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Abstract

This paper presents new Gaussian approximations for the cumulative distribution function
P(Aλ ≤ s) of a Poisson random variable Aλ with mean λ. Using an integral
transformation, we first bring the Poisson distribution into quasi-Gaussian form, which
permits evaluation in terms of the normal distribution function �. The quasi-Gaussian
form contains an implicitly defined function y, which is closely related to the Lambert
W -function. A detailed analysis of y leads to a powerful asymptotic expansion and sharp
bounds on P(Aλ ≤ s). The results for P(Aλ ≤ s) differ from most classical results
related to the central limit theorem in that the leading term �(β), with β = (s − λ)/

√
λ,

is replaced by �(α), where α is a simple function of s that converges to β as s tends to ∞.
Changing β into α turns out to increase precision for small and moderately large values of
s. The results for P(Aλ ≤ s) lead to similar results related to the Erlang B formula. The
asymptotic expansion for Erlang’s B is shown to give rise to accurate approximations;
the obtained bounds seem to be the sharpest in the literature thus far.
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1. Introduction

Arguably the most famous result in stochastic network theory is the Erlang B formula, derived
by A. K. Erlang in 1917. The Erlang B formula gives the steady-state blocking probability in
the Erlang loss model (the M/G/s/s queue). This model has s homogeneous servers working
in parallel and no extra waiting space. Customers that find all s servers busy upon arrival are
blocked (lost). Customers are assumed to arrive according to a Poisson process with rate η and
require service times that are independent and generally distributed with mean 1/µ. Following
convention, we define the offered load as λ = η/µ, and the server utilization as ρ = λ/s. The
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Expansions and bounds for the Poisson distribution 123

Erlang B formula is then given by

B(s, λ) = λs/s!∑s
k=0 λk/k! = P(Aλ = s)

P(Aλ ≤ s)
, (1)

with Aλ a Poisson random variable with mean λ.
With β ∈ R a constant such that s = λ + β

√
λ, Erlang (see [5]) observed that, for large

values of s (and λ), the blocking probability can be very well approximated by

B(s, λ) ≈ φ(β)

�(β)
√

λ
, (2)

where �(x) and φ(x) denote the standard normal cumulative distribution function (CDF) and
density, respectively. This result follows almost immediately from the central limit theorem
for Poisson laws. Since Erlang did not provide a proof, Brockmeyer gave a deduction of this
limiting result in [5].

The Erlang B formula has found numerous applications, which increases the importance of a
scaling result like (2). In their seminal paper, Halfin and Whitt [10] suggested a similar scaling
procedure for queues with many servers and infinite waiting room. The regime where a many-
server queue is both in heavy traffic and critically loaded is known as the Halfin–Whitt regime
or the quality and efficiency driven (QED) regime and has been the subject of an extensive
recent research effort, motivated by agent staffing problems in customer contact centers; see,
for example, [1], [4], [9], [20], and the references therein. The staffing rule s = λ + β

√
λ is

known as square-root staffing.
The present paper is concerned with the derivation of bounds and asymptotic expansions

that have the same leading behavior as (2), but that are also sharp for small and moderately
large values of s. Our results therefore complement the abovementioned works.

When λ is a positive integer, Aλ is the sum of λ Poisson random variables with mean 1. The
central limit theorem and the Berry–Esséen bound imply that

P(Aλ ≤ s) = �(β) + O(λ−1/2) as λ → ∞.

To obtain better estimates for the error and to improve on this result, we can derive asymptotic
expansions. There are various general theorems that yield asymptotic expansions for P(Aλ ≤ s)

in ascending positive powers of λ−1/2; see, for example, [2], [3], [7], [11], [16], and [19]. One
example would be the Edgeworth expansion, which for the Poisson distribution yields (see
[2, Equation (4.18)])

P(Aλ ≤ s) = �(β) − φ(β)(β2 − 1)

6
√

λ
+ O

(
1

λ

)
.

We shall derive an alternative asymptotic expansion for P(Aλ ≤ s) in ascending positive
powers of s−1/2. In contrast to classical expansions related to the central limit theorem, like
Edgeworth expansions or saddle point approximations, the leading term in our expansion is not
�(β). Instead, it is �(α), where α is a function of s (cf. (8), below) that converges to β as s

tends to ∞ (assuming β to be fixed).
We shall demonstrate that this switch from β to α is very convenient. The first few terms of

the expansion serve as sharp approximations to P(Aλ ≤ s), even for small and moderate values
of s. Our expansion is intimately related with the expansion derived in [21] for the incomplete
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gamma function, although the coefficients in the expansion are, except for the leading term, not
the same. In his by now classical treatment of the Erlang B formula, Jagerman [12] provided
several alternative asymptotic expansions; see Section 5. The main difference between our
results and those in [12] and [21] is perhaps the fact that truncated versions of the expansion
can be converted into bounds, as explained below. Another difference is that our expansion for
Erlang’s B is also accurate in the large deviations regime, where the ratio of s and λ is fixed.

In passing from the Poisson distribution to its normal approximation, we first bring P(Aλ ≤ s)

into what we call quasi-Gaussian form (cf. (9), below), which permits evaluation in terms of
the normal distribution function �. The quasi-Gaussian form contains an implicitly defined
function y, related to the Lambert W -function, which admits a power series representation.
This leads to the asymptotic expansion for P(Aλ ≤ s).

The idea of bringing P(Aλ ≤ s) into quasi-Gaussian form has been introduced by the authors
in their recent paper [13] on corrected asymptotics in the Halfin–Whitt regime for the delay
probability in the M/D/s queue. In [13] a detailed analysis of y was presented for the case in
which λ < s. The present setting requires additional analysis for the case in which λ ≥ s.
Moreover, in the present paper we fully exploit the fact that the quasi-Gaussian form permits
us to derive bounds on P(Aλ ≤ s) by deriving bounds on y and its derivative y′. The bounds
on P(Aλ ≤ s) are of the Berry–Esséen type, except that we again express our approximation
in terms of α instead of β. Using the Berry–Esséen theorem, Michel [18] proved that

| P(Aλ ≤ s) − �(β)| ≤ 0.8√
λ

. (3)

Our bounds will turn out to be much sharper.
The results for P(Aλ ≤ s) lead to corresponding results for Erlang’s B. The asymptotic

expansion for Erlang’s B is shown to give rise to accurate approximations and the bounds seem
to be the sharpest obtained in the literature thus far. The following result is among the most
appealing ones obtained in this paper.

Theorem 1. For λ > 0 and s ∈ N, the reciprocal of Erlang’s B is bounded by

B(s, λ)−1 ≤ �(α)
√

s

φ(α)
+ 2

3
+

√
s

φ(α)(12s − 1)
, (4)

B(s, λ)−1 ≥ �(α)
√

s

φ(α)
+ 2

3
, (5)

with α defined as in (8), below.

Let us compare these bounds to Erlang’s approximation (2). Since α ↑ β and λ ↑ s as s

tends to ∞, we conclude that the bounds in Theorem 1 have the same leading term as in (2).
However, changing β into α turns out to increase precision for moderately large values of s.
The accuracy of the bounds is improved further by the first-order correction term 2

3 .
One attractive feature of the bounds is that they are expressed in just one parameter α, which

is a simple function of λ and s. Hence, every pair (λ, s) is replaced by one parameter α, which
makes the bounds as simple as (2), but much more effective.

While visual inspection of the bounds in Theorem 1 already suggests good accuracy, we
present a framework within which even sharper bounds can be obtained. These bounds, again
just in terms of the parameter α, involve higher-order correction terms. We shall also indicate
how our framework may lead to a proof and sharpening of a conjecture of Ramanujan on the
exponential function.
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We structure the paper as follows. In Section 2 we present the quasi-Gaussian form for the
CDF of the Poisson distribution and derive an expansion for P(Aλ ≤ s) in terms of Gaussian
integrals. In Section 3 we derive bounds on P(Aλ ≤ s), valid for all λ and s. In Section 4 we
derive sharper bounds on P(Aλ ≤ s), separately for λ ≥ s and λ < s. In Section 5 all results for
Erlang’s B are presented, and in Section 6 we provide a discussion on Ramanujan’s conjecture.
Some concluding remarks are made in Section 7. In Appendix A we describe various ways to
evaluate the crucial function y.

2. Quasi-Gaussian form for the Poisson distribution

From the relation between the Poisson distribution and the incomplete gamma function, we
obtain

P(Aλ ≤ s) =
s∑

j=0

e−λ λj

j !

= 1

s!
∫ ∞

λ

e−t t s dt

= p(s)
√

s√
2π

∫ ∞

ρ

es(1−u+ln u) du, (6)

with ρ = λ/s and p(s) = sse−s
√

2πs/s!. Then consider the equation

f (y) := −y − ln(1 − y) = 1
2x2 (7)

with x ∈ C, from which y is to be solved. We note that

f (y) = 1
2y2 + 1

3y3 + 1
4y4 + · · · ,

whence there is an analytic solution y(x) around x = 0 that satisfies

y(x) = x + O(x2) as x → 0.

We choose, for x ∈ R, the function y(x) to be the root of (7) with the same sign as x. Clearly,
by separate consideration of x ∈ (−∞, 0) and x ∈ (0, ∞), we have that y increases in x ∈ R,
from −∞ at x = −∞ to 1 at x = ∞; see Figure 1. Hence, for any x ∈ R, there exists a unique
solution y(x) = y of (7). Let

α = √−2s(1 − ρ + ln ρ), sgn(α) = sgn(1 − ρ). (8)

Then, using
s(1 − ρ + ln ρ) = − 1

2α2,

we arrive from (6) at the following result for the Poisson distribution.

Lemma 1. For λ > 0 and s ∈ N, the CDF of the Poisson distribution can be represented as

P(Aλ ≤ s) = p(s)√
2π

∫ α

−∞
e−x2/2y′

(
x√
s

)
dx. (9)
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Figure 1: The function f (y).

In [13] we have proved that y admits the power series representation

y(x) =
∞∑

n=1

anx
n, |x| < 2

√
π, (10)

with a1 = 1 and the ans recursively defined as

ak+2 = −1

k + 3

(
ak+1 +

k∑
n=1

(n + 1)an+1ak+2−n

)
, k = 0, 1, . . . . (11)

The first five coefficients of an are given by

a1 = 1, a2 = − 1
3 , a3 = 1

36 , a4 = 1
270 , a5 = 1

4320 . (12)

Combining the quasi-Gaussian form and the power series representation gives an asymptotic
expansion for the Poisson distribution.

Theorem 2. For s = λ + β
√

λ with β some fixed real number, there exists, as s tends to ∞, a
representation of the form

P(Aλ ≤ s) ∼ p(s)

∞∑
n=0

(n + 1)an+1χn(α)s−n/2, (13)

where

χn(α) = 1√
2π

∫ α

−∞
xne−x2/2 dx,

with α defined as in (8) and an defined as in (11).

The ‘∼’ in (13) is the commonly used symbol for asymptotic equivalence: for any N =
0, 1, . . . , we have

P(Aλ ≤ s) − p(s)

N∑
n=0

(n + 1)an+1χn(α)s−n/2 = O(s−(N+1)/2), s → ∞.
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In the present case it can be shown, by elementary (but lengthy) computations, that O holds for
s ≥ |α|/πa2 and that the constant implied by the O can be bounded by

5

a(1 − a/2)

(
N + 1

πea2

)(N+1)/2

.

Here a is any number in the interval (0, 2).
Note that, with our conventions,

s = λ + β
√

λ ⇐⇒ λ = s + 1

2
β2 − β

√
s + β2

4
.

The expansion in (13) starts as

P(Aλ ≤ s) ∼ p(s)

(
�(α) + 2

3
√

s
φ(α) + 1

12s
(�(α) − αφ(α))

)
,

and is fully described in terms of α and Gaussian integrals. In fact, the first six values of χn

(suppressing the α) are

χ0 = �(α), χ1 = −φ(α),

χ2 = �(α) − αφ(α), χ3 = −(2 + α2)φ(α),

χ4 = 3�(α) − α(3 + α2)φ(α), χ5 = −(8 + 4α2 + α4)φ(α).

3. General bounds

From the quasi-Gaussian form (9) we can conclude that bounds on y′ lead to bounds on
P(Aλ ≤ s). Figure 2 depicts y′ for x ∈ [−2, 3]. In this section we shall derive bounds on y′
that hold for all x ∈ R and will lead to bounds on P(Aλ ≤ s) that hold for every pair (λ, s).
As shown by Theorem 4, the accuracy of some of these bounds is closely related to shifting the
mean in estimating the Poisson distribution by a Gaussian distribution.

We first provide two lemmas that are useful in proving bounds on y and y′.

y
y'''
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Figure 2: The function y(x) and its derivatives.
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Lemma 2. Let I be an interval of the form (−x1, x2), (−x1, 0], or [0, x2), where x1, x2 > 0.
Assume that F is smooth on I and that F(0) = 0 and F(x) < 1, x ∈ I . Then

F ′(x)F (x)

1 − F(x)
≥ x, x ∈ I �⇒ y(x) ≤ F(x), x ∈ I, (14)

F ′(x)F (x)

1 − F(x)
≤ x, x ∈ I �⇒ y(x) ≥ F(x), x ∈ I. (15)

Proof. Consider the case in which I = [0, x2) with x2 > 0. Then, for u ∈ I , we have (see
Figure 1)

y(u) ≤ F(u) ⇐⇒ 1
2u2 ≤ −F(u) − ln(1 − F(u)). (16)

Since y(0) = F(0) = 0, the right member of (16) holds true for u ∈ I when

x = d

dx

(
1

2
x2

)
≤ d

dx
(−F(x) − ln(1 − F(x)))

= F ′(x)F (x)

1 − F(x)
, 0 ≤ x ≤ u.

From this, (14) follows and (15) follows similarly.
Next consider the case in which I = (−x1, 0] with x1 > 0. Then, for v ∈ I , we have (see

Figure 1)
y(v) ≤ F(v) ⇐⇒ 1

2v2 ≥ −F(v) − ln(1 − F(v)). (17)

Since y(0) = F(0) = 0, the right member of (17) holds true for v ∈ I when

x = d

dx

(
1

2
x2

)
≤ d

dx
(−F(x) − ln(1 − F(x)))

= F ′(x)F (x)

1 − F(x)
, v ≤ x ≤ 0.

From this, (14) follows and (15) follows similarly.

Lemma 3. Let I be an interval of the form (−x1, x2), (−x1, 0], or [0, x2), where x1, x2 > 0.
Assume that f is smooth on I and that f (0) = 1, f (x) > 0, and x + f (x) > 0, x ∈ I . Then

1 − xf ′(x)/f (x)

(x + f (x))2 ≤ 1, x ∈ I �⇒ y′(x) ≤ f (x), x ∈ I, (18)

1 − xf ′(x)/f (x)

(x + f (x))2 ≥ 1, x ∈ I �⇒ y′(x) ≥ f (x), x ∈ I. (19)

Proof. Consider the case in which I = [0, x2) with x2 > 0. From (7) we obtain, by
differentiation with respect to x and some rewriting of the equation,

y′(x) = x

y(x)
− x.

For u ∈ I , the inequality y′(u) ≤ f (u) then becomes

y(u) ≥ u

u + f (u)
=: s(u). (20)
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By our assumptions we have s(u) ∈ (0, 1); hence, by monotonicity of t ∈ (0, 1) �→ −t −
ln(1 − t), inequality (20) is equivalent to

−s(u) − ln(1 − s(u)) ≤ 1
2u2 = −y(u) − ln(1 − y(u)). (21)

Since s(0) = y(0) = 0, inequality (21) holds true for u ∈ I when

d

dx
(−s(x) − ln(1 − s(x))) = s′(x)s(x)

1 − s(x)
≤ x, 0 ≤ x ≤ u.

From this, (18) follows and (19) follows similarly. The same results for the domain I = (−x1, 0]
with x1 > 0 follow along similar lines as the case dealt with above.

Warning: when the condition F(x) < 1 in Lemma 2 or the conditions f (x) + x > 0 and
f (x) > 0 in Lemma 3 hold in a disconnected set, the corresponding inequality for y or y′ may
fail to hold in the components not containing 0.

With the aid of Lemma 2 we can easily show that, for example,

x − 1
2x2 ≤ y(x) ≤ x, x ∈ R; y(x) ≤ min{x − 1

3x2, − 1
2x2}, x ≤ 0. (22)

For y′, we find the following useful bounds.

Lemma 4. We have
1 − 2

3x ≤ y′(x) ≤ e−2x/3, x ∈ R. (23)

Proof. In Lemma 3 choose f (x) = e−2x/3. This f satisfies f (x) > 0, x + f (x) > 0, and
f (0) = 1. We compute

1 − xf ′(x)/f (x)

(x + f (x))2 = 1 + 2x/3

(x + e−2x/3)2 , x ∈ R. (24)

We want to verify that (24) is less than or equal to 1. To that end we can assume that 1+ 2
3x ≥ 0.

Now,
1 + 2

3x ≤ (1 + 1
3x)2, x + e−2x/3 ≥ 1 + 1

3x,

and it follows that
1 + 2x/3

(x + e−2x/3)2 ≤
(

1 + x/3

1 + x/3

)2

= 1,

as required.
The inequality 1 − 2

3x ≤ y′(x) was proved in [13] for x ≥ 0. To prove it for x ∈ R, we
choose f (x) = 1 − 2

3x in Lemma 3. We compute

1 − xf ′(x)/f (x)

(x + f (x))2 = 1

1 − 2x/3

1

(1 + x/3)2 ,

which is to be considered for those x for which f (x) > 0 and x+f (x) > 0, i.e. for x ∈ (−3, 3
2 ).

This is sufficient since y′(x) > 0 ≥ 1− 2
3x, x ≥ 3

2 , and y′(x) ≥ −x > 1− 2
3x, x ≤ −3. Note

that
(1 − 2

3x)(1 + 1
3x)2 = 1 − 1

3x2 − 2
27x3 (25)

has derivative − 2
3x(1+ 1

3x). Therefore, the maximum of (25) on x ∈ (−3, 3
2 ) equals 1 (assumed

at x = 0). Thus,
1 − xf ′(x)/f (x)

(x + f (x))2 ≥ 1, x ∈ (−3, 3
2 ).

By Lemma 3, this completes the proof.
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Theorem 3. For λ > 0 and s ∈ N, the CDF of the Poisson distribution is bounded by

P(Aλ ≤ s) ≤ 1 − p(s)

(
�(−α) − 2

3
√

s
φ(α)

)
, (26)

P(Aλ ≤ s) ≥ p(s)

(
�(α) + 2

3
√

s
φ(α)

)
. (27)

Proof. Substituting the lower bound in (23) into the quasi-Gaussian form (9) leads to

P(Aλ ≤ s) ≥ p(s)√
2π

∫ α

−∞
e−x2/2

(
1 − 2

3
√

s
x

)
dx,

which equals (27). The upper bound (26) follows from the identity

P(Aλ ≤ s) = 1 − p(s)√
2π

∫ ∞

α

e−x2/2y′
(

x√
s

)
dx, (28)

which, again using 1 − 2
3x ≤ y′(x), leads to (26).

Theorem 4. For λ > 0 and s ∈ N, the CDF of the Poisson distribution is bounded by

P(Aλ ≤ s) ≤ p(s)e2/9s�

(
α + 2

3
√

s

)
, (29)

P(Aλ ≤ s) ≥ 1 − p(s)e2/9s

(
1 − �

(
α + 2

3
√

s

))
. (30)

Proof. The upper bound y′(x) ≤ e−2x/3 in (23) together with (9) leads to

P(Aλ ≤ s) ≤ p(s)√
2π

∫ α

−∞
exp

(
−1

2
x2 − 2

3
√

s
x

)
dx,

which equals (29). The upper bound y′(x) ≤ e−2x/3 and (28) give (30).

Table 1 displays some results for the above bounds for s = 10. While all bounds are sharp
for the case in which λ ≤ s, they tend to be less accurate for the case in which λ > s. This is
resolved in Section 4.

Let us close this section with the following Berry–Esséen-type result (compare with (3)).

Corollary 1. For λ > 0 and s ∈ N, we have

0 ≤ e2/9s�

(
α + 2

3
√

s

)
− P(Aλ ≤ s) ≤ e2/9s − 1, (31)

where e2/9s − 1 = 2
9 s−1 + O(s−2).

Proof. The bounds (29) and (30) immediately yield

0 ≤ p(s)e2/9s�

(
α + 2

3
√

s

)
− P(Aλ ≤ s) ≤ p(s)e2/9s − 1,

where p(s)e2/9s − 1 = 5
36 s−1 + O(s−2). Using p(s) ≤ 1, results in (31).
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Table 1: Bounds on P(Aλ ≤ s) for s = 10.

λ α P(Aλ ≤ s) (26) (27) (29) (30)

1 5.2964 1.0000 1.0000 0.9917 1.0140 1.0000
2 4.0235 1.0000 1.0000 0.9917 1.0140 1.0000
3 3.1748 0.9997 0.9998 0.9915 1.0136 0.9996
4 2.5151 0.9972 0.9976 0.9893 1.0107 0.9967
5 1.9654 0.9863 0.9876 0.9793 0.9990 0.9850
6 1.4888 0.9574 0.9598 0.9515 0.9688 0.9548
7 1.0647 0.9015 0.9050 0.8967 0.9115 0.8975
8 0.6803 0.8159 0.8201 0.8118 0.8250 0.8110
9 0.3274 0.7060 0.7105 0.7022 0.7147 0.7007

10 0.0000 0.5830 0.5876 0.5793 0.5916 0.5777
11 −0.3063 0.4599 0.4644 0.4561 0.4684 0.4545
12 −0.5946 0.3472 0.3519 0.3437 0.3555 0.3415
13 −0.8676 0.2517 0.2568 0.2485 0.2592 0.2453
14 −1.1272 0.1757 0.1812 0.1729 0.1823 0.1683
15 −1.3750 0.1185 0.1246 0.1163 0.1239 0.1099
16 −1.6124 0.0774 0.0840 0.0757 0.0816 0.0677
17 −1.8405 0.0491 0.0562 0.0479 0.0523 0.0383
18 −2.0602 0.0304 0.0378 0.0295 0.0327 0.0187
19 −2.2722 0.0183 0.0260 0.0178 0.0199 0.0059
20 −2.4773 0.0108 0.0187 0.0104 0.0119 −0.0021

4. More specific bounds

In this section we shall derive sharper bounds on P(Aλ ≤ s). In order to do so, we derive
bounds on y′ that hold only for x ≤ 0 and that will lead to bounds on P(Aλ ≤ s), separately
for λ ≥ s and λ < s.

Lemma 5. The function y is increasing and concave, and its derivative y′ is positive, decreas-
ing, and convex.

Proof. We first prove that y′′ < 0. From (10) and (12), we see that y′′(0) = − 2
3 < 0. So,

assume that x �= 0. From y′ = x/y − x we have

y′′ =
(

1

y
− 1

)(
1 − x2

y2

)
. (32)

Clearly, 1/y − 1 > 0 when x ∈ (0, ∞) (i.e. y ∈ (0, 1)) and 1/y − 1 < 0 when x ∈ (−∞, 0)

(i.e. y ∈ (−∞, 0)). Therefore, y′′ < 0 is equivalent to y(x) < x and this is one of the bounds
noted in (22) for y.

We shall now prove that y′′′ > 0. Again, by (10) and (12), we see that y′′′(0) = 1
6 > 0, so

we assume that x �= 0. From (32) and y′ = x/y − x, we compute

y′′′ = −3x

y4

(
1

y
− 1

)(
y2 − x2 + 2

3
x2y

)
.

Noting that the factor −(3x/y4)(1/y − 1) is negative, it remains to show that

y2 − x2 + 2
3x2y = (y + 1

3x2)2 − (x2 + 1
9x4) < 0.
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Again we distinguish between x > 0 and x < 0. For x > 0, we have y > 0, and we should
show that

y < − 1
3x2 + (x2 + 1

9x4)1/2 =: r(x).

We have (see Figure 1)

y(x) < r(x) ⇐⇒ f (r(x)) > f (y(x)) = 1
2x2.

With v = x2 > 0, the latter inequality can be formulated as

−(v + 1
9v2)1/2 + 1

3v − ln(1 − (v + 1
9v2)1/2 + 1

3v) > 1
2v. (33)

We only need to consider (33) for 0 < v < 3, since r(x) ≥ 1 when x2 = v ≥ 3. There is
equality at v = 0, so it is enough to check that the derivative of the left-hand side of (33) is
greater than or equal to 1

2 , which, after some manipulation, can be shown to be equivalent to

1
9v2 − 1

3v(v + 1
9v2)1/2 < 0.

This is indeed true. For the case in which x < 0, we must check (since y < 0) that

y > − 1
3x2 − (x2 + 1

9x4)1/2.

A sufficient condition for this to hold can be found in a similar fashion as above and reads

1
9v2 + 1

3v(v + 1
9v2)1/2 > 0

with v = 1
2x2 > 0. The latter inequality indeed holds which completes the proof.

Lemma 6. Let α ≤ 0. Then

y′(α) + (x − α)y′′(α) ≤ y′(x) ≤ y′(α) − (x − α), x ≤ α. (34)

Proof. Since y′ is convex, the first inequality holds for all x ∈ R. As to the second inequality
in (34), we first take α < 0. Now

y′(x) + x = x

(
1

y(x)
− 1

)
+ x = x

y(x)
≤ α

y(α)
= y′(α) + α, x ≤ α. (35)

The inequality in (35) follows from

y(α) = y

(
α

x
x +

(
1 − α

x

)
· 0

)
≥ α

x
y(x) +

(
1 − α

x

)
y(0) = α

x
y(x),

where we used the concavity of y and y(0) = 0. Note that α < 0 so that

y(α) ≥ α

x
y(x) ⇐⇒ x

y(x)
≤ α

y(α)
.

The case in which α < 0 is settled now. The case in which α = 0 follows from the continuity
of all functions involved in (34) and letting α ↑ 0.

Substituting the bounds in (34) into the quasi-Gaussian form (9) leads to the following
theorem.
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Theorem 5. For λ ≥ s ∈ N, and hence α ≤ 0, the CDF of the Poisson distribution is bounded
by

P(Aλ ≤ s) ≤ p(s)y′(α)�(α) + p(s)(α�(α) + φ(α)),

P(Aλ ≤ s) ≥ p(s)y′(α)�(α) − p(s)y′′(α)(α�(α) + φ(α)).

The difference between the two bounds is given by

p(s)(1 + y′′(α))(α�(α) + φ(α)).

Using the tail estimate for the Gaussian distribution,

x

x2 + 1
φ(x) ≤ �(−x) ≤ 1

x
φ(x), x ≥ 0,

this difference can be bounded by

0 ≤ p(s)(1 + y′′(α))(α�(α) + φ(α)) ≤ p(s)(1 + y′′(α))√
2π(1 + α2)

e−α2/2. (36)

The factor 1+y′′(α) on the right-hand side of (36) can furthermore be bounded as follows. We
have 0 ≤ 1 + y′′(α) ≤ 1

3 , α ≤ 0, and 1 + y′′(α) = O(1/α2) as α → −∞. Indeed, y′′′ > 0,
so 1 + y′′(−∞) ≤ 1 + y′′(α) ≤ 1 + y′′(0) = 1

3 , and from (32) and the inequalities in (22) for
y, we obtain y′′(−∞) = −1 and 1 + y′′(α) = O(1/α2).

From (10) it follows that y′ has the power series representation

y′(x) = 1 − 2
3x + 1

12x2 + 2
135x3 + 1

864x4 + · · · , |x| < 2
√

π, (37)

from which we see that (34) for α = 0 leads to

1 − 2
3x ≤ y′(x) ≤ 1 − x, x ≤ 0.

We now use the coefficients of the power series in (37) to guess and prove bounds on y′ in terms
of polynomials of larger degrees.

Lemma 7. We have
y′(x) ≤ 1 − 2

3x + 1
12x2, x ≤ 0. (38)

Proof. We apply Lemma 3 with f (x) = 1 − 2
3x + 1

12x2. We have f (x) + x > 0 and
f (x) ≥ 0 for x ≤ 0. The inequality to be shown becomes

(1 + 1
3x + 1

12x2)2(1 − 2
3x + 1

12x2) ≥ 1 − 1
12x2, x ≤ 0. (39)

An elementary computation shows that the left-hand side of (39) equals

1 − 1
12x2 − x3( 2

27 + 1
144x − 1

1728x3), x ≤ 0, (40)

where the expression in the brackets has its minimum value, 7
216 , at x = −2. This completes

the proof.

Lemma 8. We have

y′(x) ≥ 1 − 2
3x + 1

12x2 + 2
135x3, x ≤ 0. (41)
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Proof. Let
w(x) = x − 1

3x2 + 1
36x3 + 1

270x4.

For the bound in (41) to hold, it is sufficient to show that

(i) y′(x) ≥ w′(x) for −2 ≤ x ≤ 0,

(ii) y′′(−2) ≤ w′′(−2),

(iii) y′′′(x) ≥ w′′′(x) for x ≤ −2.

Evidently, part (iii) follows from w′′′(x) = 1
6 + 4

45x ≤ − 1
90 ≤ 0 ≤ y′′′(x) for x ≤ −2. In

proving part (i) we apply Lemma 3 with f (x) = w′(x). Note that f (x) ≥ f (x) + x, x ≤ 0,
and (f (x) + x)′ = 1

3 + 1
6x + 2

45x2 ≥ 0, so f (x) + x ≥ f (−2) − 2 = 74
135 > 0, −2 ≤ x ≤ 0.

The inequality to be shown becomes, for −2 ≤ x ≤ 0,

(1 + 1
3x + 1

12x2 + 2
135x3)2(1 − 2

3x + 1
12x2 + 2

135x3) ≤ 1 − 1
12x2 − 4

135x3. (42)

The left-hand side of (42) can be written as

1 − 1
12x2 − 4

135x3 − 1
144x4 + ( 1

12 )3x6 + ε( 1
6x2 + 1

48x4) + ε2(3 + 1
4x2) + ε3,

with ε = 2
135x3, and so it remains to be shown that, for −2 ≤ x ≤ 0,

− 1
144 + ( 1

12 )3x2 + 2
135 ( 1

6x + 1
48x3) + ( 2

135 )2(3x2 + 1
4x4) + ( 2

135 )3x5 ≤ 0. (43)

That (43) holds for −2 ≤ x ≤ 0 follows from the fact that the positive terms of (43) at x = −2
add up to 1

3 ( 1
12 )2 + ( 8

135 )2, which is smaller than 1
144 . Finally, in proving part (ii) we first

observe that w′′(−2) = − 37
45 ≈ −0.8222 and that (see (32))

y′′(−2) =
(

1

y(−2)
− 1

)(
1 − 4

y2(−2)

)
.

Next, from −y − ln(1 − y) = 1
2x2 and 3.5 − ln 4.5 < 2 < 4 − ln 5, it follows that y(−2) ∈

[−3.5, −4.0]. The cubic (t −1)(1−4t2) has a negative derivative when t ∈ [−1/3.5, −1/4.0].
Therefore,

y′′(−2) ≤
(

1

−3.5
− 1

)(
1 − 4

(−3.5)2

)
= −297

343
≈ −0.8659.

This completes the proof.

We arrive at another theorem on the Poisson distribution by substituting (38) and (41) into
the quasi-Gaussian form (9).

Theorem 6. For λ ≥ s ∈ N, the CDF of the Poisson distribution is bounded by

P(Aλ ≤ s) ≤ p(s)

(
�(α) + 2

3
√

s
φ(α) + 1

12s
(�(α) − αφ(α))

)
,

P(Aλ ≤ s) ≥ p(s)

(
�(α) + 2

3
√

s
φ(α) + 1

12s
(�(α) − αφ(α)) − 2

135s3/2 (2 + α2)φ(α)

)
.
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For the case in which n = λ = s, we have α = 0 and

P(An ≤ n) = p(n)√
2π

∫ 0

−∞
e−x2/2y′

(
x√
n

)
dx.

From Theorem 6 we obtain

P(An ≤ n) ≤ p(n)

(
1

2
+ 2

3
√

2πn
+ 1

24n

)
, (44)

P(An ≤ n) ≥ p(n)

(
1

2
+ 2

3
√

2πn
+ 1

24n
− 4

135
√

2πn3/2

)
. (45)

For the case in which λ < s, we have α > 0 and

P(Aλ ≤ s) = p(s)√
2π

∫ 0

−∞
e−x2/2y′

(
x√
s

)
dx

+ p(s)√
2π

∫ α

0
e−x2/2y′

(
x√
s

)
dx. (46)

The second integral in (46) can thus be bounded using (23) and

1√
2π

∫ α

0
e−x2/2

(
1 − 2

3
√

s
x

)
dx = �(α) − 1

2
− 2

3
√

s

(
1√
2π

− φ(α)

)
, (47)

1√
2π

∫ α

0
exp

(
−1

2
x2 − 2

3
√

s
x

)
dx = e2/9s

(
�

(
2

3
√

s
+ α

)
− �

(
2

3
√

s

))
. (48)

Combining (44)–(48) yields the following result.

Theorem 7. For λ < s, the CDF of the Poisson distribution is bounded by

P(Aλ ≤ s) ≤ p(s)

(
1

2
+ 2

3
√

2πs
+ 1

24s
+ e2/9s

(
�

(
2

3
√

s
+ α

)
− �

(
2

3
√

s

)))
,

P(Aλ ≤ s) ≥ p(s)

(
�(α) + 2

3
√

s
φ(α) + 1

24s
− 4

135
√

2πs3/2

)
.

5. The Erlang B formula

We now utilize the results on P(Aλ ≤ s) to derive similar results for the Erlang B formula.
From (1) we see that the probability P(Aλ = s) needs to be written in a different form. That is,

P(Aλ = s) = e−λ λs

s!
= es(1−ρ+ln ρ) s

se−s

s!
= e−α2/2 1√

2πs
p(s)

= φ(α)p(s)
1√
s

. (49)
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5.1. Expansions for Erlang’s B

Combining (1), (49), and the expansion for P(Aλ ≤ s) yields the following result.

Theorem 8. For s = λ + β
√

λ with β some fixed real number, there exists, as s tends to ∞,
the representation

B(s, λ)−1 ∼
√

s

φ(α)

∞∑
n=0

(n + 1)an+1χn(α)

(
1√
s

)n

=
√

s�(α)

φ(α)
+ 2

3
+ 1

12
√

s

(
�(α)

φ(α)
− α

)
+ · · · . (50)

Jagerman [12] derived a related expansion.

Theorem 9. ([12, Theorem 14].) For λ = s +γ
√

s with γ some fixed real number, there exists,
as s tends to ∞, the representation

B(s, λ)−1 ∼
∞∑

n=0

υn(γ )

(
1√
s

)n−1

, (51)

where

υ0(γ ) = �(−γ )

φ(γ )
,

υ1(γ ) = 2
3 + 1

3γ 2 − 1
3γ 3υ0(γ ),

υ2(γ ) = − 1
18γ 5 − 7

36γ 3 + 1
12γ + ( 1

18γ 6 + 1
4γ 4 + 1

12 )υ0(γ ).

There are some marked differences between our expansion and that of Jagerman [12]. First,
Jagerman sets the arrival rate λ according to λ = s + γ

√
s whereas we set the number of servers

according to s = λ + β
√

λ. The constants β and γ are very much related, though, since

β = s − λ√
λ

, γ = λ − s√
s

= −βρ1/2,

so that γ ↓ −β as ρ tends to 1. Perhaps a more important difference is that we change our
constant β into α. Since

1

2
α2 = s

∞∑
n=2

(1 − ρ)n

n
,

we have, for large values of s, α ≈ √
s(1 − ρ) = −γ ≈ β. A comparison between (50) and

(51) is made in Table 2 for s = λ + β
√

λ and β = 1. We denote by (50)-1 and (50)-3
the approximations that follow from the first term and the first three terms of the asymptotic
expansion in (50), respectively. The leading term (50)-1 is generally closer to B(s, λ) than
the leading term (51)-1. Both expansions benefit from taking larger values of s. When three
terms are included, both expansions give excellent results, although for moderate values of s,
expansion (50) seems slightly more accurate.

If s = λ/c for some c < 1 then α tends to ∞ as λ tends to ∞. The approximation (50)-1
behaves as φ(α)/

√
s as s tends to ∞. It is easy to see that also B(s, cs) ∼ φ(α)/

√
s in this case.

Consequently, (50)-1 is not only sharp in the QED regime, but also in the regime where the
system load stays fixed, which is also known as the quality driven regime [4]. This is another
reason why using α is preferable over β or −γ .
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Table 2: Asymptotic expansions for B(s, λ) with s = λ + β
√

λ and β = 1.

s λ α γ B(s, λ) (50)-1 (51)-1 (50)-3 (51)-3

1 0.3820 0.8299 −0.6180 0.2764 0.3548 0.4504 0.2739 0.2889
2 1.0000 0.8790 −0.7071 0.2000 0.2366 0.2890 0.1993 0.2057
3 1.6972 0.9012 −0.7522 0.1645 0.1880 0.2243 0.1642 0.1679
5 3.2087 0.9236 −0.8011 0.1282 0.1417 0.1642 0.1280 0.1298

10 7.2984 0.9462 −0.8543 0.0910 0.0974 0.1090 0.0909 0.0915
20 16.0000 0.9622 −0.8944 0.0644 0.0675 0.0734 0.0644 0.0646
30 25.0000 0.9692 −0.9129 0.0526 0.0546 0.0586 0.0526 0.0527
50 43.4113 0.9762 −0.9318 0.0407 0.0419 0.0443 0.0407 0.0408

100 90.4875 0.9832 −0.9512 0.0288 0.0294 0.0306 0.0288 0.0288
200 186.3490 0.9881 −0.9653 0.0204 0.0206 0.0213 0.0204 0.0204
300 283.1723 0.9903 −0.9715 0.0166 0.0168 0.0172 0.0166 0.0166
500 478.1337 0.9925 −0.9779 0.0129 0.0130 0.0132 0.0129 0.0129

5.2. Bounds for Erlang’s B

We have already given Theorem 1, in which the lower bound (5) follows immediately from
(27) and (49). The upper bound (4) requires (26), (49), and the inequality p(s) ≥ 1 − 1/12s.

Theorem 4 gives the following result.

Theorem 10. For λ > 0 and s ∈ N, the reciprocal of Erlang’s B is bounded by

B(s, λ)−1 ≤ �(α + 2/3
√

s)e2/9s
√

s

φ(α)
, (52)

B(s, λ)−1 ≥ �(α + 2/3
√

s)e2/9s
√

s

φ(α)
−

√
s(e2/9s − 1)

φ(α)
. (53)

The next result follows immediately from Theorem 6 and sharpens Theorem 1 for λ ≥ s.

Theorem 11. For λ ≥ s ∈ N, the reciprocal of Erlang’s B is bounded by

B(s, λ)−1 ≤ �(α)
√

s

φ(α)
+ 2

3
+ �(α) − αφ(α)

12φ(α)
√

s
, (54)

B(s, λ)−1 ≥ �(α)
√

s

φ(α)
+ 2

3
+ �(α) − αφ(α)

12φ(α)
√

s
− 4 + 2α2

135s
. (55)

Likewise, for λ < s, a sharper version of Theorem 1 can be obtained from Theorem 7.
In Table 3 we present some results for increasing values of s = λ + β

√
λ with β = 1. In this

regime all bounds are sharp, even for smaller values of s. As expected, Erlang’s approximation
(2) requires s to be large. The precision of the bounds is partly due to changing β into α.
Moreover, the bounds (4) and (5) include the first-order correction term 2

3 , whereas the bounds
(52) and (53) shift the mean of the Gaussian distribution with 2/3

√
s; both corrections seem

beneficial, although the bounds (4) and (5) are sharper than (52) and (53).
In Table 4 we present some results for B(s, λ) and s = 10. The bounds (4) and (5) perform

well, although in the case in which λ ≥ s the bounds (54) and (55) are much sharper. Hence,
in this regime it seems beneficial to include the second-order correction term.
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Table 3: Bounds on B(s, λ) with s = λ + β
√

λ and β = 1.

s λ B(s, λ) (2) (4) (5) (52) (53)

1 0.3820 0.2764 0.4653 0.2627 0.2870 0.2427 0.3086
2 1.0000 0.2000 0.2876 0.1953 0.2044 0.1882 0.2127
3 1.6972 0.1645 0.2208 0.1620 0.1671 0.1582 0.1718
5 3.2087 0.1282 0.1606 0.1270 0.1294 0.1253 0.1317

10 7.2984 0.0910 0.1065 0.0906 0.0914 0.0900 0.0923
20 16.0000 0.0644 0.0719 0.0643 0.0646 0.0641 0.0649
30 25.0000 0.0526 0.0575 0.0525 0.0527 0.0524 0.0529
50 43.4113 0.0407 0.0437 0.0407 0.0408 0.0407 0.0409

100 90.4875 0.0288 0.0302 0.0288 0.0288 0.0288 0.0289
200 186.3490 0.0204 0.0211 0.0204 0.0204 0.0204 0.0204
300 283.1723 0.0166 0.0171 0.0166 0.0166 0.0166 0.0166
500 478.1337 0.0129 0.0132 0.0129 0.0129 0.0129 0.0129

Table 4: Bounds on B(s, λ) for s = 10.

λ B(s, λ) (2) (4) (5) (54) (55)

1 0.0000 0.0000 0.0000 0.0000 – –
2 0.0000 0.0000 0.0000 0.0000 – –
3 0.0008 0.0001 0.0008 0.0008 – –
4 0.0053 0.0022 0.0053 0.0053 – –
5 0.0184 0.0148 0.0184 0.0185 – –
6 0.0431 0.0452 0.0430 0.0434 – –
7 0.0787 0.0910 0.0784 0.0792 – –
8 0.1217 0.1445 0.1210 0.1223 – –
9 0.1680 0.1995 0.1669 0.1689 – –

10 0.2146 0.2523 0.2129 0.2160 0.2145 0.2146
11 0.2596 0.3013 0.2570 0.2617 0.2594 0.2596
12 0.3019 0.3459 0.2978 0.3051 0.3016 0.3019
13 0.3412 0.3862 0.3344 0.3456 0.3407 0.3412
14 0.3773 0.4225 0.3656 0.3833 0.3766 0.3773
15 0.4103 0.4552 0.3901 0.4181 0.4094 0.4104
16 0.4406 0.4847 0.4057 0.4503 0.4393 0.4406
17 0.4682 0.5114 0.4089 0.4801 0.4666 0.4683
18 0.4935 0.5356 0.3959 0.5077 0.4914 0.4936
19 0.5167 0.5576 0.3629 0.5332 0.5141 0.5169
20 0.5380 0.5778 0.3098 0.5570 0.5348 0.5383

6. A conjecture of Ramanujan

We now indicate how our framework for obtaining bounds on P(Aλ ≤ s) may deal with a
conjecture of Ramanujan. In 1911 Ramanujan set the problem of showing that

ξ(n) = n!
nn

(
1

2
en −

n−1∑
k=0

nk

k!
)

, n = 1, 2, . . . ,
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lies between 1
2 and 1

3 . A solution was outlined by Ramanujan in 1912 and complete proofs
were published by Szegö in 1928 and Watson in 1929 (see [8]). In his first letter to Hardy dated
16 January 1913 Ramanujan made the stronger assertion that

ξ(n) = 1

3
+ 4

135(n + τ(n))
, where

8

45
≤ τ(n) ≤ 2

21
. (56)

This was finally proved by Flajolet et al. [8] in 1995 using singularity analysis.
The connection with our framework is easily seen from

ξ(n) = 1

2 P(An = n)
− B(n, n)−1 + 1

=
√

2πn

2

(
1

p(n)
− 1

)
− B(n, n)−1 + 1 +

√
2πn

2
.

Hence, in order to prove (56) we need to bound 1/p(n) − 1 and B(n, n)−1. The former causes
no problems, because sufficiently sharp bounds can be obtained from truncating the Stirling
series for ln(1/p(n)). For B(n, n)−1, we have, from (44) and (45), the bounds

B(n, n)−1 ≤
√

2πn

2
+ 2

3
+

√
2π

24
√

n
, (57)

B(n, n)−1 ≥
√

2πn

2
+ 2

3
+

√
2π

24
√

n
− 4

135n
. (58)

As it turns out, these bounds are not sharp enough to prove (56). Our framework then prescribes
the search for sharper bounds on y′. The bounds eventually leading to a new proof (and actually
sharpening) of (56) are

y′(x) ≤ 1 − 2
3x + 1

12x2 + 2
135x3 + 1

864x4 − 1
2835x5, x ≤ 0,

y′(x) ≥ 1 − 2
3x + 1

12x2 + 2
135x3 + 1

864x4 − 1
2835x5 − 139

777 600x6

− 1
25 515x7 − 571

261 273 600x8 + 281
151 559 100x9, x ≤ 0.

The proof of these bounds relies on Lemma 3, which yields a sufficient condition in terms of
inequalities for (finite-degree) polynomials. Since the proof is rather tedious, it is not included
here.

7. Concluding remarks and outlook

We took the Erlang B formula as a vehicle for presenting bounds on the Poisson distribution.
Our primary motivations to do so were the historical relevance of the Erlang B formula, and the
recent interest in the Halfin–Whitt regime and square-root staffing. Obviously, the Erlang B
formula is just one example to which the bounds for the Poisson distribution can be applied.
One other example is the Erlang C formula, representing the steady-state delay probability in
the M/M/s queue. The bounds and series expansion for the Erlang B formula carry over to
the Erlang C formula since C(s, λ)−1 = ρ + (1 − ρ)B(s, λ)−1. In a companion paper [14] we
applied this connection and the results of this paper to analyze the accuracy of server staffing
algorithms in the Halfin–Whitt regime; cf. [4]. We are also currently applying our methodology
to obtain sharp bounds for the normalization constant in loss networks; cf. Kelly [17].

https://doi.org/10.1239/aap/1208358889 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1208358889


140 A. J. E. M. JANSSEN ET AL.

Since we started our analysis from (6), all the results presented in this paper for the Poisson
distribution also hold for the incomplete gamma function. In particular, our bounds complement
the work of Temme [21], [22], [23] on asymptotic expansions and inversion of the incomplete
gamma function.

Finally, let us mention that our function y, which is closely related to the Lambert
W -function, has many applications in pure and applied mathematics; see [6]. In some of
these applications bounds on y, which can be derived from Lemma 2, might be helpful.

Appendix A. Numerical evaluation of the function y

In this appendix we discuss several approaches for evaluating the functiony (and its derivative
through y′ = x/y − x) defined as the solution to

−y(x) − ln(1 − y(x)) = 1
2x2

for real values of x. This is needed in the evaluation of the quasi-Gaussian form for the CDF
of the Poisson distribution in (9). There is the result

y(x) = 1 + W(− exp(−(1 + 1
2x2))), x > 0,

where W is Lambert’s function, given for small |X| as the solution W = W(X) of WeW = X.
The power series representation (10) is valid for |x| < 2

√
π . For values of x larger than

2
√

π , we can use the representation

y(x) = 1 −
∞∑

m=1

mm−1

m! em
e−mx2/2, | arg(x)| ≤ π

4
,

obtained in [13]. Next we discuss two methods that can be used to evaluate y for x ≤ 0.

A.1. Newton iteration

We have
y(x) = − 1

2x2 − ln(1 − y(x)) = − 1
2x2 + O(ln 1

2x2), (59)

and, by one more iteration,

y(x) = −x2

2
− ln

(
1 + 1

2
x2

)
+ O

(
ln x2/2

x2/2

)
.

The Newton iteration for (59) is given by

yn+1 = 1 +
(

1

yn

− 1

)(
ln(1 − yn) + 1

2
x2

)
, n = 0, 1, . . . .

We use, for x ≤ 0, the starting value

y0 = − 1
2x2 − ln(1 + 1

2x2).

For the case in which x = −1, we find y4 = −1.357 676 674 to be correct to 9 decimal places.
For the case in which x = −10, we find y2 = −54.007 468 976 to be correct to 9 decimal
places.
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A.2. Double series expansion valid for x < −√
π

Jeffrey et al. [15] considered, for ν ∈ R and large and positive w, the positive solution
z = �ν(w) of the equation

zνez = w.

In [15] it was shown that �ν(x) has an expansion

�ν(w) = L1 − νL2 + ν

∞∑
n=1

νn

Ln
1

n∑
m=1

(−1)n+m

[
n

n − m + 1

]
Lm

2

m! , (60)

where L1 = ln w, L2 = ln ln w, and [ n
m ] are Stirling cycle numbers, and the double series

converges when w > (|ν|e)|ν| for the case in which |ν| ≥ 1. Now it holds, for x < 0, that

y(x) = 1 − 1

e
�−e(e

ex2/2); (61)

hence, the theory in [15] can be used to compute y(x) for

exp( 1
2 ex2) > exp(2e),

i.e. for x < −2. In fact, we have been able to sharpen the convergence results in [15]. In
particular, for the case in which α = −e, which we have here, we can show that (60) converges
exponentially if and only if w > exp( 1

2πe), i.e. if and only if x < −√
π .

With

u = 1

2
x2 and τ = 1 + ln u

u
,

we obtain, from (61) and (60),

y(x) = −u − ln u −
∞∑

n=0

n∑
m=0

dn,n−mu−mτn−m. (62)

Table 5 displays some of the coefficients and Figure 3 shows some numerical results of (62) for
several truncation levels n = N .

Table 5: First few coefficients dk,l .

dk,l
k

l = 0 l = 1 l = 2 l = 3 l = 4 l = 5

0 0 1 − 1
2

1
3 − 1

4
1
5

1 0 1 − 3
2

11
6 − 25

12
137
60

2 0 1 −3 35
6 − 75

8
203
15

3 0 1 −5 85
6 − 245

8
1241
22

4 0 1 − 15
2

175
6 − 245

3
7483
40

5 0 1 − 21
2

161
3 −189 21 091

40
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N = 10

Figure 3: Relative error on a log-scale in estimating y(x) for x ∈ [−8, −√
π) through (62) truncated at

n = N .
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