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1. Introduction. In [S]. H, Sharp characterizes each

topology on a finite set S = {si, Sy sn} with a nXn

zero-one matrix T = (tij) where tij =1 if and only if
sje{si} . In this paper we seek matrix characterizations of
certain topological properties of finite spaces. Such
characterizations will provide purely mechanical ways of
determining if a space has a certain topological property.

We give matrix characterizations of the TY separation
axiom of Youngs [Y]; the RO and R1 separation axioms of

Davis [D], the strong T, separation axiom of Robinson and

0
Wu [RW], and the six separation axioms introduced by Aull and
Thron [AT]. Also, we include matrix characterizations of
regular, completely regular, normal, completely normal,
0O-dimensional, and extremally disconnected spaces.

2. Preliminaries. If (S, T) is a finite topological space
and if T 1is the matrix corresponding to T, we will denote the
space (S,T) by (S, T). For each s, € S, welet F, = {si }
and B, be the minimal open set containing s;. For each ACS,
let BA = UBi(sie A); clearly, BA is the minimal open set

containing A. A useful fact proven in [S] is that B, C B if and
1 J

only if Fj CF . The identity matrix is denoted by 1.
i

1 The research of the second author was supported in part by
NSF Grant No. GY-2181.
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For each s. ¢ S we associate the 1 X n row vector
e, =(6 .,6..,...,8 ) where & . is the Kronecker delta.
i 11 21 ni ij
For each A TS we associate the vector A =Z ¢ (s, ¢ A).
\4 i1
In particular, the ith rowof T.T  is ({g, }) ., and the ith
i i’ v

column of T, Tl, is (B,) .
1 Vv

THEOREM 2.1. Let A be a subset of a finite topological
space (S, T), then (A)V = AV-T where matrix multiplication

is with respect to Boolean algebra.

Proof. Since A = U{;}(s ¢ A), we need only show that
— it i

o) = “T; thatis, T, =¢ +T si =
({si})V {si}v ; at is . =€, since {si}v €

i i i
and ({g,})v= T, . Let V_, denote the jth entry of € - T.
1 1 J i
n
Thus, V., = X &6 .t =t and T =¢-T.
I okoyg KK i i

THEOREM 2.2. Let A be a subset of a finite topological
space (S.T), then T-(Av)' = ((BA)V)' where matrix multiplication

is with respect to Boolean algebra.
Proof. The proof is similar to the proof of 2.1.
COROLLARY 2.3. Let A be a subset of a finite
topological space (S.T). A 1is open if and only if T-(A )' = (A )’
v v
where matrix multiplication is with respect to Boolean algebra.

Let 7' = {UC SIS-U e T }; itis straightforward to prove
that 7' is a topology. Sharp [S] has proved that the matrix
associated with 7 ' is the transpose of T, T'. The conclusion of
2.2 may be restated as AV'T' = (BA)V

3. Separation Axioms. Let (X,T) be a topological space
(not necessarily finite). (X 7)) is TY if and only if for

x, vy in X, x#y. {x} N {;r} is degenerate ({x} N {y} is either
empty or a singleton). The next six separation axioms were
introduced in [AT]. (X T ) is TD if and only if for each

x in X, {x} " is a closed set. (X,7T ) is TUD if and only if

for each x ¢ X, {x} ' 1s the union of disjoint closed sets.
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(X, T) is TDD if and only if (X, T ) is TD and for every

x,y in X, x#tvy, {x} 'N{y}'=¢. (X, T) is TF if and only if

for each x in X and disjoint finite set F, either x ¢ F or

N {;c} = ¢. (X,T) is TFF if and only if given any two

disjoint finite sets F1 and FZ in X, either F1ﬂF2 =¢ or

1?“1(\ F,=¢. (X, T) is said tobe Ty if and only if for all

YS
x, ye X, xty, {x}N {y} is either ¢, {x}, or {y}. To
this list we add three additional separation axioms. For each
x in X, let {%} denote the intersection of all open sets in

(X, T ) containing x. (X,T ) is TY if and only if x, y in X,

x#y {x} N {y} iseither ¢, {x}. or {y}. (X, 1) is T if

and only if {X} - {x} is empty for all but at most one x in X.
(X, T) is TB if and only if {x}' is empty for all but at most

one x inX. (X,T) is T 6 if and only if it is both Ta/ and T[3
o
The strong TD (denoted by TSD) and the strong TO (denoted

by TSO) were introduced in [WR]. (X,T) is T if and only

SO

if for each x e X, {x)}' :U{;’} (ye {x}"),9 = n{;’} (y e {x}"),

and {;r} is compact for some y e {x}'. (X, T) is TSD if and

only if for each xe X, {x}' is the union of a finite family of
closed sets, such that the intersection of the non-empty members
of this family is empty. (X, T) is RO if and only if every open
set contains the closure of each of its points. (X, T ) is R1
if and only if for every pair of points x, y in X, {?{} # {-}-r}
implies that {x} and {y} have disjoint neighborhoods.
Aull and Thron [AT] proved that a space is TFF if and only
if it is either T or T _.
%

B

In finite topological spaces, some of the above axioms
become equivalent. In [AT], TO was shown to be equivalent

to TD and TUD' From the definitions we observe that TSO

and TSD are equivalent. In theorem 2.6 we show that R0

is equivalent to R In [AT], a space satisfying T was

1 DD
proven to satisfy TYS' and since TO is equivalent to TD
in finite spaces, it follows immediately that TDD and TYS

97

https://doi.org/10.4153/CMB-1968-013-9 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1968-013-9

are equivalent. Figure 1 shows the order relationship between
the separation axioms for finite spaces.

FIGURE 1

It is clear that (S, T) is T1 if and only if T 1is the
identity matrix. Sharp [S] proved that (S, T) is TO if and
only if T 1is anti-symmetric.

THEOREM 3.1. In a finite topological space (S, T). the
following are equivalent:

(a) (S, T) is TSO'

(b) (S, T) is TO and the derived set of any singleton is
never a singleton, and

(c) T is anti-symmetric and no ith row of T-1 is a
unit vector.

Proof. Clearly, (b)is equivalent to (c) and (a) implies (b).
We need only show that (b) implies (a). Suppose that (S, T) is
TO and the derived set of any singleton is never a singleton.

Let N={ace Sl{a}’ = {ai, . ..,am} where m > 2 and

m

N {z—ij} # 6} . We will show N =¢ by an induction proof on
j=1

the cardinality of the derived set of any element of N. First,
assume that there is an element in N, say a, such that the

2 _
cardinality of {a}'=2;s0 {a}'={a, a,} and () {a ]} #4.
1
i=1
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Without loss of generality we may assume a, e {52} . Since

. ] . . - = . 1 .
(S, T) is TO, {a} ' is closed; so, {az} {ai,az} implying
that {az} "= {a1} which is a contradiction to the fact that no

derived set of any singleton of S is a singleton. We conclude
that no element of N has a two element derived set. Now
suppose that there is no a ¢ N such that 2 < cardinality of
{a}'<m. If ae N with the cardinality of {a}'=m, we

m

m
would have {a}'=ju__1 {afj} and jQ'l {;j} # &. Since

m
j(_']1 {aj} # ¢, there is an a, in {ai} for each i. Let

je{1,2,...,m} - {k}. ake{aj}', so {aj}'#cb. Since no

derived set of any singleton is a singleton, we know that the
cardinality of {aj} '>2. Since {a}' is closed, then

{aj} 'c{a} ' - {aj} . Therefore, 2 < cardinality of

{aj} "<m-1. Also, Thus, a e N which

n.
S befayy -
is a contradiction to the induction hypothesis. Hence, N =¢

1 T .
and (S, T) is S0

THEOREM 3.2. Let (S, T) be a finite topological space.
The following are equivalent:

T) is T_,
(a) (S, T) is r
(b) for each s  in S, either Fi = {Si} or Bi = {Si}’

i
and

(c) for each i, either the ith row or the ith column of
T-1 1is zero.

Proof. (b) is clearly equivalent to (c). It remains to show

that (a) is equivalent to (b). Suppose (S, T) is TF’ and let

s.e S. Since s, { S-{s.}. we have that either
i i

{s;}N (S-{s;})=0¢ or {s;}Ns-{s;} =¢. Thus,
{5} =Fi or {s;} =Bi. Clearly (b) implies (a).
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DEFINITION. Let v = (vi, .. .,vn) and w=(w,,...,w )

1 n
be vectors with n real-valued components. The intersection of
v and w is wAVv = (min(vi, Wi)' min(vz, VVZ), C ,min(vn, wn)).

THEOREM 2.3. Let (S. T) be a finite topological space.
The following are equivalent:

(a) (S, T) is TY,

(b) the intersection of T; and T. has at most one
non-zero entry for all i # j, and

(c) the matrix T-+T', with respect to ordinary multiplication,
is zero or one everywhere except possibly on the diagonal.

Proof. Since the intersection of Ti and Tj is the
intersection of ({Si} )V and ({s—j} )V which is ({si N {sj})v,

then (a) is equivalent to (b). Clearly, (b) is equivalent to (c).
THEOREM 3.4. Let (S, T) be a finite topological space.

(a) (S, T) is TDD if and only if T is anti- symmetric

and (T-1)(T-1)' is a diagonal matrix.

(b) (S, T) is T if and only if T 1is anti-symmetric and
Y

(T-1)'(T-1) 1is a diagonal matrix.

Proof of (a). Suppose T is anti-symmetric and
(T-1)(T-1)' = [Vij ] = T* is a diagonal matrix; that is,

n
Vij = kz=:1 tik. tjk =0 for.i # j; therefore. for each k.

. =0 i lyi L= .. =0. So. h k.
tik tjk 0, implying that tlk 0 or th So. for each

sk{ {si}' or sk1 {sj} ', thus giving {si} "N {sj} N
Since T 1is anti-symmetric S; § {sj}' or Sj ¢ {si 3

. . N 1 ) , 1 .
Thus, (S, T) is TDD Conversely, suppose (S, T) is TDD
For i #j,{si}'ﬂ {sj}'=¢. For each k, Sk* {si}' or

Sk* {sJ} ' implying that tik =0 or =0. So,

t
jk
tik.tjk: 0 and Vij =0 for i #j. Thus., T = (T-1)(T-1)'
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is a diagonal matrix, and T 1s anti-symmetric since TDD

implies T0

Proof of (b). (b) follows from an argument similar to
that of (a).

THEOREM 3.5. Let (S, T) be a finite topological space.

(a) (S, T) is TB if and only if (T-1) has at most one

non-zZero row.

(b) (S, T) is T if and only'if (T-1)' has at most
o

one non-zero row.

(¢) (S, T) is T 5 if and only if both (T-1) and (T-1)'
o

have at most one non-zero row.

(d) (S, T) is TFF if and only if (T-1) or (T-1)' has

at most one non-zero row.

Proof. To prove (a), note that since the ith row of T - 14
is ({si} 'Y , then T-1 has at most one non-zero row if and
v
only if {s }'# ¢ for at most one s, in S which is equivalent
1 i
to (S, T) being TB. (b) and (c) follow similarly. (d) follows

since (S, T) is T if and only if itis T or T
FF o

We now show that R0 is equivalent to R'1 in finite spaces
and give a matrix characterization. Also, we prove that R0 is

equivalent to 0O-dimensional, regular, and completely regular.

THEOREM 3.6. Let (S, T) be a finite topological space.
The following are equivalent;

(2) T is a symmetric matrix,
(b) (S, T) is O-dimensional,

(c) (S, T) is completely regular,
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(d) (S, T) is regular,

(e) (S, T) is R'l’ and
(f) (S, T) is R.

Proof. It is well known that (b) implies (c), (c) implies (d),
and (e) implies (f).

(f) implies (e): Let (S, T) be RO. Let s, € S, then

i j i

B -F, £ is an open set containing s, and properly contained in
i i i

B,  which is a contradiction. So, F =B . I F N F. # o,
i i j

s €e{5 } =FCB_ . If s ¢B -F , then F, CB,- F. so0
i i i ] 1 1

i i
then s, e FN F_ . By a similar argument B = F.  and
i ] J
B, =F, so, F =F . Thus, if F_. #F_ , then FNF =¢.
k i 1 J ! J i J

Since B, =F , B =F_ and B N\ B =¢, we have proven

i i ] J 1 J
that (S, T) is Ri.

(f) implies (a): Suppose (S, T) is RO and s ¢ S. By the
i

argument presented in the proof that (f) implies (e), we have
proven that F, =B . Hence, B, =S-(S-F )eq' and T C T'.
i i

i i
If Aer', then S-Ae¢ T . S-A = U B. for some
1
1eA-
subset A of {1,2,3,...,n} . Therefore,

A=) S-B, = (] S-F.. whichisin T. So, T'C¥ which
. 1 . 1
ieA ieA

proves that ¥ =T' and, hence, T is symmetric.

(a) implies (b): If T is symmetric, then B, e7T' for all
i

sie S. So, S—Bi €T and Bi is closed. Since Bi is smallest

open set containing s, (S, T) is zero dimensional.

(d) implies (f): Suppose (S. T) is regular and UeT with
s, € U. Thereis a V in T such that s, € VZVCU, so

{s.} CU and (S, T) is R
1

THEOREM 3.7. Let (S, T) be a finite topological space.
The following are equivalent:
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(a) (S, T) is normal,

(b) for each Fi’ BF is closed, and
i

(€) ((Fy),~T)-T = (F,) T

Proof. By 2.1 and the comment following 2.3, (b) is
equivalent to (c¢). Clearly, (b) implies (a). To prove (a) implies (b),
suppose (S, T) is normal. Let s, € S; there is an open set

V suchthat F, CVCV B . Since B is the smallest
i i
open set containing F , then V = V= BF and BF is closed.
1 . .

1 1

THEOREM 3.8. Let (S, T) be a finite topological space.
Let T'+T = (t%, ) where multiplication is with respect to Boolean
1)

algebra. The following are equivalent:
(2) (S, T) is completely normal,
b F, F. impl BMNB. =¢, d
(b) s & jsj* , imply 1(\ i ¢, an
(c) t%. =1 implies t,. =1 or t. . =1.
1) 1) J1

Proof.

(a) implies (b): Suppose (S, T) is completely normal, and
suppose s; ¥ Fj and sj § Fi' So, {sl}n{gj} = ¢ and

{s_l} N {Sj} = ¢. By complete normality, Bin Bj = ¢ since
Bi and Bj are the smallest open sets containing s, and s,
J

respectively.

(b) implies (c): Suppose (b) is true and t>1i<j =1; there
isa k suchthat t .=1 and t . =1. So, BN B, # ¢; hence,
ki kj i J
either s, € Fj or sj € Fi implying tji =1 or t, . =1,

1]
respectively.

(c) implies (a): Suppose (c) is true and C, D e S such
that CND = CAD =¢. Let 5, € C and sj e D; s % F, and
i i

AF.. So, t.. =t.. =0, B , tx. =0. H , t..=t =0
SJQ ; o T i y (c) i ence ki~ Y
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for all k implying Bi ﬂBj = ¢. Since this is true for any
JK C and any sje D, then BCﬂBD =¢. This proves that
(S, T) is completely normal.

4. Connectedness. In [S], Sharp gives a matrix

characterization of connectedness. Clearly, in finite spaces,
totally disconnected is equivalent to Ti' Theorem 3.6 gives

a matrix characterization of 0-dimensional. We conclude the
article by giving a matrix characterization of extremally
disconnected.

THEOREM 4.1. Let (S, T) be a finite topological space.
(S, T) is extremally disconnected if and only if for each B, in

1
S, T((B;) ) = ((B)) )"

Proof. Let (S, T) be extremally disconnected; that is
the closure of each open set is also open. By 2.3, we have
that T- ((]i )V)' = ((B—1 )V)'. Conversely, suppose that for each
B in S, T((B) ) = (B ) ). By 2.3, ]g is open. Let U

1 1V 1V _ 1 -
be an open subsetof S, U= |J B-U = J B, .
5. € u s; € u *

Since each B, 1is open, U is open; thus, (S, T) is extremally
i

disconnected.
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