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Abstract

We give a new proof of a theorem of Bell and Coons [‘Transcendence tests for Mahler functions’, Proc.
Amer. Math. Soc. 145(3) (2017), 1061–1070] on the leading order radial asymptotics of Mahler functions
that are the generating functions of regular sequences. Our method allows us to provide a description of
the oscillations whose existence was shown by Bell and Coons. This extends very recent results of Poulet
and Rivoal [‘Radial behavior of Mahler functions’, Int. J. Number Theory, to appear].
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1. Introduction

A Mahler function F(z) is a power series that satisfies a functional equation of the form

a0(z)F(z) + a1(z)F(zk) + · · · + ad(z)F(zkd
) = 0,

where d � 1 and k � 2 are positive integers, and a0(z), . . . , ad(z) are polynomials with
a0(z)ad(z) � 0. The minimal such integer d, for a given Mahler function, is called the
degree. The radial behaviour of Mahler functions has been studied by several authors,
including Mahler [11], de Bruijn [7], Dumas [8], Dumas and Flajolet [9], as well as
more recently, by the current first author in collaboration with Bell [3] and Brent et al.
[4]. Mahler functions continue to be of interest in both mathematics and theoretical
computer science since the generating functions of automatic sequences—sequences
output by deterministic finite automata—and regular sequences are Mahler functions.
Here, we focus on integer-valued nonnegative k-regular sequences. We take such a
k-regular sequence to be a sequence determined by a finite set of matrices and one
vector, as follows. Let A0, . . . , Ak−1 ∈ Zd×d and v ∈ Zd×1. The sequence f is k-regular
if for each n � 0,

f (n) = eT
1 Ai0 Ai1 · · ·Ait v, (1.1)
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where the base-k expansion of n is (n)k = it · · · i1i0 and e1 is the standard elementary
column vector having a 1 in the first entry and zeros elsewhere.

Bell and Coons [3], with the goal of providing a quick transcendence test for Mahler
functions, showed that, under mild conditions, as z→ 1−, Mahler functions satisfy an
asymptotic of the form

F(z) = (1 − z)−log ρ/log kC(z) (1 + o(1))

for some real ρ > 0. To obtain ρ, using the polynomials ai(z) from above, they formed
the characteristic polynomial pF(X) = a0Xd + · · · + ad−1X + ad, where ai := ai(1), and
took ρ to be the (assumed) unique root of largest modulus of pF(X). The function
C(z) is a positive bounded real-differentiable function satisfying C(z) = C(zk). While
Bell and Coons proved existence of the function C(z), no further details about it were
given. Very recently, Poulet and Rivoal [12] provided an explicit expression for C(z)
as an exponential of a Fourier series for all degree-one Mahler functions and then
extending the method of Brent et al. [4], they provided an explicit expression for C(z)
for a large class of degree-two Mahler functions.

In this paper, we give a method for determining C(z), for any generating function of
a regular sequence, of any degree. In particular, we prove the following theorem.

THEOREM 1.1. Let k � 2 be a positive integer, let f be an integer-valued
nonnegative k-regular sequence satisfying (1.1) and set A = A0 + · · · + Ak−1. Set
F(z) =

∑
n�1 f (n)zn. If A is primitive, then, as s→ 0+, there is an explicitly

determinable function ψ(s) satisfying ψ(s) = ψ(ks), such that

F(e−s) = s−log ρ/log k ψ(s) (1 + o(1)),

where ρ := ρ(A) is the spectral radius of A.

Our proof uses properties of the Dirichlet series of a regular sequence established
more than twenty years ago by Allouche et al. [1]. Their result does not seem
to be widely known and, we believe, deserves more attention. For a very current
exposition on combinatorics on words and their relation to automatic Dirichlet series,
see Allouche et al. [2]. The explicit equation for ψ(s) is recorded in (2.8).

REMARK 1.2. The assumptions in the above theorem were chosen to simplify our
arguments. The method used in the proof of Theorem 1.1 can be used to determine the
leading asymptotics of F(e−s) for any k-regular sequence; one only needs to determine
enough terms in the asymptotic expansion of the related Dirichlet series ζ f (z). The
number of terms depends on the spectral radius ρ of A. The conditions of Theorem 1.1
ensure that ρ > 1. This further ensures that the asymptotics of ζ f (z) are determined by
a simple pole in the positive half-plane, which simplifies the argument.

Our arguments are essentially modified ideas of de Bruijn [7], which we use to
obtain the leading behaviour of F(e−s). Of course, with more specific information,
one can extend this method to gain an exact formula for F(e−s), but the necessary
information seems specific to the sequence f and will necessarily be more much
complex.
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2. Radial behaviour of k-regular functions

In this section, we use a result of Allouche et al. [1] on the continuability of
automatic and regular Dirichlet series to determine the residues of such Dirichlet
series at the poles with largest real part. To this end, set u0 = v and for n � 1, set
un := Ai0 Ai1 · · ·Ait v, where, as above, (n)k = it · · · i1i0 is the base-k expansion of n.
Then ukn+i = Aiun for each n and i = 0, 1, . . . , k − 1. Further, let

G(z) :=
∑
n�1

un

nz

be a vector of Dirichlet series, whose first component is ζ f (z) :=
∑

n�1 f (n)n−z. Since
f is k-regular, the components of un grow at most polynomially in n, and so G(z)
converges for Re (z) large enough. We make use of the following result.

THEOREM 2.1 (Allouche et al., [1]). Let k � 2 be an integer and f, un and G(z) be as
defined above. Then G(z) satisfies the functional equation

(I − k−zA) G(z) =
( k−1∑

j=1

j−zAj

)
u0 +

k−1∑
j=1

Aj

∑
m�1

(−1)m
(
z + m − 1

m

)
jm

G(z + m)
kz+m . (2.1)

Moreover, G(z) has a meromorphic continuation to the whole complex plane, with
poles (if any) located at

zn,�(λ) =
log λ
log k

− � + i
2πn
log k

for � ∈ N0 and n ∈ Z, and for each eigenvalue λ of A.

In what follows, we need only consider the contributions at the poles with largest
real part, that is, with � = 0 and λ = ρ = ρ(A). For convenience, set zn := zn,0(ρ).

Let Re (z) > log ρ/log k, the abscissa of convergence of G(z). Here, log ρ/log k > 0,
since A is a primitive integer matrix. We start with (2.1), multiplying each side by
−kz−1, and then the classical adjoint adj(k−1A − kz−1I) to get

det(k−1A − kz−1I) G(z) = −adj(k−1A − kz−1I)
1
k

( k−1∑
j=1

( j
k

)−z
Aj

)
u0

+ adj(k−1A − kz−1I)
k−1∑
j=1

Aj

∑
m�1

(−1)m+1
(
z + m − 1

m

)
jm

G(z + m)
km+1 . (2.2)

Allouche et al. [1] made use of (2.2) to find the possible poles of G(z) in their proof
of the above theorem, the point being that the possible poles (and their multiplicities)
come from the zeros of the determinant det(k−1A − kz−1I). Since m � 1, the vector
G(z + m) converges for Re (z) > log ρ/log k − 1. Also, for any fixed z, G(z + m)
tends to u1 as m tends to infinity. Thus, the right-hand side of (2.2) converges for
Re (z) > log ρ/log k − 1. Hence, the (possible) pole of G(z) at z = zn is cancelled out
by the zero of det(k−1A − kz−1I) there. Since, by assumption, ρ = ρ(A) is a simple
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eigenvalue of A, the zero of det(k−1A − kz−1I) at z = zn, and so also the (possible) pole
of G(z) at z = zn, are simple. We can now read off the residue as

Res
z=zn

ζ f (z) = −c f , ρ eT
1 adj(k−1A − kzn−1I)

1
k

( k−1∑
j=1

( j
k

)−zn

Aj

)
u0

+ c f , ρ eT
1 adj(k−1A − kzn−1I)

k−1∑
j=1

Aj

∑
m�1

(−1)m+1
(
zn + m − 1

m

)
jm

G(zn + m)
km+1 , (2.3)

where c f , ρ := limz→zn (z − zn)/det(k−1A − kz−1I), which exists by the above argument.
This residue may very well be equal to zero for some values of n. However, in our
situation, the primitivity of A and nonnegativity of f (n) imply that there are positive
constants c1 and c2 such that

c1 xlog ρ/log k �
∑
n�x

f (n) � c2 xlog ρ/log k, (2.4)

and so the Dirichlet series ζ f (z), and so also the vector G(z), have simple poles at
z = z0, as inherited from the related determinant described above. (See [3], or more
specifically, [6, Theorem 2], for details concerning the inequality (2.4).)

We are now ready to prove our main result.

PROOF OF THEOREM 1.1. We start with Mellin’s formula for the exponential function:
for any a > 0 and w > 0,

e−w =
1

2πi

∫ a+i∞

a−i∞
w−z Γ(z) dz.

This gives, for a > log ρ/log k and s > 0,

F(e−s) =
∑
n�1

f (n)e−sn =
1

2πi

∫ a+i∞

a−i∞
s−z Γ(z) ζ f (z) dz. (2.5)

The restriction a > log ρ/log k ensures that

∑
n�1

∫ a+i∞

a−i∞
| f (n) n−zs−z Γ(z)| dz < ∞,

so the sum and integral can be exchanged.
For the leading order asymptotics of F(e−s), we move a past log ρ/log k (but, to

avoid complexity in the argument, not too far) and collect the contributions from
the residues lying on the line Re (z) = log ρ/log k. To see this, we let α be any fixed
real number satisfying max{log ρ2/log k, log ρ/log k − 1, 0} < α < log ρ/log k, where
ρ2 denotes the modulus of the second largest eigenvalue of A, if it exists. Note
that in the case d = 1, there will be only one eigenvalue. For each q ∈ N, we let
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Tq := π(2q + 1)/log k. Note that Tq is the imaginary part of the midpoint of consecutive
(possible) poles—in the vertical sense. By the residue theorem,

1
2πi

( ∫ a−iTq

α−iTq

+

∫ a+iTq

a−iTq

+

∫ α+iTq

a+iTq

+

∫ α−iTq

α+iTq

)
s−z Γ(z) ζ f (z) dz

= s−log ρ/log k
∑

n∈Z∩[−q,q]

s−2πin/log k Γ(zn) Res
z=zn

ζ f (z). (2.6)

To show that

lim
q→∞

1
2πi

( ∫ a−iTq

α−iTq

+

∫ α+iTq

a+iTq

)
s−z Γ(z) ζ f (z) dz = 0, (2.7)

we use (2.2) as the analytic continuation of G(z) on the horizontal parts of our
rectangular contour. It is clear that the first term in (2.2) is absolutely uniformly
bounded on the horizontal contours, so the work here comes from the second term.
For the second term, since, as m→ ∞, we have G(z + m) = u1(1 + O(2−m)), to show
that the above limit is zero, we use a bound as m→ ∞ on Γ(z)

(
z+m−1

m

)
along those

horizontal contours. To this end, we note that for x ∈ [α, a] ⊆ (0, a],
∣∣∣∣∣Γ(z)

(
z + m − 1

m

)∣∣∣∣∣ =
∣∣∣∣∣Γ(x + m ± iTq)
Γ(m + 1)

∣∣∣∣∣ =
∣∣∣∣∣Γ(x + m)
Γ(m + 1)

∣∣∣∣∣
∏
j�0

(
1 +

T2
q

(x + m + j)2

)−1/2

= mx−1
∏
j�0

(
1 +

T2
q

(x + m + j)2

)−1/2(
1 + O

( 1
m

))
,

where the second equality follows from [10, 8.326 on page 904] and the third equality
follows from Stirling’s formula. Thus, on the horizontal intervals of concern,∣∣∣∣∣Γ(z)

∑
m�1

(−1)m+1
(
z + m − 1

m

)
jm

G(z + m)
km+1

∣∣∣∣∣
=

∑
m�1

mx−1 u1

k · ( k
k−1

)m

(∏
j�0

(
1 +

T2
q

(x + m + j)2

)−1/2)(
1 + O

( 1
m

))
.

For each q, the convergence of the sum is clear. The products inside the summation,
Πq :=

∏
j�0(1 + T2

q/(x + m + j)2), satisfyΠq → ∞ as q→ ∞, from which (2.7) follows.
In light of (2.7), by (2.5),

F(e−s) = s−log ρ/log k
∑
n∈Z

s−2πin/log k Γ(zn) Res
z=zn

ζ f (z) + O(s−α),

since (1/2πi)
∫ α+i∞
α−i∞ s−z Γ(z) ζ f (z) dz = O(s−α).

Note that the restrictions on the real number α > 0 were chosen for two reasons.
First, so that the vertical line Re (z) = α avoids any singularities of the integrand
s−z Γ(z) ζ f (z), and second, so that as one forms the shifted infinite vertical contour via
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the limit of the rectangular contour (as above), we ensure that the horizontal contours
give a limiting contribution of zero. We now set

ψ(s) =
∑
n∈Z

s−2πin/log k Γ(zn) Res
z=zn

ζ f (z) (2.8)

and note that ψ(s) = ψ(ks), since k−2πin/log k = 1. This proves the theorem. �

REMARK 2.2. Considering the possible complexities that may be necessary in gener-
alising the above argument, we note that in Theorem 1.1 and our proof, the condition of
primitivity of A is used to obtain ρ > 1, which ensures that we obtain an error term of
order α > 0. This assumption greatly simplifies our argument. If ρ � 1, then the poles
of Γ(z) will come into play, and, adding to the complexity, the resulting integrand
s−zΓ(z)ζ f (z) may have poles of higher order that need to be dealt with.

3. Further remarks

If one desired to compute some numerics, the calculation of residues is probably
the most difficult part, but the convergence within the sum is extremely fast. Recall,
that as m tends to infinity, the vectors G(zn + m) tend quickly to u1. So, using the above
formulae, one can make computations with accuracy.

To see what (2.3) looks like for a particular example, we consider Stern’s diatomic
sequence a(n) defined by a(0) = 0, a(1) = 1, and for n � 1, by a(2n) = a(n) and
a(2n + 1) = a(n) + a(n + 1). To apply our results, we note that a(n) is 2-regular and
satisfies (1.1) with

A0 =

[
1 0
1 1

]
, A1 =

[
1 1
0 1

]
and v =

[
0
1

]
.

We denote the entries of G(z) by ζa(z) :=
∑

n�1 a(n)/nz and ζσa(z) :=
∑

n�1 a(n + 1)/nz.
We have used σ to denote the shift operator, so σa(n) = a(n + 1). Also, ρ = ρ(A) = 3
and ca,3 = 2/(3 log 2). Thus,

Res
z=zn

ζa(z)

= − 2
3 log 2

eT
1

[
−1/2 −1/2
−1/2 −1/2

]
2zn

2

[
1 1
0 1

] [
0
1

]

+
2

3 log 2
eT

1

[
−1/2 −1/2
−1/2 −1/2

] [
1 1
0 1

]∑
m�1

(−1)m+1
(
zn + m − 1

m

)
1

2m+1

[
ζa(zn + m)
ζσa(zn + m)

]

=
1

log 2
− 1

3 log 2

∑
m�1

(
zn + m − 1

m

)(−1
2

)m+1
(ζa(zn + m) + 2ζσa(zn + m)).

As mentioned in [5, Remark 2.1], the infinite functional equation (2.1) is classical
for ζ(z), the Riemann zeta function, though it is much less deep than the usual
functional equation for ζ(z). However, when one applies it, one finds new proofs of
some known, though curious, identities. For example, when one defines the sequence
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of all ones as the 2-regular sequence with A0 = A1 = v = 1, we have, for Re (z) > 1,
that

(1 − 2−z+1)ζ(z) = 1 +
∑
m�1

(−1)m
(
z + m − 1

m

)
ζ(z + m)

2z+m .

As z→ 1+, we have (1 − 2−z+1) = (z − 1) log 2 + O
(
(z − 1)2). Since the residue of ζ(z)

at z = 1 equals one, we obtain

1 − log 2 =
∑
m�1

ζ(m + 1)
(−1

2

)m+1
.
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