x)Ūρ(x). (4.3)

Step 1. We claim that for ρ > 0 sufficiently small,

Ūρ(x) � 0 and V̄ρ(x) � 0, x ∈ Σρ. (4.4)

Otherwise, from (4.1), there exists some x̄ ∈ Σρ ∩ R
n
+ such that at least one of

Ūρ(x), V̄ρ(x) is negative. Without loss of generality, we may assume that

Ūρ(x̄) = inf
Σρ

{Ūρ(x), V̄ρ(x)} < 0.

Combining equation (4.2) and lemma 2.1, we deduce

|x̄|−τ̄1pv̄p−1(x̄)Ūρ(x̄) � |x̄|−τ̄1pv̄p−1(x̄)V̄ρ(x̄) � (−Δ)s1Ūρ(x̄)

� C(n, s1)Ūρ(x̄)(ρ − x̄n)−2s1 . (4.5)

This yields that

|x̄|−τ̄1pv̄p−1(x̄) � C(ρ − x̄n)−2s1 � Cρ−2s1 . (4.6)

Observe that (4.1) and the decay conditions of u and v in theorem 1.3 ensure that

lim
x→∞ |x|−τ̄1pv̄p−1(x) = 0, lim

x→0
|x|−τ̄1pv̄p−1(x) � C,

where we used the assumption α > −2s2. Hence, inequality (4.6) is impossible as
ρ > 0 is sufficiently small. Therefore, (4.4) holds.

Step 2. Move the plane Tρ upwards along the xn-axis as long as (4.4) holds. Let

ρ0 = sup{ρ | Ūμ(x) � 0, V̄μ(x) � 0, x ∈ Σμ, μ � ρ, ρ > 0}.

We will show that ρ0 = +∞ by contradiction arguments.
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Suppose on the contrary that 0 < ρ0 < +∞. We will verify that

Ūρ0(x) ≡ 0, and V̄ρ0(x) ≡ 0, x ∈ Σρ0 . (4.7)

Then using the above equalities (4.7), we immediately obtain

0 < ū(x−
ρ0

) = u(x) = 0, 0 < v̄(x−
ρ0

) = v(x) = 0, x ∈ ∂R
n
+,

which is impossible. Thus ρ0 = +∞ must hold.
Therefore, our goal is to prove (4.7). Suppose that (4.7) does not hold, then we

deduce that

Ūρ0(x) > 0, and V̄ρ0(x) > 0, x ∈ Σρ0 . (4.8)

Otherwise, there exists some point x̃ ∈ Σρ0 ∩ R
n
+ such that Ūρ0(x̃) = 0. We have

(−Δ)sŪρ0(x̃) = C

∫
Rn

−Ūρ0(y)
|x̃ − y|n+2s

dy < 0.

On the contrary, it is easy to get that

(−Δ)sŪρ0(x) = |x̃−
ρ0
|−τ̄1 |v̄(x̃−

ρ0
)|p−1v̄(x̃−

ρ0
)

− |x̃|−τ̄1 |v̄(x̃)|p−1v̄(x̃) � |x̃|−τ̄1p|v̄|p−1(x̃)V̄ ρ0(x̃) � 0,

where we use the fact V̄ρ0 � 0. This leads to a contradiction. Hence, (4.8) holds.
Now we show that the plane Tρ0 can be moved upwards a little bit further and

hence obtain a contradiction with the definition of ρ0. Precisely, we will verify that
there exists some small ε > 0 such that for any ρ ∈ (ρ0, ρ0 + ε),

Ūρ(x) � 0 and V̄ρ(x) � 0, x ∈ Σρ, (4.9)

where ε is determined later.
If (4.9) is not true, then for any εk → 0 as k → +∞, there exists ρk ∈ (ρ0, ρ0 + εk)

and xk ∈ R
n
+ ∩ Σρk

such that

Ūρk
(xk) = inf

Σρk

{Ūρk
(x), V̄ρk

(x)} < 0. (4.10)

Similar argument as that of (4.5) gives that

(−Δ)s1Ūρk
(xk) + c(xk)Ūρk

(xk) � 0, (4.11)

where c(x) = −|x|−τ̄1pv̄p−1(x). From (4.1) and the decay conditions of u and v, we
deduce that

lim
x→∞ |x|2s1c(x) = 0 and c(x) is bounded below in Σρk

, (4.12)

where we used the assumption α > −2s2. Then from proposition 2.1 we know that
there exists �k > 0 and R0 > 0 such that

xk ∈ BR0(0) ∩ Σρk−�k
. (4.13)

Denote �0(> 0) as the constant given in proposition 2.1 corresponding to the half
space Σρ0+1. Combining the remark about the monotonicity of � with respect to λ
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below proposition 2.1, (4.13) and the fact that εk → 0, we have that

xk ∈ BR0(0) ∩ Σ
ρ0− �0

2
. (4.14)

If ρ0 − �0
2 � 0, then (4.14) contradicts with the fact that xk ∈ R

n
+. If ρ0 − �0

2 > 0,
due to (4.8) and continuity of ū, we know that there exists ε′ ∈ (0, �0

2 ) such that
for any εk � ε′ and ρ ∈ (ρ0, ρ0 + εk),

Ūρ(x) � 0, x ∈ BR0(0) ∩ Σ
ρ0− �0

2
.

This contradicts with (4.14) and (4.10). Hence, we derive that for any ρ ∈ (ρ0,
ρ0 + ε′) with ε′ > 0 small enough,

Ūρ(x) � 0, x ∈ Σρ.

Similarly, we may verify that there exists ε′′ > 0 such that for any ρ ∈ (ρ0,
ρ0 + ε′′) the inequality holds

V̄ρ(x) � 0, x ∈ Σρ.

Let ε = min{ε′, ε′′}, then (4.9) follows immediately and hence (4.7) holds, which
yields that ρ0 = +∞.

The result ρ0 = +∞ indicates that both ū(x) and v̄(x) are monotone increas-
ing along the xn-axis. This contradicts with the asymptotic behaviours (4.1).
Therefore, (ū, v̄) = (0, 0), which yields that (u, v) = (0, 0). We complete the proof
of theorem 1.3. �
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13 M. Fazly and N. Ghoussoub. On the Hénon–Lane–Emden conjecture. Discrete Contin. Dyn.
Syst. 34 (2014), 2513–2533.

14 D. G. de Figueiredo and P. Felmer. A Liouville-type theorem for systems. Ann. Sc. Norm.
Super. Pisa 21 (1994), 387–397.

15 B. Gabriele. Non-existence of positive solutions to semilinear elliptic equations on R
n or R

n
+

through the method of moving planes. Commun. Partial Differ. Equ. 22 (1997), 1671–1690.

16 B. Gidas and J. Spruck. Global and local behavior of positive solutions of nonlinear elliptic
equations. Commun. Pure Appl. Math. 34 (1981), 525–598.

17 B. Gidas and J. Spruck. A priori bounds for positive solutions of nonlinear elliptic equations.
Commun. Partial Differ. Equ. 6 (1981), 883–901.

18 T. Jin, Y. Li and J. Xiong. On a fractional Nirenberg problem, part I: blow up analysis and
compactness of solutions. J. Eur. Math. Soc. 16 (2014), 1111–1171.

19 P. Le. Liouville theorem for fractional Hénon–Lane–Emden systems on a half space. Proc.
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