SOME GENERATING FUNCTIONS FOR
LAGUERRE AND HERMITE POLYNOMIALS

FRED BRAFMAN

1. Introduction. The Laguerre polynomials L,® (x) have the following
hypergeometric and Rodrigues representation (3, pp. 188, 189):
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The Hermite polynomials H,(x) have the representations (3, p. 193):
3) H,(x) = (2x)" 2Fo(=3n, —3n 4+ }; —; —x7%),
) H,(x) = (=1)"¢" Dje ™"

This note will present several generating functions for the L, (x) and
H,(x). The result (5) was recently obtained, by an entirely different method,
by Weisner (7). The other following results are believed to be new:
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Equations (6) and (9) give divergent generating functions, but the rest are
convergent for ¢ sufficiently small. In equations (5), (6), (7), (9), (11), e is
arbitrary. It should be noted that puttinga = —k (k=10,1,2,...) in (5)
and (7) reduces them to a form involving the general Laguerre polynomial
itself, doing this in (11) reduces the left side to a form involving the Laguerre
polynomial for the special case « = — 3, and doing this in (6) and (9) reduces
the left sides to forms involving the Hermite polynomials. It should further be

noted that the
1 1 1
=3, —n + 3
2F1[ 2 21+2.712]'
2 y

on the right side of (10) are essentially Tchebycheff polynomials of the first
kind in the argument (1 — v2)~%.

2. Proof of (5). From (2) it follows that

n+a —2
(a) _
(12) L,%(x) = 2m f P dz,

for x # 0, where C is a simple closed path about z = x, not containing z = 0.
Multiply by

n —n, Ci, Cz . . Cln ]
) fonr g ],

https://doi.org/10.4153/CJM-1957-020-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1957-020-1

182 FRED BRAFMAN

sum over #, and switch operations to find:

(14) Bo,x,t)= 3 qu[—n, o v] P L)
n=0 dl, dg, N ,dq,
Eex (e
~ 27”{ ‘f v A(z) dz,
where
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(15) 4 (z) ;”“F“[ dy, ..., dg v](z —x/ "

Equation (15) can be summed directly or by a special case of a formula of
Chaundy (2, p. 62) to give:

. , 2= x 1, c,..., ¢ ____—_vtz___]
(16) A(z) = — Iz ”“Fq[ di,...,dg; 2 —x —tz1’

The question of interchange of operations in (14) must now be considered.
The preliminary result (18) to be obtained below is general enough to contain
both convergent and divergent cases. For p > ¢, the series in (16) diverges
and the result is a purely formal one. For p < ¢, the series converges uni-
formly for a neighborhood of ¢ = 0 and the interchange of operations in (14)
is justified. In the latter case, replace the equivalence symbol ~ in (14) by
equals signs.
In the general case then,
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In the last line, the same comments as to justification of the interchange of
operations apply as before. The last line may be converted by (12) provided
¢ is sufficiently small. This gives:
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Result (5) now follows by taking
(19) p=lLqg=1c=ad =1+«
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and using the result (2, p. 62, quoted in 1, p. 949):
~a ;__—_zc_t_ R @ L )1
20) (=5 IFI[ l+a ]";0 1+ a),

Another previously known result (6, p. 98, eqn. (5.1.15)) also follows
from (18) by taking

(21) p=0,¢g=1,d =1+a
and using the result (6, p. 98)

© (a)(x) o
n=0 (1 + a)n

(22) et ()Fl(—;]. +Ol; —xt) =

3. Proof of (6). The development of (6) follows a pattern similar to that
of §2. From (4) it follows that

. _ N
(23) ) = (-1 g [

Multiply (23) by

. " —, €1y . vy Cp;

(24) ;Z—! p+1F0[ dl, L] dz; v:l ’
and proceed in a manner exactly like that of §2 to find, after two interchanges
of operations:

(25) D(ox1) = 3 mn[‘”' oo Cviv] £, (x)
d, ..., dg
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Z @) ... ([d))nn! :

~ exp(2xt — %)
Result (6) follows from (25) by taking
(26) p=1c=ag=0,
and using the formula (1, p. 948):

“o gl @ et E oA S (@n Ha(x)
@7 (= 2w [ —i (1 — 2xt)° ] Zo n!

4. Proof of (7). The developments in §§3 and 4 depended on Chaundy’s
summation formula, which was used, for example, to convert (15) into (16).
The whole procedure may be repeated to yield new results if one will instead
use (1, p. 947):
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Start again with (12). Then it follows that
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(30) A(Z) - nz:ﬂ(z_x> p+2Fq|: b],...,bq;v .

The interchange of operations gives valid convergent results if p + 1 < g,
and a formal divergent result if p + 1 > ¢. The application of (28) to (30)
and the substitution of the result in (29) yields:

31) E(v,x,t)

—_ —_ —_ 2 2,2

Ex* ( eg” 1 1,ay,...,4a Vgt

~ - Y o — | ds.
271 Jeoz —x — 2t b, ..., by (2 —x — 3t)

Interchange operations again to find:

(32) E(v,x,t)

e xt 2 (D (@) . . (@), (@)™
~(1 =1 ex9<“1 - )2, G (=7 o T

where

@)  pot(mtenl/(on) (T

2w

For t sufficiently small, x¢/(1 — ¢) lies within C and hence
(34) F=L,®[x/(1 — ]
So far then, the result is:

(35) E(v,x,t)

e (=5 )2 (B @ (@), (D) a(ig
~a =0 em&—)%(MWmea—o”hwl—t'

As a special case of (35), take
(36) p = 21(] = 370’1 = %d,(l:z = %d—*— %’bl = %»b? = %+ %ava': 1+%a7

https://doi.org/10.4153/CJM-1957-020-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1957-020-1

LAGUERRE AND HERMITE POLYNOMIALS 185

and recall that:
(37) (20)2n = 2% (€)n (€ + F)n-

Then (35) becomes:

) 1, _1 11,1 1.

Z 4F3|: 3N, 271‘ + 3, iar ia + 3; v2:l Ln(a) (x) ¢
2 2

(38) =0 t t%a: ( ) ( t)?ﬂ
B o —la _ X a)oy U () X
—(1 = " exp - 7 )Z:% (T ar (1 = 57 L <1 - t>'

From the known result (20), it easily follows that

—a a 5 _—xt —a a ;_xt
(=0 1F1\:1+a;1—t]+(1+t) 1F1|:1+a;1—|-t:|
S (a)2n L2n(a) (.’XZ) tzn
=2 .
7;) (J- + a>2n
The application of (39) to (38) yields (7).

(39)

5. Proof of (8). As a special case of (35), take
(40) p=0,g=3,01=3%bs=3%+ 32,0 =1+ 1ca.
From the known result
© tn Ln(a)__(_:":_)_

(41) e oF1 (—; 1+ a; —at) = ,;) L Fa),

it is easy to get:
(42) e o Fy (—; 1+ a; —xt) + e oFy (—; 1 + a;xt)
© t?n LG(a) (x)
=2 S
nz=0 (1 + a)Zn

The application of (42) to the special case represented by (40) gives (8).
6. Proofs of (9), (10), (11). Start from (23), multiply by

) " —in, —in+ L ai,...,a, 2

(43) ;WF«[ i U b? ]

sum on #, and interchange operations exactly as done previously. The result,
stated without intermediate steps is:

3 —am At g0 4 o | L)
Zp+2Fq b b v
(44) n=0 Iy « « oy Ugy

~ exp(2xt — 1) nz(::o (al();l')n' .. .(fl"()l;‘q)(f;t!) : Hon(w — 1),

In (44), take
(45) p=2,g=1a = 3a,a: = 3a+ 30, =%
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From (27), obtain

1, 1 1 142
m 9\ 20, 30 + 3; _w____‘i_t___a:\
(-H)) (1 th) QFO[ - (1 _ 2xt)2
1, 1 1 2
- 3a,3a + 3;  —4t _]
+ (1 4 2xt) 2Fo|: —.aF 2xt)2

n—0 (2”)'

The combination of (44), (45), and (46) will yield (9).
As the next special case of (44), take

(47) p=0,g=1"0b =3
From (6, p. 102)

~2 i (@) 20 Hon(x) £

exp(2xt — 1) = £l (x')_t4
n=>0 n.
obtain:
_p ) 2 H,, (x) £
(%8) ¢ ¥ cosh 2xt = nZ:O —~(—2n—)!——.

The combination (44), (47), and (48) will yield (10).
For the last special case of (44), take

(49) p=1qg=1a =a,b = 3.
Substitute the result (6, p. 102):
(50) Hy(y) = (—1)" 22 n! L, (y2).
So far, (49) and (50) give, for 2 = u:
CT N e i ok
= exp(2xt — t°) f‘a_(il)n_(%ﬂﬁ LPx — 1))

The application of (20) now vields (11).
7. More general results. Make the definition

52 n[k;al,ag,...,ap;]
G2) S kg gy gt
—n —n+1 —n+k—1
E’ | k
=k+pFa X1

61) B‘ly'~'y6q:

y 01, O2y « v oy Oy

where £ =1,2,3,....
Then by direct summation and use of the relation

https://doi.org/10.4153/CJM-1957-020-1 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1957-020-1

LAGUERRE AND HERMITE POLYNOMIALS 187

(54) s =k (c/k), ((c+1D/k);...((c+k—1)/k),
it follows that

a a+1 a+k—1 )

. —a kr k y oy k y X1, 2y . v .y O,y <_t>k
(55) (1 =0 s F B, Bar .\ By NI —
(@)t l: a1, A2y e v ey O
~ 22— fl k; .
ng() nl | ﬁlyﬁ?)"'rﬁq;x

Equation (55) is the obvious generalization of (1, p. 947, eqns. 24 and 25).
For a = 1, (55) gives a generalization of (28), which is the special case £ = 2
of (55).

It is thus possible to generalize the procedures of the above sections. The
results are so general and so complicated, it does not seem that they would
be of much use. Just one of the many possible is presented here for illustration.
Let w; be a kth root of unity, other than 1 itself. Then:

k=1 i —a
60 =l 2 B (10 315)

i=0

F[ a wy tux ]
14 e =00 -t + wito)

a a+1 at+ k-1
m' ky k y ooy k ’ -
~ "k k (@
L k=1 1+a 2+a Eto® |T )
krky~.., k ’ k ) k y e ey k N

For & = 2, (56) reduces to (7) and for & = 1, (56) reduces to (5). The inter-
ested reader will be able to find similar generalizations of (6) through (11).
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