MATRIX CHARACTERIZATIONS OF TOPOLOGICAL PROPERTIES

D. A. Bonnett and J.R. Porter¹

(received August 29, 1967)

1. Introduction. In [S]. H. Sharp characterizes each topology on a finite set $S = \{s_1, s_2, \dots s_n\}$ with a $n \times n$ zero-one matrix $T = (t_{ij})$ where $t_{ij} = 1$ if and only if $s_j \in \{\overline{s_i}\}$. In this paper we seek matrix characterizations of certain topological properties of finite spaces. Such characterizations will provide purely mechanical ways of determining if a space has a certain topological property.

We give matrix characterizations of the T_{Υ} separation axiom of Youngs [Y]; the R_0 and R_1 separation axioms of Davis [D], the strong T_0 separation axiom of Robinson and Wu [RW], and the six separation axioms introduced by Aull and Thron [AT]. Also, we include matrix characterizations of regular, completely regular, normal, completely normal, 0-dimensional, and extremally disconnected spaces.

2. Preliminaries. If $(S, \boldsymbol{\tau})$ is a finite topological space and if T is the matrix corresponding to $\boldsymbol{\tau}$, we will denote the space $(S, \boldsymbol{\tau})$ by (S, T). For each $s_i \in S$, we let $F_i = \{\overline{s_i}\}$ and B_i be the minimal open set containing s_i . For each $A \subset S$, let $B_A = \bigcup_i (s_i \in A)$; clearly, B_A is the minimal open set containing A. A useful fact proven in [S] is that $B_i \subset B_j$ if and only if $F_i \subset F_j$. The identity matrix is denoted by 1.

¹ The research of the second author was supported in part by NSF Grant No. GY-2181.

Canad. Math. Bull. vol. 11, no. 1, 1968

For each $s_i \in S$ we associate the $1 \times n$ row vector $\epsilon_i = (\delta_{1i}, \delta_{2i}, \dots, \delta_{ni})$ where δ_{ij} is the Kronecker delta. For each $A \subset S$ we associate the vector $A_v = \sum_i \epsilon_i (s_i \in A)$. In particular, the ith row of T, T_i , is $(\{\overline{s}_i\})_v$, and the ith column of T, T^i , is $(B_i)_v$.

THEOREM 2.1. Let A be a subset of a finite topological space (S, T), then $(\overline{A})_V = A_V \cdot T$ where matrix multiplication is with respect to Boolean algebra.

THEOREM 2.2. Let A be a subset of a finite topological space (S.T), then $T \cdot (A_V)' = ((B_A)_V)'$ where matrix multiplication is with respect to Boolean algebra.

Proof. The proof is similar to the proof of 2.1.

COROLLARY 2.3. Let A be a subset of a finite topological space (S. T). A is open if and only if $T \cdot (A_v)' = (A_v)'$ where matrix multiplication is with respect to Boolean algebra.

Let $\tau' = \{U \subset S \mid S - U \in \tau\}$; it is straightforward to prove that τ' is a topology. Sharp [S] has proved that the matrix associated with τ' is the transpose of T, T'. The conclusion of 2.2 may be restated as $A_{\tau} \cdot T' = (B_{\Delta})_{\tau}$.

3. <u>Separation Axioms</u>. Let (X, τ) be a topological space (not necessarily finite). (X, τ) is T_Y if and only if for x, y in X, $x \neq y$, $\{\bar{x}\} \cap \{\bar{y}\}$ is degenerate $(\{\bar{x}\} \cap \{\bar{y}\})$ is either empty or a singleton). The next six separation axioms were introduced in [AT]. (X, τ) is T_D if and only if for each x in X, $\{x\}$ is a closed set. (X, τ) is T_{UD} if and only if for each $x \in X$, $\{x\}$ is the union of disjoint closed sets.

 (X, τ) is T_{DD} if and only if (X, τ) is T_{D} and for every x, y in $X, x \neq y, \{x\} \cap \{y\} = \phi$. (X, τ) is T_F if and only if for each x in X and disjoint finite set F, either $x \notin \overline{F}$ or $F \cap \{\bar{x}\} = \phi$. (X, τ) is T_{FF} if and only if given any two disjoint finite sets F_1 and F_2 in X, either $F_1 \cap F_2 = \phi$ or $\overline{F}_{4} \cap F_{2} = \phi$. (X, τ) is said to be T_{YS} if and only if for all x, $y \in X$, $x \neq y$, $\{\bar{x}\} \cap \{\bar{y}\}$ is either ϕ , $\{x\}$, or $\{y\}$. To this list we add three additional separation axioms. For each x in X, let $\{\hat{x}\}$ denote the intersection of all open sets in (X, T) containing x. (X, T) is T if and only if x, y in X, $x \neq y$, $\{x\} \cap \{y\}$ is either ϕ , $\{x\}$, or $\{y\}$. (X, τ) is T if and only if $\{\hat{x}\}$ - $\{x\}$ is empty for all but at most one x in X. (X, Υ) is T_{β} if and only if $\{x\}'$ is empty for all but at most one x in X. (X,T) is $T_{\alpha\beta}$ if and only if it is both T_{α} and T_{β} . The strong $T_D^{}$ (denoted by $T_{SD}^{}$) and the strong $T_0^{}$ (denoted by T_{SO}) were introduced in [WR]. (X, τ) is T_{SO} if and only if for_each $x \in X$, $\{x\}' = \bigcup \{y\} (y \in \{x\}'), \phi = \bigcap \{y\} (y \in \{x\}$ and $\{y\}$ is compact for some $y \in \{x\}$ '. (X, Υ) is T_{SD} if and only if for each $x \in X$, $\{x\}$ ' is the union of a finite family of closed sets, such that the intersection of the non-empty members of this family is empty. (X, τ) is R_0 if and only if every open set contains the closure of each of its points. (X, τ) is R, if and only if for every pair of points x, y in X, $\{\bar{x}\} \neq \{\bar{y}\}$ implies that $\{\bar{x}\}$ and $\{\bar{y}\}$ have disjoint neighborhoods. Aull and Thron [AT] proved that a space is T_{FF} if and only if it is either T_{α} or T_{β} .

In finite topological spaces, some of the above axioms become equivalent. In [AT], T_0 was shown to be equivalent to T_D and T_{UD} . From the definitions we observe that T_{S0} and T_{SD} are equivalent. In theorem 3.6 we show that R_0 is equivalent to R_1 . In [AT], a space satisfying T_{DD} was proven to satisfy T_{YS} , and since T_0 is equivalent to T_D in finite spaces, it follows immediately that T_{DD} and T_{YS}

are equivalent. Figure 1 shows the order relationship between the separation axioms for finite spaces.

FIGURE 1

It is clear that (S, T) is T_1 if and only if T is the identity matrix. Sharp [S] proved that (S, T) is T_0 if and only if T is anti-symmetric.

THEOREM 3.1. In a finite topological space (S, T), the following are equivalent:

- (a) (S, T) is T_{S0} ,
- (b) (S, T) is T_0 and the derived set of any singleton is never a singleton, and
- (c) T is anti-symmetric and no ith row of T-1 is a unit vector.

Proof. Clearly, (b) is equivalent to (c) and (a) implies (b). We need only show that (b) implies (a). Suppose that (S, T) is T_0 and the derived set of any singleton is never a singleton. Let $N = \{a \in S | \{a\}' = \{a_1, \ldots, a_m\}$ where $m \geq 2$ and $m \in \{\overline{a}_j\} \neq \emptyset\}$. We will show $N = \emptyset$ by an induction proof on j = 1 the cardinality of the derived set of any element of N. First, assume that there is an element in N, say a, such that the cardinality of $\{a\}' = 2$; so $\{a\}' = \{a_1, a_2\}$ and $\bigcap_{i=1}^{2} \{\overline{a}_i\} \neq \emptyset$.

Without loss of generality we may assume $a_1 \in \{\bar{a}_2\}$. Since (S, T) is T_0 , $\{a\}$ ' is closed; so, $\{\overline{a_2}\}$ = $\{a_1, a_2\}$ implying that $\{a_2\}' = \{a_4\}$ which is a contradiction to the fact that no derived set of any singleton of S is a singleton. We conclude that no element of N has a two element derived set. Now suppose that there is no a ϵ N such that $2 \le cardinality of$ $\{a\}$ ' < m. If $a \in \mathbb{N}$ with the cardinality of $\{a\}$ ' = m, we would have $\{a\}' = \bigcup_{j=1}^{m} \{\overline{a_j}\}$ and $\bigcap_{j=1}^{m} \{\overline{a_j}\} \neq \emptyset$. Since $\bigcap_{i} \{\overline{a}_{j}\} \neq \emptyset$, there is an a_{k} in $\{\overline{a}_{i}\}$ for each i. Let $j \in \{1, 2, ..., m\} - \{k\}$. $a_k \in \{a_j\}'$, so $\{a_j\}' \neq \phi$. Since no derived set of any singleton is a singleton, we know that the cardinality of $\{a_i\}' \ge 2$. Since $\{a\}'$ is closed, then $\{a_i^{}\}\ '\subset \{a\}\ '$ - $\{a_i^{}\}$. Therefore, $2\leq$ cardinality of $\{a_j^{\dagger}\}' \leq m-1$. Also, $a_k \in \bigcap_{b \in \{a_j^{\dagger}\}'} \{\overline{b}\}$. Thus, $a_k \in N$ which is a contradiction to the induction hypothesis. Hence, $N = \phi$ and (S, T) is T_{S0} .

THEOREM 3.2. Let (S, T) be a finite topological space. The following are equivalent:

- (a) (S, T) is T_F ,
- (b) for each s_i in S, either $F_i = \{s_i\}$ or $B_i = \{s_i\}$, and
- (c) for each $_{\rm i}$, either the $_{\rm i}$ th row or the ith column of T-1 is zero.

Proof. (b) is clearly equivalent to (c). It remains to show that (a) is equivalent to (b). Suppose (S, T) is T_F , and let $s_i \in S$. Since $s_i \notin S - \{s_i\}$, we have that either $\{\overline{s_i}\} \cap (S - \{s_i\}) = \emptyset$ or $\{s_i\} \cap \overline{S - \{s_i\}} = \emptyset$. Thus, $\{s_i\} = F_i$ or $\{s_i\} = B_i$. Clearly (b) implies (a).

DEFINITION. Let $v = (v_1, \ldots, v_n)$ and $w = (w_1, \ldots, w_n)$ be vectors with n real-valued components. The intersection of v and w is $w \land v = (\min(v_1, w_1), \min(v_2, w_2), \ldots, \min(v_n, w_n))$.

THEOREM 3.3. Let (S, T) be a finite topological space. The following are equivalent:

- (a) (S, T) is T_{Y}
- (b) the intersection of T_i and T_j has at most one non-zero entry for all $\ _i$ $\ \neq$ $\ _j,$ and
- (c) the matrix $T \cdot T'$, with respect to ordinary multiplication, is zero or one everywhere except possibly on the diagonal.

<u>Proof.</u> Since the intersection of T_i and T_j is the intersection of $(\{\overline{s}_i\})_v$ and $(\{\overline{s}_j\})_v$ which is $(\{\overline{s}_i\}) \cap \{\overline{s}_j\}_v$, then (a) is equivalent to (b). Clearly, (b) is equivalent to (c).

THEOREM 3.4. Let (S, T) be a finite topological space.

- (a) (S, T) is $T_{\mbox{DD}}$ if and only if T is anti-symmetric and (T-1)(T-1)' is a diagonal matrix.
- (b) (S, T) is T if and only if T is anti-symmetric and (T-1)'(T-1) is a diagonal matrix.

 $\begin{array}{c} \underline{\text{Proof of (a)}}. \text{ Suppose T is anti-symmetric and} \\ (\text{T-1})(\overline{\text{T-1}})' = [v_{ij}] = T* \text{ is a diagonal matrix; that is,} \\ n \\ v_{ij} = \sum\limits_{k=1}^{\Sigma} t_{ik} \cdot t_{jk} = 0 \text{ for } i \neq j; \text{ therefore, for each } k, \\ t_{ik} \cdot t_{jk} = 0, \text{ implying that } t_{ik} = 0 \text{ or } t_{jk} = 0. \text{ So, for each } k, \\ s_k \nmid \{s_i\}' \text{ or } s_k \nmid \{s_j\}', \text{ thus giving } \{s_i\}' \cap \{s_j\}' = \phi, \\ \text{Since T is anti-symmetric } s_i \nmid \{s_j\}' \text{ or } s_j \nmid \{s_i\}', \\ \text{Thus, (S, T) is } T_{DD}. \text{ Conversely, suppose (S, T) is } T_{DD}. \\ \text{For } i \neq j, \{s_i\}' \cap \{s_j\}' = \phi. \text{ For each } k, s_k \nmid \{s_i\}' \text{ or } s_k \nmid \{s_j\}' \text{ implying that } t_{ik} = 0 \text{ or } t_{jk} = 0. \text{ So,} \\ t_{ik} \cdot t_{jk} = 0 \text{ and } v_{ij} = 0 \text{ for } i \neq j. \text{ Thus, } T^* = (T-1)(T-1)' \\ \end{array}$

is a diagonal matrix, and $\, T \,$ is anti-symmetric since $\, T \,$ DD implies $\, T \,$.

<u>Proof of (b)</u>. (b) follows from an argument similar to that of (a).

THEOREM 3.5. Let (S, T) be a finite topological space.

- (a) (S, T) is T $_{\beta}$ if and only if (T-1) has at most one non-zero row.
- (b) (S, T) is T $_{\alpha}$ if and only if (T-1)' has at most one non-zero row.
- (c) (S, T) is $T_{\alpha\beta}$ if and only if both (T-1) and (T-1) have at most one non-zero row.
- (d) (S, T) is $T_{\overline{FF}}$ if and only if (T-1) or (T-1)' has at most one non-zero row.

 $\frac{\text{Proof.}}{(\{s_i\}')_{_{V}}}. \text{ To prove (a), note that since the ith row of } T-1$ is $(\{s_i\}')_{_{V}}$, then T-1 has at most one non-zero row if and only if $\{s_i\}'\neq \emptyset$ for at most one s_i in S which is equivalent to (S, T) being $T_{_{\beta}}$. (b) and (c) follow similarly. (d) follows since (S, T) is $T_{_{FF}}$ if and only if it is $T_{_{\alpha}}$ or $T_{_{\beta}}$.

We now show that R_0 is equivalent to R_1 in finite spaces and give a matrix characterization. Also, we prove that R_0 is equivalent to 0-dimensional, regular, and completely regular.

THEOREM 3.6. Let (S, T) be a finite topological space. The following are equivalent;

- (a) T is a symmetric matrix,
- (b) (S, T) is 0-dimensional,
- (c) (S, T) is completely regular,

- (d) (S, T) is regular,
- (e) (S, T) is R_1 , and
- (f) (S, T) is R_0 .

 $\underline{\text{Proof}}$. It is well known that (b) implies (c), (c) implies (d), and (e) implies (f).

(f) implies (a): Suppose (S, T) is R_0 and $s_i \in S$. By the argument presented in the proof that (f) implies (e), we have proven that $F_i = B_i$. Hence, $B_i = S - (S - F_i) \in \tau'$ and $\tau \subset \tau'$. If $A \in \tau'$, then $S - A \in \tau$. $S - A = \bigcup_{i \in \Lambda} B_i$ for some subset Λ of $\{1, 2, 3, \ldots, n\}$. Therefore, $A = \bigcap_{i \in \Lambda} S - B_i = \bigcap_{i \in \Lambda} S - F_i$. which is in τ . So, $\tau' \subset \tau$ which proves that $\tau = \tau'$ and, hence, T is symmetric.

(a) implies (b): If T is symmetric, then $B_i \in T'$ for all $s_i \in S$. So, $S-B_i \in T$ and B_i is closed. Since B_i is smallest open set containing s_i , (S, T) is zero dimensional.

THEOREM 3.7. Let (S, T) be a finite topological space. The following are equivalent:

- (a) (S, T) is normal,
- (b) for each F_i , $B_{\overline{F_i}}$ is closed, and
- (c) $((\mathbf{F}_i)_{\mathbf{v}} \cdot \mathbf{T}') \cdot \mathbf{T} = (\mathbf{F}_i)_{\mathbf{v}} \cdot \mathbf{T}'$.

 $\frac{\text{Proof.}}{\text{Proof.}} \text{ By 2.1 and the comment following 2.3, (b) is equivalent to (c). Clearly, (b) implies (a). To prove (a) implies (b), suppose (S, T) is normal. Let <math>s_i \in S$; there is an open set V such that $F_i \subset V \subset \overline{V} \subset B_{\overline{F_i}}$. Since $B_{\overline{F_i}}$ is the smallest open set containing F_i , then $V = \overline{V} = B_{\overline{F_i}}$ and $B_{\overline{F_i}}$ is closed.

THEOREM 3.8. Let (S, T) be a finite topological space. Let $T' \cdot T = (t^*)$ where multiplication is with respect to Boolean algebra. The following are equivalent:

- (a) (S, T) is completely normal,
- (b) $s_i \notin F_j$, $s_i \notin F_i$ imply $B_i \cap B_j = \phi$, and
- (c) $t_{ij}^* = 1$ implies $t_{ij} = 1$ or $t_{ji} = 1$.

Proof.

- (a) implies (b): Suppose (S, T) is completely normal, and suppose $s_i \notin F_j$ and $s_j \notin F_i$. So, $\{s_i\} \cap \{\overline{s_j}\} = \phi$ and $\{\overline{s_i}\} \cap \{s_j\} = \phi$. By complete normality, $B_i \cap B_j = \phi$ since B_i and B_j are the smallest open sets containing s_i and s_j , respectively.
- (b) implies (c): Suppose (b) is true and $t_{ij}^* = 1$; there is a k such that $t_{ki} = 1$ and $t_{kj} = 1$. So, $B_i \cap B_j \neq \phi$; hence, either $s_i \in F_j$ or $s_j \in F_i$ implying $t_{ji} = 1$ or $t_{ij} = 1$, respectively.

for all k implying $B_i \cap B_j = \phi$. Since this is true for any $s_i \in C$ and any $s_j \in D$, then $B_C \cap B_D = \phi$. This proves that (S, T) is completely normal.

4. Connectedness. In [S], Sharp gives a matrix characterization of connectedness. Clearly, in finite spaces, totally disconnected is equivalent to T_1 . Theorem 3.6 gives a matrix characterization of 0-dimensional. We conclude the article by giving a matrix characterization of extremally disconnected.

THEOREM 4.1. Let (S, T) be a finite topological space. (S, T) is extremally disconnected if and only if for each B_i in S, $T \cdot ((\overline{B_i})_v)' = ((\overline{B_i})_v)'$.

<u>Proof.</u> Let (S, T) be extremally disconnected; that is the closure of each open set is also open. By 2.3, we have that $T \cdot ((\overline{B_i})_V)' = ((\overline{B_i})_V)'$. Conversely, suppose that for each B_i in S, $T \cdot ((\overline{B_i})_V)' = ((\overline{B_i})_V)'$. By 2.3, $\overline{B_i}$ is open. Let U be an open subset of S, $\overline{U} = \bigcup_{S_i \in \overline{U}} B_i \cdot \overline{U} = \bigcup_{S_i \in \overline{U}} \overline{B_i}$.

Since each B is open, \bar{U} is open; thus, (S. T) is extremally disconnected.

REFERENCES

- AT C.E. Aull and W.J. Thron, Separation axioms between T_0 and T_4 , Indagationes Mathematicae, 2 (1962), 26-37.
- D A.S. Davis, Indexed systems of neighborhoods for general topological spaces, Amer. Math. Monthly, 68, (1961), 886-893.
- K J. Kelley, General topology, Van Nostrand, New York, 1955.
- RW S. Robinson and Y.C. Wu, A note on separation axioms weaker than T_4 , (to appear).

- S H. Sharp, Quasi-orderings and topologies on finite sets, Proc. Amer. Math. Soc., 17 (1966), 1344-1349.
- Y J. W. T. Youngs, A note on separation axioms and their application in the theory of a locally connected topological space, Bull. Amer. Math. Soc., 49, (1943), 383-385.

University of Kansas