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On the Zariski-van Kampen Theorem

Ichiro Shimada

Abstract. Let f: E — B be a dominant morphism, where E and B are smooth irreducible complex
quasi-projective varieties, and let F, be the general fiber of f. We present conditions under which the
homomorphism 7 (F,) — 71 (E) induced by the inclusion is injective.

1 Introduction

We work over the complex number field C.
Let E and B be smooth irreducible quasi-projective varieties, and let

f:E—B

be a dominant morphism. For a point a € B, we denote by F, the fiber f~'(a). We
choose a general point b of B, and a point b of F,. Let

i:Fy— E

denote the inclusion morphism.
In [5], Nori proved the following:

Proposition 1.1 ([5, Lemma 1.5 (C)])  Suppose that the general fiber of f is irreduc-
ible, and that there exists a Zariski closed subset 2 of B with codimension > 2 such that,
ifa € B\ E, then F, possesses at least one point at which f is smooth. Then the sequence

™ (Fy, B) =55 7y (B, B) <5 (B, b) — 1

is exact. u

We will study the kernel of i,.. When f has a global section, the classical Zariski-
van Kampen theorem describes Ker i, in terms of the monodromy relations in 7 (Fp).
The purpose of this paper is to investigate Ker i, in a situation where only local mon-
odromies are available. More precisely, we will show that, in some cases, the triviality
of the local monodromies on the fundamental groups of fibers implies the injectivity
of i,.

In order to define the local monodromy on the fundamental group of a fiber, let
us assume that the the conditions in Proposition 1.1 are satisfied.

Received by the editors October 26, 2001; revised June 14, 2002.
AMS subject classification: 14F35.
(©Canadian Mathematical Society 2003.

133

https://doi.org/10.4153/CJM-2003-006-2 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-2003-006-2

134 Ichiro Shimada

Definition 1.2 ([5, Lemma 1.5 (A)]) The topological discriminant locus ¥ ¢ of f is
the minimal Zariski closed subset of B among the Zariski closed subsets 3 of B with
the following properties:

* 3 contains the locus f(Sing f) of critical values of f, and
e fislocally trivial over B \ X as a continuous map in the complex topology.

Let Z(fl), ey E;k) be the irreducible components of ¥y with codimension 1 in B.
Let x; be a general point of Eif), and U; a sufficiently small open ball in B with the

center x;. Since Z is of codimension > 2 in B, we have E(fi) ¢ =, and hence x; ¢ E.
Therefore we have a holomorphic local section

sit Ui — f1(UY)

of f defined on U;. We fix local coordinates (zy, . . ., z,,) on U; with the origin x; such
that X is defined by z; = 0. We put

a; .= (¢,0,...,0) € Ui\(UiﬂEf),
where € is a sufficiently small positive real number, and consider the loop
Ao (1,0 — (Ui \ (U;n Ef),(li)

defined by
Ai(t) = (5 exp(2mv/—1¢),0,..., 0) ,

which we will call a simple loop around the hypersurface ESZ). Using the local section
si, we can define the monodromy

pi: 1 (Fop,ysi(ai)) — w1 (Fay, si(ai)

along the loop A;. We call y; the local monodromy around E(fi). In Section 2, we will
show that the condition for y; to be trivial does not depend on the choice of the local
section s; (Corollary 2.5).

Theorem 1.3  Suppose that the following conditions are satisfied:

(T1) The quasi-projective variety B is either a non-compact Riemann surface or an
affine space AN.

(T2) The morphism f is flat.

(T3) There exists a Zariski closed subset = of B with codimension > 2 such that, if
a € B\ E, then F, is irreducible and possesses at least one point at which f is
smooth. .

(T4) The local monodromy p; around Egﬁ) istrivial fori = 1,... k.

Then, for a general point b of B, the sequence

(1.1) 1 —s m1(Fy, B) == 7 (E, B) L5 my(B,b) —> 1

is exact.
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By Proposition 1.1, the condition (T3) implies that the sequence (1.1) is exact
except for the injectivity of i,.. Hence all we have to show is that i, is injective.
The condition (T1) of Theorem 1.3 suggests the following:

Problem 1.4  Suppose that the conditions (T2)—(T4) of Theorem 1.3 are satisfied.
Can one define a homomorphism 0: 7, (B) — 7 (F}) such that Ker i, = Im 0 holds?

In [11], we studied the homotopy lifting property of f, and gave a partial answer
to Problem 1.4.

In view of Theorem 1.3, it is important to know whether a given local monodromy
is trivial or not. In the second half of this paper, we present some algebrao-geometric
conditions under which a given local monodromy is trivial. As a corollary, we obtain
a simple proof of [6, Theorem 1], many applications of which have been given ([7],
[8], [9], [10]). As another application of the results in this paper, we will prove in [12]
a hyperplane section theorem of Zariski type for the fundamental groups of Zariski
open subsets of Grassmannian varieties.

This paper is organized as follows. In Section 2, we review the classical Zariski-van
Kampen theorem; that is, we study Ker i, in a situation where a global section exists
([13], [14], see also [2] and [4]). In Section 3, we prove Theorem 1.3. In Section 4,
we study, in various settings, the problem when a local monodromy is trivial. In Sec-
tion 5, we apply Situation (C) in Section 4 to a morphism from a smooth irreducible
quasi-projective surface to a variety on which an algebraic group acts.

Notation and Terminology

(1) Leta: I — X and B: I — X be paths on a topological space X. We define the
order of the conjunction of paths in such a way that the path a3 is defined only
when a(1) = 5(0). By this notation, the monodromy action of the fundamental
group of the base space on the fundamental group of a fiber is from right.

(2) For amorphism ¢: X — Y with X and Y smooth, we denote by Sing ¢ C X the
Zariski closed subset of critical points of ¢.

(3) We say that a morphism ¢: X — Y is locally trivial if it is locally trivial as a
continuous map in the complex topology.

2 The Classical Zariski-van Kampen Theorem

For a subset S of a group G, we denote by NC(S) the normal closure of S in G; that
is, NC(S) is the smallest normal subgroup of G containing S.
Suppose that a group H acts on a group N from right. We write this action by

n— n (ne N,h € H).

The semi-direct product N x H is the set N x H equipped with a structure of the
group by
B!
(ny, ) (ny, hy) = (nm;l ),hlhz)'
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We have a natural exact sequence
1—-N-SNxH-"SH-—1

with a natural section 0: H — N x H of p. Conversely, suppose that an exact
sequence
1—-N->G-5H—1

and a section 0: H — G of p are given. Then an action of H on N from right is
defined by
o(n") = o(h)""un)o(h)  (n€N,h e H),

and G is isomorphic to the semi-direct product N x H constructed by this action.
For a subset T of H, we put

Rel(T) := {n~'n" |[n € N,h € T} C N.

The following is easy to prove:

Lemma 2.1 Let T be a subset of H. Then ™! (NCNX,H(J(T))) coincides with
NCx (Rel (NCx(T)) ). n

Let X be a path-connected topological space, and b a point of X. We denote by
[S', X] the set of homotopy classes of continuous maps from the circle S! to X. Then
there exists a natural bijection between [S!, X] and the set Conj (7r1 (X, b)) of conju-
gate classes of m1 (X, b).

Let M be a connected complex manifold, and D a reduced hypersurface of M. Let
D; be an irreducible component of D, and let p be a point of D; not contained in
Sing D. There exist local coordinates (zy, . . ., z,,) of M with the origin p such that D
is defined by z; = 0 locally around p. Let

u: 8" - M\ D
be a continuous map given by (cost, sint) — (e exp(2m/—1¢),0,...,0) in terms of
the local coordinates (z1, . . . , z,), where ¢ is a sufficiently small positive real number.

The homotopy class [u] € [S', M \ D] of this continuous map does not depend on
the choice of p, the local coordinates, and £. We call [u] € [S!, M \ D] the homotopy
class of simple free loops around D;.

Definition 2.2 Let b be a point of M \ D. A loop

v: (I,8I) — (M \ D, b)
with the base point b is called a simple loop around D; if its homotopy class [v] €
m1(M \ D, b) is contained in the conjugate class that corresponds to the homotopy

class of simple freg loops around D; via the natural bijection between [S', M \ D] and
Conj(m (M \ D,b)).
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We will consider the homomorphism j,: 7 (M \ D, b) — (M, b) induced by
the inclusion j: M \ D < M. The following lemma is well-known:

Lemma 2.3  Suppose that D consists of a finite number of irreducible components
Dy, ...,Dy. Letv; be a simple loop ufound D; with the base point b, and let V be the
subset {[v1],..., [w]} of m (M \ D, b). Then Ker j, coincides with the normal closure
NC-;rl(M\D,E)(V) of V. [ |

Let U be a complex manifold, and let
g M—=U

be a surjective holomorphic map. For a point a of U, we denote by G, the fiber
g 1(a). Suppose that there exists a hypersurface I" of U such that g is locally trivial
over U \ IT" as a continuous map. Suppose also that I" consists of a finite number of
irreducible components I', . . ., I'r. We assume that there exists a continuous global
section

s:U—-M

of g. We choose a point b € U \ T, and put
b= s(b) € Gp.

Using the section s, we can define the monodromy action of 71 (U \T', b) on 7 (Gy, b)
from right. For each irreducible component I'; of I', we choose a simple loop

wi: (I,dI) — (U \ T, b)
around I';, and put
W= {[wi],..., [w]} Cm(U\T,b), and W :=NC,u\rpn(W).

Recall that Rel(W) is the subset {n='n" | n € 71(Gy,b),h € W} of (G, b), which
is called the set of monodromy relations.

Proposition 2.4 Suppose that s is holomorphic at each point of I'. Suppose also that
¢~ '(Ty) is an irreducible hypersurface of M fori = 1, ..., k. Then the kernel of the ho-
momorphism i, : m(Gy, b) — 7 (M, b) induced by the inclusion i: G, — M coincides
with the normal closure _

NC,, 6,5 (Rel(W))

of the set of monodromy relations in 71 (Gy, b).
Proof We put U° := U \T and M° := M\ g }(T"). Let g°: M° — U° and
s°: U° — MP° denote the restrictions of g and s, respectively. We also denote by

i°: G, — MP° the inclusion. Because of the section s° of ¢g°, we get a short exact
sequence

1 — m1(Gy, B) = 1 (M°, B) 2 7,(U°, b) —> 1
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with the section 57 of g7 from the homotopy exact sequence of the locally trivial fiber
space g°. Note that the monodromy action of m,(U®, b) on m(Gp, b) coincides with
the composite of s; and the inner-automorphism of 7; (M°, b); that is, we have

2]y = [s°ov] ™ - [u] - [s°ov] inm(M°, D),

where 1 is a loop in G, with the base point b, and v is a loop in U*° with the base point
b. Hence 7 (M°, b) is canonically isomorphic to the semi-direct product 7 (Gp, b)
w1 (U°, b) constructed from the monodromy action of 7, (U°, b) on 71 (G, b). Since
sis holomorphic at each point of T, the loop s° ow; in M® is a simple loop around the
irreducible hypersurface g~ (I';) of M. Therefore the kernel of the homomorphism

jur m(M®,b) — m (M, b)

induced by the inclusion j: M°® < M coincides with NCm(Moj,)(si(W)) by
Lemma 2.3. Since i = j 0i°, and i is injective, we have

Keri, = (i)' (Ker j,) = NC_ ¢, ; (Rel(W))
by Lemma 2.1. ]

When U is simply connected, the normal closure W of W in 7, (U \ T, b) coincides
with 71 (U \ T', b). Hence we obtain the following:

Corollary 2.5  Suppose that g~ (I';) is irreducible for i = 1,...,k, that s is holo-
morphic at each point of I, and that U is simply connected. Then the following two
conditions are equivalent:

(i) The monodromy action of w1 (U \ T', b) on m(Gp, b) associated to the section s is
trivial. .

(i) The incjusion Gy, — M induces an injective homomorphism from m,(Gp, b) to
m (M, b).

In particular, if the monodromy action of w1 (U \ T, b) on m,(Gy, b) is trivial for one
section, then it is trivial for any section. ]

3 Proof of Theorem 1.3
3.1 The Case of a Non-Compact Riemann Surface

Suppose that B is a non-compact Riemann surface. Let B be the smooth compactifi-
cation of B. We put
P:=B\B.

In this case, the topological discriminant locus ¥ ¢ consists of a finite number of
points of B. We put

Ef = {qlv"qu}‘
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Figure 3.1: The one-dimensional CW-complex K.

For each q; € X, we put a sufficiently small closed disc A; on B with the center
gi. We have a finite one-dimensional CW-complex K on B\ (X; U P) containing
b such that K N A, consists of a single point r; € 0A,; fori = 1,...,k, and that
K UOA; U--- U Ay is a strong deformation retract of B\ (X U P). Figure 3.1
illustrates K by thick lines and A; by shaded discs, in a situation where B is of genus
2, P consists of three points indicated by o, and X consists of two points indicated
by e. Let L be the union of K and A; (i = 1,...,k). Then L is a strong deformation
retract of B containing Y in its interior. By the condition (T3) of Theorem 1.3, we
have a local section

sit Ay = £71(A)
of f defined on A, that is holomorphic in the interior of A;. Since the restriction
A fFUEK) —» K

of f to f~1(K) is a locally trivial fiber space with a connected fiber, and K is of real
dimension 1, there exists a continuous section

sg: K — 1K)

of f defined on K such that sx(r;) = s;(r;) holds for each i. Gluing sy and s; (i =
1,...,k) together, we obtain a section

s;i L— f7H(L)

of f defined over L. There is an open subset U of B that contains L as a strong
deformation retract, and is a strong deformation retract of B. Then we can extend s
to a continuous section

sy U — f71(U)

of f defined over U. Note that sy is holomorphic at each point g; of ¥;. By the
condition (T3), F,, = f~'(g;) is irreducible for each q; € ;. Hence we can apply
Proposition 2.4 to the restriction fy: Ey — U of f to

Ey := fH(U).
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Using the condition (T4), we conclude that the inclusion F;, < Ey induces an injec-
tive homomorphism ) )
ﬂ-l(Fba b) — 7T1(EU, b))

where b := sy (b). On the other hand, since f is locally trivial over B\ U and U is a
strong deformation retract of B, the inclusion Ey — E induces an isomorphism

m(Ey, b) = m(E, b).

Hence i, is injective.

3.2 The Case of an Affine Space

Next we treat the case where B is an affine space AN by induction on N. The case
where B = A! is proved above. Suppose that N > 1. Let

p:B—A
be a general affine projection, where A is a one-dimensional affine line A!, and let
g:E—A
be the composite of f and p. For a pointt € A, we put
B :=p () =AY, E=g7'(t) = f(By),

and denote by
ﬁ: Et — Bt

the restriction of f to E;.
The strategy of the proof is as follows:

Step 1: We show that, when t € A is general, f; satisfies the four conditions in Theo-
rem 1.3. Combining this with the induction hypothesis, we see that, if b € B
is general, then the inclusion F, — E,;) induces an isomorphism on the
fundamental groups.

Step 2: We show that g satisfies the four conditions in Theorem 1.3, and hence, if
b € B is general, the inclusion E,3 < E induces an isomorphism on the
fundamental groups. Combining this with Step 1 above, we complete the
proof of Theorem 1.3.

Step 1 First note that E, is irreducible for every t € A. Indeed, since B, is of codi-
mension 1 in B, the condition (T3) implies that a general fiber of f; is irreducible.
Hence, if E; were reducible, there should exist an irreducible component of E; whose
image by f; is contained in a proper Zariski closed subset of B;. Since every irre-
ducible component of E; is of dimension equal to dim E — 1, we get a contradiction
with the condition (T2).
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Let Zy denote the singular locus Sing ¥ of ¥, where ¥ is regarded with the
reduced structure, and let Z; denote the union of all irreducible components of ¥ ¢

with codimension > 2 in B. Recall that 3\ (i=1,...,k)are theirreducible compo-
nents of ¥y with codimension 1 in B. Since p is general, there exists a proper Zariski

closed subset Z*) of E(fi) containing Sing ZSJ) such that the restriction p|25f) of p to
ESP is smooth at every point of ESP \ 27, We put

!

(1]
[1]

UZSUuZ,UEVy...uE®,

where the first = is the Zariski closed subset that appears in the condition (T3). Then
=’ is a Zariski closed subset of B with codimension > 2. There exists a finite set I" of
points of A such that, if t € A\ T, then E, is smooth, and B, N E’ is of codimension
> 2in B,.

Let ¢ be a point of A \ T'. We show that f;: E, — B satisfies the four conditions in
Theorem 1.3. The condition (T1) is obvious. The condition (T2) for f; follows from
the condition (T2) for f. Since B; N Z is of codimension > 2 in B, it follows that f;
satisfies the condition (T3).

Since p is a general affine projection, the intersection

Ef(t) =B, NXy

of B, and X is a proper Zariski closed subset of B,. Note that, if f is smooth at a
point z € Ey, then so is f;. Therefore ¥ ¢(¢) contains the set f,(Sing f;) of critical
values of f;, and hence ¥ ((t) contains the topological discriminant locus ¥ C B; of
fr. Let X f(t)U) be an irreducible component of ¥ ¢(¢) with codimension 1 in B;, and
let y be a general point of ¥ ¢(¢)"). Since B, N =’ is of codimension > 2 in By, there

exists a unique E?) among E?), RN Eifk} such that

LEDY f(t)(j ) is an irreducible component of the intersection of B, with E(fi),

. E(fi) is smooth at y, and intersects B; transversely at y.

Let U,, be a small open neighborhood of y in B,, and let a be a point of
Uy \ (Ut_,y N Ef(t)) . Then a simple loop

As (1,00 = (Uiy\ (Uiy N 34(0) a)

in B, \ $(t) around X ;(t)”) can be regarded as a simple loop in B\ X around nd,
A holomorphic local section s; ,, of f; can be defined on U, , by restricting a holo-
morphic local section of f around y. Hence the local monodromy on 7, (Fa, st,y(a))
along the loop A associated to the holomorphic local section s, ,, is trivial by the con-
dition (T4) for f. Thus the condition (T4) for f; is satisfied.

Step 2 The conditions (T1) and (T2) are obvious. Since E; is irreducible, as was
shown in Step 1, and B, \ (B; N E) is non-empty for any ¢ € A, the condition (T3)
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is satisfied by g. Let g be a point of the topological discriminant locus ¥, C A of
g. We choose a sufficiently small open disc D C A with the center g, and a point
to € D\ {q}. Let ro be a general point of By,. Since p is a general affine projection, we
have a holomorphic local section

si:D— p (D)

of p such that s;(D) N X = @, and that 5,(ty) = r. Then there exists a holomorphic
local section

s:51(D) — f_l(sl(D))
of f|f~'(s51(D)) . We can define a holomorphic local section s of g by

si=s,08:D— g_l(D).
We will show that the local monodromy on 7y ( E;,, s(ty)) along a simple loop
A (1,0I) — (D \ {q},t)

around q associated with the section s is trivial. The intersection DNI is either empty
or consisting of the single point q. In particular, we have t; ¢ T'. Since ry is general in
B,, we obtain from Step 1 an isomorphism

(3.1) 71 (Fy,, 5(t0)) = 71 (Eyy, s(to))

induced by the inclusion F,, — E, . Since 5;(D) N Xy = &, f is locally trivial over
51(D), and hence the local monodromy on (F,n, s(to)) along the simple loop

s;oX: (1,01 — (Sl(D) \ {51(‘1)}71’0)

around s;(g) associated with the section s, is trivial. From the isomorphism (3.1)
induced by the inclusion, we see that the local monodromy on m ( E,, s(ty)) along
the loop A\’ is also trivial. Thus the condition (T4) for g is also satisfied. [ |

4 Local Monodromies

In this section, we present, in the following three situations, sufficient conditions for
the local monodromy y; around E}’) to be trivial.

Recall that x; is a general point of the irreducible hypersurface E(fi) in B, and \; is

a simple loop around E}i) in a sufficiently small open ball U; in B with the center x;.
If a holomorphic local section s; of f is defined on Uj, then the local monodromy on
™ (Fa,., si(ai)) along ), is defined, where a; is the base point of the loop A;.

Remark 4.1  Since the property that y; is trivial is local on B, we can replace B by a
small Zariski open neighborhood of x; when we use the following propositions. For
example, removing all irreducible components of 3 except for E}’), we can assume
that X ¢ is an irreducible hypersurface in B.
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Situation (A) Let Y be a smooth irreducible quasi-projective variety. Suppose that
we are given a morphism
¢: E—Y.

We denote by
®:E—-BxY

the morphism defined by ®(x) := ( f(x), ¢(x)).

Proposition 4.2 Suppose that the following conditions hold:

(A1) Y is simply connected,

(A2) ® is dominant, and its general fiber is connected,

(A3) there exists an open neighborhood W of x; in B such that, for any (a, y) € W XY,
the fiber ®~!(a, y) has at least one point at which ® is smooth, and

(A4) the topological discriminant locus Yg C B X Y of ® does not contain {x;} x Y.

Then the local monodromy p; is defined and trivial.

Proof Note that ®~'({a} x Y) = F, for every a € B. We denote by
¢a: Fp —Y

the restriction of ¢ to F,. We have a diagram of the fiber product

F,&—— E

“| s £

Y<—> BXY,

where the lower inclusion is given by y — (a, y). Let ) be a general point of Y. Then
(x;,m) € B XY is not contained in X3 by the condition (A4). Hence there exist
sufficiently small open balls U in B with the center x; and V' in Y with the center n
such that the following hold:

e The open subset W in the condition (A3) contains U. Hence, for any a € U, every
fiber of ¢, possesses at least one point at which ¢, is smooth.

e The product U x V is disjoint from ¥g. In particular, if (a,y) € U x V, then
®~!(a, y) = ¢, (y) is smooth and, by the condition (A2), irreducible.

It follows that ¢, satisfies the conditions in Proposition 1.1 for any a € U, and that
V is disjoint from the topological discriminant locus ¥4, C Y of ¢, for anya € U.
There exists a holomorphic local section

SUXV =1 UxV)
of ® defined on U x V. Putting

s(a) :== 5(a,n),
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we obtain a holomorphic local section
s:U — f~1(U)

of f defined on U such that s(a) € ¢, !(n) for any a € U. Hence the local mon-
odromy p; is defined.

Applying Proposition 1.1 to ¢, (a € U) and using the condition (A1), we see that
the inclusion ¢ !(n) < F, induces a surjective homomorphism

m (¢, (n),s(a)) — mi(Fa,s(a))
for any a € U. We draw the simple loop \; around E(fi) inU \ (UNXy¢). Let

At (I,0I) — (U x V, (a;,n))

be the loop defined by
Ai(t) == (i), m) .
Since @ is locally trivial over U x V, which is simply connected, the monodromy

action
fit mi (@ ag,m), $ai,m) — m (@ (ai,m), S(ai, n))

along the loop ); associated with the section §is trivial. The diagram

i

m (¢ (), s(a))) —— m (¢ (n),s(a;))

| |

11y s@)) ————= (B s(a)

is commutative, where the vertical arrows are induced by the inclusion of gﬁa’x_l (n) =
®~!(a;,n) into F,,. Since fi; is trivial and the vertical homomorphisms are surjective,
we see that p; is also trivial. [ ]

Situation (B) Suppose that there exists a smooth projective morphism
f:E—~B

from a quasi-projective variety E such that E is the complement E \ Z to a reduced
divisor (possibly empty) Z of E, and that f is the restriction of f to E. For a point
a € B, let us denote by F, the fiber f ~!(a), and by Z, the scheme-theoretic intersection
of Z and F,. We have F, = F, \ Z,. Note that f is locally trivial over B, because it is
smooth and projective.
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Proposition 4.3  Suppose that the following conditions hold:

(B1) The fiber E, of f is connected.
(B2) There exists a Zariski closed subset = of B with codimension > 2 such that Z, is a
reduced divisor of F, for any a € B\ Z.

Then the local monodromy p; is defined and trivial.

Proof The morphism f is smooth and dominant, and its general fiber is connected
by the condition (B1). By the condition (B2), the locus {a € B | F, = @} is con-
tained in a Zariski closed subset of codimension > 2 in B. Since x; is a general point
of the hypersurface v of B, a holomorphic local section of f is defined in a small
open neighborhood of x;. Therefore the local monodromy y; is defined.

We embed E into a projective space PM. Let L be a general linear subspace of PM
with
dimL = M — (dimE — dimB) + 1.
We put
EL::EQL, EL::EQL
and denote by

fL:EL—>B and ﬁ!EL—>B

the restrictions of f and f, respectively. Let U be a sufficiently small open ball in B
with the center x;. Since L is general, the scheme-theoretic intersection F,, N L is a
connected smooth curve, and hence f; is smooth and locally trivial over U with fibers
being compact Riemann surfaces. Moreover, by the condition (B2), the scheme-
theoretic intersection Z,; N L is a reduced divisor of the compact Riemann surface
fi'(xi) = F,, N L. Then f; is locally trivial over U with fibers being punctured
Riemann surfaces, because the number of the punctured points Z, N L does not vary
when a moves on U.

There exists a Zariski closed subset Xy 1) of B with codimension > 1 such that
the pair

(f f): (E,EL) — B

is locally trivial over B\ ¥ (¢, ) as a pair of continuous maps in the complex topology.
Let X, - be the union of all irreducible components of 3y, ;) that are not contained
in X . Then E(’ﬂﬁ) N X is of codimension > 2 in B. Since x; is a general point of the

hypersurface E(fi), and U is sufficiently small, we have
U\ (UNXy) CB\Eq -
Since f;, is smooth over U, we have a holomorphic local section
s:U — f,1(U)

of fi. We draw the simple loop A; around E(fi) in U\ (UNXy). Thelocal monodromy

pism(f7 ), s(a) — m(f a0, s(a)
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along \; associated with the section s is trivial, because f; is locally trivial over U and
U is simply connected. Since (f, f;) is locally trivial over U \ (U N X), Deligne’s the-
orem [1], [3, Theorem 1.1 (B)] implies that the inclusion of fL_l(ai) into F,, induces
a surjective homomorphism

m (f; (ai),sa;)) — w1 (Fy,s(a))

that is compatible with the monodromies along A;. Therefore the triviality of the
local monodromy p; on 7 (Fa,. , s(a,»)) follows from the triviality of /. [ |

Combining Theorem 1.3 and Proposition 4.3, we obtain the following. Let F be a
smooth irreducible projective variety, and Z a reduced hypersurface of AN x F. For a
point a € AN, we denote by Z, the scheme-theoretic intersection of Z and {a} x F,
and regard it as a Zariski closed subset of F.

Corollary 4.4 ([6, Theorem 1])  Suppose that there exists a Zariski closed subset = of
AN with codimension > 2 such that Z, is a reduced divisor of F for any a € AN\ Z. Then

the inclusion of F \ Z, into (AN x F) \ Z induces an isomorphism of the fundamental
groups for a general a € AN, ]

Situation (C) Let X be a smooth irreducible projective variety, and W a reduced
divisor (possibly empty) of X. We put

X:=X\W.

Let M be a smooth irreducible projective variety, and D a very ample divisor of M.
Suppose that we are given a morphism

g:BxX—>M
such that ¢(B x X) ¢ D. We put
Z:=(BxW)+g (D),
which is a divisor of B x X. We consider the situation where
E=BxX)\Z,
and f: E — Bis the projection.

We denote by
g:BxX—M and g:E—M\D

the restrictions of § to the Zariski open subsets B x X and E of B x X, respectively.
For a € B, we denote by

§:X—>M and g:X—>M
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the restrictions of § and g to {a} x X and {a} x X, respectively. Then we have
Fo:=fYa)=X\g '(D)=X\ (Wug (D).

Let P denote the projective space P, H° (M ,0 M(D)) , which parameterizes all effec-
tive divisors linearly equivalent to D. For a point p € P, let D, denote the corre-
sponding divisor of M. We put

H:={(a,x,p) e Bx X x P|(a,x) € E, gi(x) € D,},
and let

p:H —BxP

be the natural projection. We have a natural identification
70, p) = (D) N F =g D)\ (& (D) N (WU g (D) )
for any (a, p) € B x P.

Proposition 4.5  Suppose that the following conditions hold:

(C1) The Zariski closed subset {a € B | §,(X) C D} of B is of codimension > 2.
(C2) Foranya € B, the dimension of §,(X) is > 2.
(C3) The topological discriminant locus ¥, C B x P of p does not contain {x;} X P.

Then the local monodromy pi; is defined and trivial.

Proof By the condition (C1), the locus {a € B | F, = @} is contained in a Zariski
closed subset of codimension > 2 in B. Since f is smooth, we have a local holomor-
phic section of f defined in a small open neighborhood of x;. Therefore the local
monodromy ; is defined.

We denote by oo the point of P corresponding to the divisor D € |D| given at the
outset, and write D, instead of D. We put

P* =P\ {oo}.

Let Q be the projective space that parameterizes the projective lines of P passing
through oo, and let
a: P* = Q

be the natural projection, which is locally trivial in the Zariski topology with fibers
isomorphic to the affine line A'. For a point q € Q, let A, C P* denote the fiber
a™'(q). If y € M\ D and q € Q, then there exists a unique point ,(y) of A, such
that y € D, (). Hence, for each g € Q, we have a natural morphism

Yq: M\ Dog — Ay,
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whose fibers over p € Agis D, \ (Dp N D). Let
¢ E— Ay
be the composite of gz: E — M \ Dog and 74: M \ Doy, — Ay. Let
®,: E— Bx A,
be the morphism defined by ®,(a, x) := (a, @q(a, x)) . We put
H* := p (B x P*).

Note that the restriction
p*: H* — B x P*

of p to J{* is the universal family of ®, (9 € Q); that is, we have a diagram of the
fiber product

BxA; —— B x p*
for any q € Q, where the upper horizontal arrow is the inclusion given by
(ﬂ, x) = (a7 x? ¢q(a7 x)) .

We will prove the triviality of p; by showing that, when g € Q is chosen generally, the
morphisms ¢, and @, satisfy the four conditions in Proposition 4.2 with Y = A,.

The condition (A1) is obvious. Since p is dominant by the condition (Cl1), @, is
dominant for a general ¢ € Q. Forany a € Band a general p € P, the condition (C2)
implies that g, ' (D,) is smooth and connected by Bertini’s theorem [3, Theorem 1.1].
Hence p~!(a, p) is connected for a general (a, p) € B x P, because p~'(a, p) is a
Zariski open dense subset of §;'(D,). Therefore, if ¢ € Q is general, ®, satisfies
the condition (A2). Since the topological discriminant locus ¥4, C B X A; of @, is
contained in the intersection of B x A; C Bx Pand X, C B x P, the condition (C3)
implies that @, satisfies the condition (A4), when q € Q is general.

In order to check the condition (A3), we put

I':={(a,p) €Bx P’ p~'a,p)\ (p~'(a,p)NSingp) = o}.

Since T is the the complement in B x P to p(H \ Sing p), it is a constructible set.
Hence it is a finite disjoint union of locally Zariski closed subsets. Let

prz: BxP— B
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be the natural projection. We define I to be the Zariski closure in B x P of I', and =5
to be the Zariski closed subset

{a €B | dim(prgl(a) ﬂf) > dimP — 1}

of B. In order to show that ®, satisfies the condition (A3) for a general g € Q, it is
enough to prove that Zj is of codimension > 2 in B. Indeed, let

B:P—P
be the blowing up of P at co € P, and let
a: P — Q
be the natural projection, which coincides with « on P*. We denote by
T"cBxP
the strict transform of I by id 3 x 3. We put
T = (idg xa)T") c Bx Q.

Since idp X & is a smooth projective morphism of relative dimension 1, T is a Zariski
closed subset of B x Q, and ifa € B\ Zp, then ({a} x Q) NTq is of codimension > 1
in {a} x Q. Because x; is a general point of the hypersurface ng) of B, this point x;
is not contained in Zp. Therefore {x;} x Q is not contained in . Let g be a general
point of Q. Then we have (x;, q) ¢ T'o. Hence there exist open neighborhoods W of
x; in Band W' of g in Q such that

W xW)NTq=92.

This implies

(Wxa W) nT™ =g.

In particular, we have
(WxA)NT =@.

Since ®, is the pull-back of p by the inclusion B x A, < B x P, the fiber of @,
over any point of W X A, possesses at least one smooth point. Hence ®, satisfies the
condition (A3).

Now we assume that =3 is of codimension < 1 in B, and derive a contradiction.
By the assumption, there exists an irreducible locally Zariski closed subset I'’ of B x P
contained in I such that its Zariski closure T has the following property; pr B(f/) is
of codimension < 1 in B, and a general fiber of

pry \flz = prB(fl),
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which is regarded as a Zariski closed subset of P, is of codimension < 1.
We fix a general point ay of prB(f/), and let f(; be an irreducible component of
(prg |f’)_1(a0). Then f(; is of codimension < 1 in P. We write

g:X—M and §:X—-M

instead of g,, and g,, for simplicity. Since I'’ is locally Zariski closed, it is Zariski open
densein T . Let po be a general point of f(;. Then (ay, po) be a point of I'' C T, and
hence p~!(ay, po) is either empty or contained in Sing p. Suppose that p~1(ay, po) =
<. We put

YO = g_o (Y)

We denote by C the Zariski closure in Y of
Yo\ g6(Fa,) = (Yo N Duo) U (Y \ g0(X)).

Since prB(f/) is of codimension < 1 in B, the condition (C1) implies Yy ¢ De..
Hence C is a proper Zariski closed subset of Y. Let Cy,. .., Cy be the irreducible
components of C with codimension 1 in Y. We put

Aj:={peP|C;jCD,}.

By the condition (C2), we have dim C; > 1. Hence A is a linear subspace of codi-
mension > 2 in P. For p € P, p~!(ay, p) is empty only if Y N D, C C, which is
equivalent to

k
(4.1) YoND, C ch.
j=1

Note that, if (4.1) holds, then there exists at least one C; among C1, . .., Cy such that
Cj C Yo N D,. Therefore we have fé cy jAj» which contradicts to the fact that
f(; is of codimension < 1 in P. Therefore p~'(ag, py) is non-empty and hence is
contained in Sing p for a general p, € fé.
We put .
Hy = {(.X,p) eXxP ‘ go(x) S DP}’
and let - o
po: Ho— P and &9: Ho — X

be the projections. Note that & is a smooth projective morphism with fibers being
hyperplanes of P. We put

8 := Sing py.

By the consideration above, p,° ¢ Po) = p~ay, po) has at least one irreducible com-
. LT = e . .
ponent that is contained in §; for a general p, € I';. Since I'; is of codimension < 1
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in P, there exists an irreducible component g(l) of 8 with codimension 1 in I, such
that gé is contained in 8y N p; ! (fé), and that po(gé) coincides with fé.

Let (x, p) be a point of Hy. Then the Zariski tangent space to po_l(p) = p~(ap, p)
at (x, p) is canonically identified with the subspace (dgp); 1(Tgn(X)Dp) of T,.X with
codimension < 1. Hence (x, p) is contained in 8 if and only if

Im(dgo)x - Tgu(x)Dp-
For non-negative integers v, we put

(X), == {x € X | rank(dgy)x < v}.

If x € (X)o, then G, Y(x) N' Sy coincides with oy !(x), which is isomorphic to the
hyperplane
H(x):={peP|g(x) €Dy}

of P. We also have
x € X\ (X)o = 5, '(x) N8y is of codimension > 1 in &, * (x),
xeX\ (X)), = &O_l(x) N 8, is of codimension > 2 in 50_1(x).
By the condition (C2), (X), is a proper Zariski closed subset of X. Since g(l) is of
codimension 1 in K, 50(gé) must be contained in (X)g, and the fiber of
= =/ =/
F0l8y: 8y — G(8y)

over an arbitrary point x € ﬁo(g(;) coincides with &, Y(x) = H(x).
Let (x1, p1) be a general point of g(;. Then p; is a general point of the linear system
H(x). Since dim H(x;) > 0, Bertini’s theorem implies that the divisor

p~ag, p1) = go_l(Dpl)

of X has at least one smooth point. On the other hand, because p; is a general point
of po(g(/,) = f(l), the divisor p~!(ag, p1) must be contained in Sing p. Thus we get a
contradiction. ]

5 Action of an Algebraic Group

Let X be a smooth irreducible projective surface, and W a reduced divisor of X (pos-
sibly empty). We put
X:=X\W.

Let M be a smooth irreducible projective variety on which a connected algebraic
group G acts from left, and let D be a very ample divisor of M. Suppose that a mor-
phism

X =M
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is given. We denote by ¢: X — M the restriction of ¢ to X. For v € G, let
"p: X —-M and "¢: X - M

be the composites of ¢ and ¢ with the action v: M — M of v, respectively. We
assume that there exists at least one v € G such that 7¢(X) ¢ D. Putting

B:= G,

we obtain a morphism
§$:BxX—>M

defined by g(7, x) := 7¢(x). We put
Z:=BxW)+g (D), E:=(BxX)\Z,

and let f: E — B be the projection. By the assumption above, §~(D) is a divisor
of B x X, and hence f is a dominant morphism. By definition, we have a natural
identification
Fy = f"'(y) ="¢""(M\ D)
forany v € G = B. We put i
Y= ¢(X),
and equip Y with the reduced structure. For vy € G, let (’y(?) N D) ° denote the

Zariski open subset of y(Y) N D consisting of all points y € v(Y) N D at which v(Y)
and D are smooth and intersecting transversely. We then put

Sing(’y(?) N D) = ('y(?) N D) \ (’y(?) N D) °

As before, let ¥y C B = G be the topological discriminant locus of f, and Eif) an
irreducible component of 3 with codimension 1 in B. Let v; be a general point of

ng), and ); a simple loop around in E(fi) in a sufficiently small open ball U; around
7; with the base point a; € U; \ (U; N Xy).

Proposition 5.1  Suppose that the following conditions hold:

(Gl) dimY = 2, so that ¢ is generically finite onto its image,

(G2) for any irreducible Zariski closed subset C of Y with dim C > 0, the Zariski closed
subset {y € G | ¥(C) C D} of G is of codimension > 2, and

(G3) the locus {7 € G| dim Sing('y(?) N D) > O} is contained in a Zariski closed
subset of codimension > 2 in G.

Then the local monodromy u; on 7, (”’qb_l(M \ D)) along the loop \; is defined and
trivial.

Remark 5.2 Suppose that D has a non-reduced irreducible component D’. By the

definition of Sing ( ~X) N D) , if the conditions (G1) and (G3) are satisfied, then we
have y(Y) N D’ = & for a general y € G. In particular, D’ is not ample.
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Proof As in Situation (C) in the previous section, we denote by P the projective
space P,H® (M, Op(D)) , and by D, the divisor corresponding to a point p € P. We
put

H={(y,x,p) € BxXx P|7d(x) € Dp}, H:=HN(ExP),

and let o
prH—->BxP p:H—-BxP

be the natural projections. We will check that, in this situation, the three conditions
in Proposition 4.5 are satisfied. The condition (C1) follows from the conditions (G1)
and (G2). The condition (C2) follows from the condition (G1). Therefore all we have
to show is that the topological discriminant locus ¥, C B x P of p does not contain
{ri} x P.

Let X, C B x P be the topological discriminant locus of p. By Bertini’s theorem
and the condition (G1), the general fiber of p is a connected compact Riemann sur-
face, and, for any v € B, there exists a point p € P such that 7¢~!(D,) is a smooth
irreducible curve on X. Hence the intersection of X, with {~} x P is of codimension
> lin {7y} x Pforany~y € B. On the other hand, the general fiber of p is a punctured
Riemann surface. Hence, if (o, po) € (B x P) \ X5, then (7, po)is not contained in
¥, if and only if the number of the punctured points 5~ (v, p) \ p~' (v, p) on the
compact Riemann surface p~! (v, p) does not vary locally around (7o, po).

As before, we write D, instead of D. We choose a general point py € P, and write
Dy instead of D,,,. We have (7;, po) ¢ 3;. Let U(7;) and U(po) be sufficiently small
open neighborhoods of ; in B and of py in P, respectively. We put

U :=U(vi) x U(po).
For (v, p) € U, we put
Tw(y,p) :=WN7¢~"(Dy) and Too(y,p) := """ (Do N Dp).
Then we have
PP\ 7 (1 p) = Tw (7, ) U Too (7, P)-
Therefore, in order to show that the condition (C3) is satisfied, it suffices to prove
that the cardinality | Ty (7, p) U Too (-, p)| is constant when (v, p) moves on U.

First remark that the condition (G2) implies the following. If R is a Zariski closed
subset of X with dim R < 1, then we have

%((R) NDoe =2 or dim(7(AR) NDx) =0.
Indeed, if ¢(R) has an irreducible component ¢(R)’ with dim ¢(R)’ = 1, then

%(q_b(R)’) ¢ Do by the condition (G2), because +; is a general point of the irre-
ducible hypersurface Egﬁ) of G.
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By definition, Ty (7, p) and T (7, p) are disjoint if and only if
(5.1) Y(¢(W)) N Do N D, = .

By the remark above, we have
Yi(¢(W)) NDoo =@ or dim('yi((;_b(W)) ﬂDOO> =0.

Since py is general in P, we see that (5.1) holds for any (v, p) € U.
Let Wy, ..., Wi be the irreducible components of W such that

dimo(W,) =1 (u=1,...,k),
and let Wy, ..., W, be the other irreducible components. Obviously we have
dimop(W,) =0 (v =k+1,...,m).
Foru=1,...,k lete, be the mapping degree of
PW,: W, — d(W,,),

and let p(W,)° be the Zariski open dense subset of é(W_ﬂ) such that ¢(W,,) is smooth
at every point of d)(}/\fﬂ,)o, and that ¢|W,, is étale over ¢(W,)°. We denote by d, the
degree of the curve ¢(W,,) (with the reduced structure) with respect to the very ample
line bundle Oy (Do ). Let v € G be an arbitrary element. If p € P is general, D,
intersects -y ( (;_S(Wu)) transversely at distinct d,, points in -y ( q_S(Wu)") . Moreover we

have
Dpﬂ’y(qf)(WV)) =2 Ww=k+1,...,m).

Since py is general, | Ty (7, p)| is constantly equal to 22:1 d,e, forany (v, p) € U.
There exists a Zariski open dense subset Y~ of Y such that

36T 67T T
is étale. Let € be the mapping degree of this étale morphism. We put
Q:=Y\Y",

which is a Zariski closed subset of Y with dim Q < 1. Then, by the remark above, we
have

%($Q) NDw =& or dim(%(F(Q) NDx) =0.

Since py € P is general, we have

(5.2) Y(Q)N Do ND, =@ forany (v,p) € U.
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By the condition (G3), we have
Sing(’y,»(?) N DOO) =g or dim(Sing(’yi(Y) N Doo) > =0.
Since po € P is general, we have
Sing(’yi(Y) N Doo) NDy =,

and the intersection ;(Y) N Do, N Dy is transverse; that s, at every point y € ;(Y) N
Dgo N Dy, all of 7;(Y), Dy and Dy are smooth, and the intersection of their Zariski
tangent spaces in T,,M is of dimension 0. Hence, for any (v, p) € U,

YY) N Do N D,

consists of distinct § points, where J is the degree of Y with respect to the line bundle
Om(Doo), and over each point of this intersection, 7¢: X — (Y) is étale by (5.2).
Hence | Too (7, p)| is constantly equal to e when (v, p) moves on U.

Combining the previous three paragraphs, we conclude that the number of the
punctured points Ty (7, p) U T (7, p) is constant locally around (v;, po), and hence
(i, po) is not contained in X, [ |

Remark 5.3 Proposition 5.1 plays a crucial role in the proof of Zariski hyperplane
section theorem for Grassmannian varieties in [12].
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