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The rumen contains a great diversity of prokaryotic and eukaryotic microorganisms that allow the ruminant to utilize ligno-cellulose
material and to convert non-protein nitrogen into microbial protein to obtain energy and amino acids. However, rumen fermentation
also has potential deleterious consequences associated with the emissions of greenhouse gases, excessive nitrogen excreted in
manure and may also adversely influence the nutritional value of ruminant products. While several strategies for optimizing the
energy and nitrogen use by ruminants have been suggested, a better understanding of the key microorganisms involved and their
activities is essential to manipulate rumen processes successfully. Diet is the most obvious factor influencing the rumen microbiome
and fermentation. Among dietary interventions, the ban of antimicrobial growth promoters in animal production systems has led to
an increasing interest in the use of plant extracts to manipulate the rumen. Plant extracts (e.g. saponins, polyphenol compounds,
essential oils) have shown potential to decrease methane emissions and improve the efficiency of nitrogen utilization; however, there
are limitations such as inconsistency, transient and adverse effects for their use as feed additives for ruminants. It has been proved
that the host animal may also influence the rumen microbial population both as a heritable trait and through the effect of early-life
nutrition on microbial population structure and function in adult ruminants. Recent developments have allowed phylogenetic
information to be upscaled to metabolic information; however, research effort on cultivation of microorganisms for an in-depth study
and characterization is needed. The introduction and integration of metagenomic, transcriptomic, proteomic and metabolomic
techniques is offering the greatest potential of reaching a truly systems-level understanding of the rumen; studies have been focused
on the prokaryotic population and a broader approach needs to be considered.
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Implications

The microbial community in the rumen is one of the most
diverse gut ecosystems yet described in the animal kingdom.
An increased understanding of this complex microbiome, the
dietary factors that affect it, the influence of the host on the
rumen microbiome and the effect of rumen fermentation on
the host should allow us to develop approaches that maxi-
mize the conversion of fibrous feedstuffs produced on land
not suitable for primary cropping into human-edible food
while minimizing the environmental consequences of rumi-
nant agriculture.

Introduction

The anatomically distinct forestomaches of the rumen, reticu-
lum and omasum sit before the true stomach (abomasum) in

the digestive tract of ruminants. The presence of a symbiotic
microbial population in the rumen and reticulum (hereafter
referred to as the rumen) allows ruminants to utilize ligno-
cellulose material and to convert non-protein nitrogen into
microbial protein. Because of this, ruminants, when used
to transform fibrous feedstuffs produced on land not suitable
for primary cropping, can be net contributors to the global
supply of human-edible food and make a major contribution
to the sustainability of the global food system (Schader et al.,
2015). However, while microbial fermentation in the rumen
plays a central role in the ability of ruminants to utilize fibrous
substrates, rumen fermentation also has potential deleteri-
ous consequences in particular associated with the emissions
of greenhouse gases, excessive nitrogen excreted in manure
and may also adversely influence the nutritional value of
ruminant products (Scollan et al., 2011). Given the wide
range of consequences of rumen fermentation on the nutri-
tion andmetabolism of ruminants, it is perhaps not surprising
that significant research effort has been exerted both to† E-mail: eva.ramos-morales@sruc.ac.uk
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understand the microbial population in the rumen and ulti-
mately to manipulate it to maximize productivity while
decreasing the environmental load of ruminant agriculture.

Rumen fermentation

As noted above, the ability of ruminants to utilize cellulolytic
and hemicellulolytic feedstuff distinguishes them from
monogastric farm animals. Degradation of plant material
in the rumen requires colonization of ingested plant material
by a complex microbial consortium and occurs in a time-
dependent manner that is influenced by the nature of the
substrate ingested (Elliott et al., 2018). The resulting consor-
tia functions synergistically to degrade the substrate, with
cross feeding betweenmicrobes such that the rate and extent
of degradation is greater than that could be accomplished by
a microbial monoculture (Krause et al., 2013). The anaerobic
nature of the rumen dictates that degradation of substrates is
incomplete and the end products of fermentation are volatile
fatty acids (VFAs; predominantly acetate, propionate and
butyrate), in addition to CO2. On occasions, and depending
on substrate, intermediate products of fermentation such as
lactic acid may also accumulate.

During rumen fermentation, the NADþ reduced to NADH
must be reoxidized to allow fermentation to continue. In the
anaerobic conditions of the rumen, NADþ must be regener-
ated by electron transfer to acceptors other than oxygen and
the major sink is the reduction of CO2 to CH4 (other sinks
include sulphate, nitrate and fumarate; Morgavi et al.,
2010). It has been suggested that the inhibition of methane
production without the provision of alternative pathways for
the disposal of hydrogen would disrupt rumen function
(Morgavi et al., 2010). However, some studies have sug-
gested that in sheep, goats and cattle, methane production
can be significantly decreased with little effect on rumen fibre
degradation and diet digestibility (Martinez-Fernandez et al.,
2016). Clearly, as noted by Ungerfeld (2015), there is a need
to more fully understand the effect of different hydrogen
sinks on both methane production and rumen function.

Dietary protein entering the rumen is broken down rapidly
via peptides and amino acids, resulting in ammonia forma-
tion and subsequent loss of N from the animal (Walker
et al., 2005). The resultant low efficiency of nitrogen reten-
tion represents a financial loss (as more dietary protein must
be fed), and in extreme cases excess rumen ammonia concen-
trations can lead to metabolic stress in the animal, while
excess N excretion in manure can cause environmental dam-
age (Walker et al., 2005).

The rumen microbiome

The microbial community in the rumen is one of the most
diverse gut ecosystems yet described in the animal kingdom
(Weimer, 2015), composed of not only bacteria (1010 to 1011

organisms/ml) but also archaea (108 to 109 organisms/ml),

protozoa (105 to 106 organisms/ml), fungi (103 to 104 organ-
isms/ml) and an as yet largely uncharacterized virome.

Bacteria
Traditionally, microbiologists relied on culture-based meth-
ods, largely based on the original work by Hungate and col-
leagues (Krause et al., 2013) to isolate members of the rumen
bacterial community. It was thought that these cultivation
techniques had enabled researchers to describe the circa
200 most abundant and diverse bacteria in the rumen eco-
system. Indeed, the results obtained from amplicon sequenc-
ing of the 16s rRNA gene via next generation sequencing
have largely agreed with this at phylum level and have
allowed studies to be discussed based on the known activity
of cultured bacteria (Wilkinson et al., 2018).

However, Stewart et al. (2018) described 913 novel micro-
bial genomes assembled from metagenomic sequencing of
the rumen of 42 cattle, and the same authors have recently
extended this work assembling over 4900 novel microbial
genomes from the rumen of 282 cattle (Stewart et al.,
2019). As a result, several initiatives are underway to
improve our ability to culture rumen microorganisms. A col-
laborative activity between a wide range of research organ-
izations, the Hungate 1000 project, has produced 501
genomes (480 bacteria and 21 archaea) from rumen
microbes (Seshadri et al., 2018) with access to bacterial cul-
tures available via the project website (http://www.
rmgnetwork.org/hungate1000.html). The collection encom-
passes 75% of genus-level taxa reported from the rumen
and has allowed the assignment of individual microbes to
the major metabolic pathways involved in rumen function
(Wilkinson et al., 2018). However, according to Stewart
et al. (2019), the Hungate collection represents only a frac-
tion of the diversity present in their novel microbial genomes
assembled from metagenomic sequencing. Clearly, it is vital
that more of these strains are brought into culture, so we can
study their function in vitro and in vivo, and gain mechanistic
insight into the structure and function of the rumen
microbiome.

Protozoa
With their striking appearance, rumen protozoa are assumed
to be important for the welfare of their host. However, even
though protozoa can contribute up to 50% of the biomass in
the rumen, the role of protozoa in the rumen microbial eco-
system remains unclear (Newbold et al., 2015). Most proto-
zoa in the rumen are ciliates, with a few flagellate species;
ruminants commonly harbour distinct protozoal populations
from birth and typically, this does not change through life
(Williams and Coleman, 1992). Protozoal identification and
taxonomy have usually relied on morphologic identification
by optical microscopy (Newbold et al., 2015). Recently,
sequencing of 18S rRNA genes has help to both clarify the phy-
logeny of the rumen ciliates and reveal an apparent higher
diversity of ciliates than estimated by conventional morpho-
logical methods (Moon-van der Staay et al., 2014; Kittelmann
et al., 2015). However, it has been suggested that copy
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number variation in ribosomal RNA genes across the different
genera may have limited the use of 18S rRNA amplicon
sequencing in ecological studies (Newbold et al., 2015).

Despite repeated attempts, it has proven impossible to
maintain rumen protozoa in axenic culture (Newbold
et al., 2015). Thus, most studies have concentrated on
describing the activity of mixed bacterial and protozoal
co-cultures, maintained either in in vitro or in in vivo
(Williams and Coleman, 1992). Thus, while much progress
has been made in describing the role of protozoa in the
rumen (Williams and Coleman, 1992), it has been difficult
to establish conclusively that activity is due to protozoa as
opposed to associated bacteria. Techniques to clone and
express ciliate genes in phages have allowed genes from a
range of rumen protozoa to be characterized (McEwan
et al., 1999; Newbold et al., 2005; Belzecki et al., 2007).
As a result, a wide range of fibrolytic enzymes have been
identified suggesting a highly evolved fibrolytic capacity in
the rumen ciliates (Devillard et al., 1999 and 2003;
Takenaka et al., 2004; Wereszka et al., 2004; Bera-Maillet
et al., 2005). Recently, a draft macronuclear genome
sequence from the rumen ciliate Entodinium caudatum has
been released, promising a greater understanding of proto-
zoal metabolism in the rumen (Park et al., 2018).

Protozoa can be removed from the rumen through a proc-
ess known as defaunation, and the animal will still survive
(Williams and Coleman, 1992; Newbold et al., 2015). A
recent meta-analysis suggested that the absence of protozoa
caused a decrease in organic matter degradation, suggesting
an important functional role in the rumen (Newbold et al.,
2015). Furthermore, defaunation increased microbial protein
outflow from the rumen and decreased methane production.
These observations are consistent with the evidence that cil-
iates survive by digesting rumen bacteria, thus playing an
important role in the inefficient use of dietary protein by
ruminants and that protozoa are indirectly involved in meth-
ane production, as they harbour an active population of
methanogenic archaea both on their external and internal
surfaces (Morgavi et al., 2010). A recent meta-analysis
exploring time-dependent effects of removing protozoa
(Li et al., 2018) concluded that subsequent increases in
methanogens, fungi and cellulolytic bacteria counteracted
defaunation-induced effects on rumen fermentation, sug-
gesting that defaunation might not always lead to lower lev-
els of methane production. Protozoa also seem to stabilize
rumen fermentation increasing rumen pH (Williams and
Coleman, 1992), possibly because protozoa consume lactate
more rapidly than bacteria (Newbold et al., 1986). While
clearly more long-term studies on the effects of defaunation
on rumen microbiota and fermentation are needed, defauna-
tion may not be an appropriate model to study the role of
protozoa in the rumen.

Fungi
There is some debate about the contribution of the anaerobic
fungi to the microbial biomass in the rumen. While the
flagellated zoospores are clearly visible in rumen fluid, the

vegetative growth of the rhizoids on and in plant material
is less obvious. Chitin measurements and rRNA transcript
abundance (Huws et al., 2018) indicate that anaerobic fungi
represent 10% to 20% of the rumenmicrobiome and they are
thought to be crucial fibre degraders, especially when forages
with poor quality are fed to ruminants (Krause et al., 2013).
Like the protozoal population, the close association of rumen
fungi with methanogenic archaea (Edwards et al., 2017) is
thought to both enhance fungal activity and contribute to
methane production. The taxonomy of the rumen fungi
remains a subject of considerable debate; six genera
are commonly recognized: the monocentric Neocallimastix,
Caecomyces and Piromyces and the polycentric Anaero-
myces, Orpinomyces and Cyllamyces. However, further gen-
era are likely to exist and continue to be described (Edwards
et al., 2017). As with other areas, the use of molecular tech-
niques, including the use of internal transcribed spacer 1
region and large subunit rRNA as taxonomic marker, and sev-
eral genomes and transcriptomes have been reported from
rumen fungi (Edwards et al., 2017).

Archaea
Archaea make up 0.3% to 3% of the rumen microbiome
(Janssen and Kirs, 2008) with most, although possibly not
all being methanogenic. In most studies reported to date,
the most abundant methanogens are Methanobrevibacter.
Methanobrevibacter are hydrogenotrophic producing meth-
ane from H2, CO2 and formate produced by the protozoa,
bacteria and fungi (Janssen and Kirs, 2008). Other significant
hydrogenotrophic genera includeMethanosphaera, Methan-
imicrococcus and Methanobacterium (Morgavi et al., 2010).
Less abundant aremethylotrophs (Methanosarcinales,Methano-
sphaera, Methanomassiliicoccaceae), producing methane from
methylamines, and methanol and aceticlastic archaea
(Methanosarcinales), producing methane from acetate
(Morgavi et al., 2010). The diversity of archaea is less than
that of the bacterial population but, as with bacteria, they
are subject to significant effort to isolate and characterize
new species, with 21 archaea from rumen recently becoming
available via the Hungate 1000 (Seshadri et al., 2018).

What remains unclear is the relationship between arch-
aeal numbers and methane production. Wallace et al.
(2014) suggested a direct correlation between archaeal
abundance and methane production, while Danielsson
et al. (2017) found that rumen methane production corre-
lated with both rumen methanogenic and bacterial com-
munity structure. Most likely, rumen methanogenesis is
a product of both rumen fermentation, and thus H2 supply,
and archaeal numbers (Belanche et al., 2015). As noted
above, protozoa harbour an active archaeal population
on both their inner and outer surfaces. It is apparent
that this archaeal population differs from the free-living
population (Tymensen et al., 2012) and may indeed vary
between protozoal genera (Belanche et al., 2014), with
important consequences in terms of the relative role of dif-
ferent protozoal genera in overall methane production
(Belanche et al., 2015).
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Virome
The rumen virome remains by far the poorest characterized
part of the rumen microbiome. Lytic phages have been iso-
lated from the rumen and studies on their diversity have been
reported (Gilbert and Klieve, 2015), including evidence to
suggest that energy intake may be a major driver of the
rumen virome (Anderson et al., 2017). However, only recently
has genome sequence of lytic phages been reported (Gilbert
et al., 2017), and metagenomic studies on the rumen virome
are starting to appear (Namonyo et al., 2018), suggesting
that we may soon have a greater understanding of viral-
mediated processes in the rumen. Evidence of the presence
of RNA-based viruses that infect fungi (mycoviruses) has
been recently published (Hitch et al., 2019); however, their
impact on rumen fungal populations and fibre degradation
need to be further investigated.

Factors that influence the rumen microbiome

Diet
A recent global comparison study of the rumen microbiome
in 742 samples from 32 animal species in 35 countries con-
cluded that, while a common core of bacteria and archaea
dominated in nearly all samples, differences in microbial
community compositions were predominantly attributable
to diet (Henderson et al., 2015). Among dietary interventions,
we can distinguish between those aimed at improving forage
quality and changing the proportion of the diet, and those
aimed at using feed additives to supplement the diet.
Molecular techniques based on either amplicon sequencing
of ribosomal genes or whole metagenome sequencing
(Huws et al., 2018) are increasingly allowing us to explore
both the temporal and spatial development of microbial pop-
ulations within the rumen that are related to the colonization
and degradation of dietary fibre entering the rumen (Elliott
et al., 2018). We have shown that shifts in the carbohydrate
and protein content of diets consumed (Belanche et al., 2012)
and less obvious changes, such as the method of forage pres-
ervation and type of forage (Huws et al., 2018), affect feed
colonization by rumen microbes and subsequent digestion.
However, there is a need to ensure both that studies consider
the whole microbiome and not just the bacteriome and that
changes in the composition of the microbiome are linked to
changes in fermentation and host metabolism.

Nutritional strategies can affect the interactions between
microbial groups and their effect on production and product
quality. Perhaps the area that best illustrates this point is the
quality of ruminant-derived products in terms of fatty acid
profile. Fatty acid supplementation can affect microbial struc-
ture and fatty acid biohydrogenation in the rumen and thus
influence the fatty acids available for absorption and appear-
ance in meat and milk, with the effects apparently influenced
by the source of rumen fluid, sheep v. cattle (Carreño et al.,
2019). It is known that bacteria are largely responsible for the
biohydrogenation of fatty acids in the rumen while protozoa
are not thought to be actively involved in biohydrogenation

(Lourenço et al., 2010). However, protozoa do affect the com-
position of the bacterial population in the rumen and thus
potentially biohydrogenation (Newbold et al., 2015). In addi-
tion, protozoa directly incorporate unsaturated fatty acids
protecting them in the rumen from biohydrogenation and
allowing direct transfer into milk and meat (Lourenço
et al., 2010) illustrating some of the differing levels at which
microbial interactions might affect product quality.

Given the effect of diet on the rumen microbiome, it is per-
haps not surprising that a wide range of dietary additives have
been used to manipulate rumen fermentation (Figure 1). The
main targets for rumen manipulation can be summarized as:

• Increased microbial degradation of fibre: increasing the yield
of VFAs that can be absorbed by the host and increasing
intake in forage fed animals.

• Decreased protein degradation and ammonia production in
the rumen: reducing the financial and environmental cost
of inefficient dietary protein utilization in ruminants.

• Optimizing VFAs production: ensuring that the pattern of VFAs
production matches the production requirements of the host.

• Improved animal health: preventing the accumulation of
harmful intermediates of fermentation in the rumen and
maximizing the degradation of dietary toxins.

• Decreased greenhouse gas production: decreasing the pro-
duction of greenhouse gases from ruminant agriculture has
been and remains a major challenge to the ruminant sector.

• Improved human health: improving the nutritional composi-
tion of ruminant products, predominantly lipid and fatty acid
content/composition and preventing pathogen transfer in the
food supply chain.

Newbold (2017) summarized the potential benefits and
limitations of a range of dietary additives. However, in
response to the EU legislation to the ban of antimicrobial
growth promoters in animal production systems, we have
become increasingly interested in the use of plant extracts
to manipulate rumen fermentation, boost animal production
and decrease greenhouse gas emissions.

Saponins have shown potential as antiprotozoal agents to
ultimately increase microbial supply to the host and decrease
methane production (Newbold et al., 2015). This effect has
been reported to be transitory due to the deglycosylation of
saponins to sapogenins by rumen bacteria (Wallace et al.,
2002). We have recently shown that the antiprotozoal effect
of derivatives from hederoside B, the major saponin in ivy
fruit, differed depending on the composition and linkage
of the substituent to the sapogenin (Ramos-Morales et al.,
2017). Furthermore, our most recent results show that anti-
protozoal activity is not an inherent feature of all saponins
and that small variations in the structure of a compound
can have a significant influence on their biological activity
(Ramos-Morales et al., 2019a).

Polyphenolic compounds such as tannins and flavonoids
have also been shown to reduce methane production in the
rumen. We have recently shown that an isoflavonoid-rich
extract from liquorice decreased ammonia production and
methane, effects that were attributed to decreases in proto-
zoa numbers and bacteria diversity, as well as changes in the
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structure of bacteria and archaea (Ramos-Morales et al.,
2018). When nine compounds were synthetized from the
natural alkaloid haemanthamine and tested in vitro for their
effects on rumen protozoa and fermentation parameters,
results showed that simple esterifications of haemanthamine
or its derivative dihydrohaemanthamine with acetate, butyr-
ate, pivalate or hexanoate led to compounds that differed in
their effects on rumen fermentation (Ramos-Morales et al.,
2019b). It is clear then that understanding the degree to
which structural features in a compound may affect the bio-
logical activity of a plant extract is essential. The effect of
plant extracts on rumen fermentation has been reported to
be highly variable (Newbold, 2017) but given that growth
stage, harvest and storage conditions can all alter the struc-
ture of bioactive molecules in plants, it is questionable if
studies are comparing like with like.

Host effects
Experiments involving near total exchange of the rumen con-
tents between animals have shown that the individual animal
has strong effect on the re-establishment of the rumen micro-
bial community (Weimer, 2015; Zhou et al., 2018), sug-
gesting that the host animal has a strong effect on the
rumen microbial population.

Evidence that the host might influence the rumen micro-
bial population is mounting (Huws et al., 2018). Sasson
et al. (2017) suggested that several bacterial operational
taxonomic units were highly heritable in dairy cattle.
Roehe et al. (2016) ranked beef cattle based on relative
archaeal abundance and reported this remained consis-
tent, suggesting that archaeal abundance in ruminal
digesta is under host genetic control. However, Difford
et al. (2018) suggested that while the abundance of some
bacteria and archaea taxa were influenced by the host’s
genotype, host genetics influencing the rumen microbiome
and methane production were largely independent. The
mechanisms by which the host might control the rumen
microbial population remain unknown, but factors such
as modifying the gene expression of the rumen epithelium
and possible variation in rumen outflow or volume have
been suggested (Huws et al., 2018).

With evidence of the apparent heritability of host effects
on the rumen microbiome, there has been an explosion in
studies relating the rumen microbial population to animal
phenotype and production effects (Huws et al., 2018).
Such studies have considered both microbial abundance
and gene abundance and/or expression (Huws et al.,
2018). However, the extent to which such relationships
are causal rather than casual remains undetermined.
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Early life
In addition to heritable host factors, we have also investi-
gated the possible role of early-life factors on the establish-
ment of the rumen microbiome in adult animals. The rumen
microbial population establishes in a defined and progressive
sequence (Yáñez-Ruiz et al., 2015). Bacteria and archaea
have been reported as being present in the underdeveloped
rumen of lambs prior to the ingestion of solid feed, with
counts like those recorded in adult animals seen around
10 days after birth (Yáñez-Ruiz et al., 2015). The rumen
eukaryotes seem to establish later with anaerobic fungi
appearing by day 8 to 10 (Fonty et al., 1987), while under
farm conditions ciliate protozoa appeared by 15 days of
age in sheep and 29 to 46 days in cattle (Naga et al.,
1969; Fonty et al., 1988). In both sheep and cattle, small
protozoa established first, and Holotrich protozoa last, with
mixed population of ciliate protozoa typical of the adult ani-
mals apparent by 80 to 150 days of age in cattle (Naga et al.,
1969). In non-ruminant species, it is accepted that the coex-
istence of the host andmicrobial gut communities is immuno-
logically driven (Yáñez-Ruiz et al., 2015). In general, the
immune response in the mucosal areas of the gut is orches-
trated by mucosal-associated lymphoid tissue and gut-
associated lymphoid tissue in the gut. However, in the rumen
no organized lymphoid tissue exists in the epithelium, and it
has been suggested that saliva seems to be the main vehicle
of introducing immunoglobulins into the rumen (Yáñez-Ruiz
et al., 2015).

Weaning conditions have a major effect on colonization of
the rumen, with the presence of the dam promoting inocu-
lation of microbes in the digestive tract of the naturally raised
newborns as compared to those fed milk replacers and kept
isolated from adult animals (Abecia et al., 2017). Another dis-
tinctive feature between natural and artificial systems is the
near absence of protozoa in the rumen of artificially reared
animals, as protozoa can only be inoculated in the rumen by
direct contact with adult animals through saliva (Williams

and Coleman, 1992). Inoculation of lambs after birth with
rumen fluid from adult sheep improved rumen fermentation
parameters and increased protozoal numbers (De Barbieri
et al., 2015). Similarly, lambs kept in isolation from birth
had positive changes in rumen fermentation following inoc-
ulation with rumen fluid from adult sheep when the rumen
was functional at 15 weeks of life (Morgavi et al., 2015).
Recently, we investigated how maternal v. artificial rearing
shapes the rumen microbiota in lambs (Belanche A., unpub-
lished data). Differences in the rumen bacterial and metha-
nogens communities disappear later in life when all lambs
were grouped on the same pasture up to 23 weeks of age.
However, lambs naturally reared on the ewe retained several
long-lasting microbiological features in the eukaryotic com-
munity such as higher fungal diversity and differences in the
protozoal population as well as higher feed digestibility dur-
ing the grazing period.

Yáñez-Ruiz et al. (2010) found that feeding a hay concen-
trate diet compared to hay alone to lambs led to a difference
in both the bacterial and archaeal population at weaning and
that the effect persisted over 4 months after the end of the
treatment. Abecia et al. (2014) reported that dosing kids and
their does with bromochloromethane during the weaning
period modified the archaeal community and, although
not all the effects persisted after weaning, some less abun-
dant archaeal groups remained different in treated and con-
trol groups 4 months after the treatment stopped. We have
recently found that in dairy cattle, yeast fed from day 0 to 60
influenced the evenness and the diversity of the rumen bac-
terial but not archaeal population at weaning (Newbold C.J.,
unpublished data). Proteobacteria numbers were also lower
in yeast fed animals at weaning but the treatment had no
effect on the archaeal population. These effects seemed to
persist over the length of the trial (32 months) with a more
complex population developing in yeast-supplemented ani-
mals (Newbold C.J., unpublished data, Figure 2), while pro-
teobacteria numbers remained lower in yeast-supplemented
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Figure 2 Effect of the addition of live yeast to the diet of cattle from birth to 60 days after birth (weaning) on bacterial diversity ((a) richness and (b) Simpson
index) in the rumen at 60 days and 8, 15, 20 and 32 months after birth. Black and grey bars represent the control and yeast treatment, respectively.
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animals. However, the effects were small, and no effects
were observed on rumen fermentation parameters, blood
chemistry, weight gain or the eventual milk production of
the cattle.

These findings suggest that the early-life intervention
determines initial microbial community and thus fermenta-
tion parameters, but the persistency of these effects later
in life is weak suggesting that post-weaning factors have
a greater influence on adult communities and production
outcomes.

The rumen metabolome

With the increasing ability to describe the rumen microbiome
through both amplicon sequencing of ribosomal genes and
metagenomic sequencing, there has been a growing interest
in linking changes in the rumen microbiome to changes in the
fermentation and metabolites in the rumen. We, and many
other authors, have used coordination plots to link changes
in the rumen microbiome to changes in common rumen
metabolites (Belanche et al., 2016). We have provided corre-
lations between the abundance of microbial phyla and gen-
era and specific rumen metabolites (Belanche et al., 2019), in
an attempt to provide a functional context to changes in the
rumen microbial population; however, in general, these
approaches have been limited to a small range of well-
defined rumen metabolites. Metabolomic techniques to
describe a potentially wider range of metabolites have
been used to study the link between gut microbiomes
and the metabolome in several gut ecosystems (Dougal
et al., 2012; Yan et al., 2017). In rumen-based studies,
metabolomics has been used to investigate the effect
of diet (O’Callaghan et al., 2018; Yang et al., 2018) to link
the host genotype to efficient phenotypes in growing cattle
(Artegoitia et al., 2017); the main aim has been to help to
elucidate the effects of early-life nutritional interventions
on rumen function (Abecia et al., 2018) and to understand
the effect of plant extracts on rumen function (Wang
et al., 2019). While metabolomics provides a route to
achieving a link between taxonomic-based studies and
metabolic function, the current techniques are difficult to
compare between studies with both extraction technique
(Ribeiro de Almeida et al., 2018) and analysis technique
(Goldansaz et al., 2017) contributing to differences between
studies.

Future look

While the introduction of molecular techniques and next gen-
eration amplicon sequencing has undoubtedly increased our
knowledge of the rumen microbiome, there is a danger that it
has encouraged the cataloguing of rumen microbial popula-
tions rather than an understanding of their function. Recent
developments that allow phylogenetic information to be
upscaled to metabolic information (Wilkinson et al., 2018)

are clearly an important development in this area and will
require an increased focus and revival in culture-based tech-
niques to allow rumen microbes to be isolated and charac-
terized. However, it is perhaps the introduction and
integration of metagenomic, transcriptomic, proteomic and
metabolomic techniques that offer the greatest potential
of reaching a truly systems-level understanding of the rumen
(Huws et al., 2018). Recent studies in which amplicon
sequencing has been combined with metaproteomic and
metabolomic analysis have established that combining tech-
niques allows a deeper insight than previously possible into
the complex network of microbial adaptation in the rumen
(Deusch et al., 2017). However, in applying these techniques,
it will be important to consider a whole microbiome
approach, as many of the current studies focus only on the
bacteriome and archaeal population and largely ignore the
eukaryote population. True understanding of the rumen eco-
system will only be achieved by considering all aspects of the
microbiome.
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