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Abstract

How many 2-cells must two finite CW-complexes have to admit a common, but not finite
common, covering? Leighton’s theorem says that both complexes must have 2-cells. We
construct an almost (?) minimal example with two 2-cells in each complex.

2020 Mathematics Subject Classification: 57K20 (Primary); 20F05, 05C65,
05C25 (Secondary)

0. Introduction

Leighton Theorem [10] If two finite graphs have a common covering, then they have a
common finite covering.

Alternative proofs and various generalisations of this result can be found, e.g., in [2], [4],
[14], [15], [19], and references therein.

Does a similar result hold for any CW-complexes, i.e.

is it true that, if, for finite CW-complexes K1 and K2, there exist a CW-
complex K and cellular coverings K1←K→K2, then there exists a
finite CW-complex K with this property?

This natural question was posed (in other terms) in [1] and [16]. Notice the cellularity
requirement. Surely, we would obtain an equivalent question if we replace this condition
with a formally stronger combinatorialness one: the image of each cell is a cell. However,
without the cellularity condition, the answer would be negative: indeed, the torus and the
genus-two surface have no finite common coverings (as the fundamental group the genus-
two orientable surface 〈x, y, z, t | [x, y][z, t]= 1〉 contains no abelian subgroups of finite
index), while the universal coverings of these surfaces are homeomorphic, because they are
the plane. The cellularity condition rules out such examples: if we take, e.g., the standard
one-vertex cell structures on the torus and genus-two surface, then, on the covering plane,
we obtain:
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(i) the usual square lattice on the (Euclidean) plane (in the torus-case);

(ii) and an octagonal lattice on the (Lobachevskii) plane (in the genus-two case);

(i.e. though the universal coverings are homeomorphic, the cell structure on them are
principally different). This example cannot be saved by a complication of the cell structures
on the torus and genus-two surface (as was noted in [1] and [16]; the authors of [1] even
conjectured that the answer to the (cellular version of) the question is positive).

Nevertheless, the answer turned out to be negative as was shown in [18] (and actually,
much earlier in [17]); the complexes K1, K2 forming such a non-Leighton pair from [18]
contain as few as six 2-cells each. In [8], this number was reduced to four:1

there exist two two-complexes containing four 2-cells each that have a
common covering but have not finite common coverings.

(Henceforth, we omit the prefix “CW-” and word “cellular”: a complex means a CW-
complex, and all mapping between complexes are assumed to be cellular in this paper.) The
non-Leighton complexes K1 and K2 from [8] are the standard complexes of the following
group presentations �i, i.e. one-vertex complexes with edges corresponding to the generators
and 2-cells attached by the relators:

�1 = F2 × F2 = 〈a, b, x, y | [a, x], [a, y], [b, x], [b, y]〉 and

�2 =
〈
a, b, x, y

∣∣∣∣ axay, ax−1by−1, ay−1b−1x−1, bxb−1y−1
〉

.

Both of these complex are covered by the Cartesian product of two trees (Cayley graphs
of the free group F2); and no finite common cover exists, because the fundamental group
of such hypothetical covering complex would embed in both groups �i as finite-index sub-
groups, but, in �1, any finite-index subgroup contains a finite-index subgroup which is the
direct product of free groups, while �2 has no such finite-index subgroups [8] (�2 is not
even residually finite [3], [5]). The results of [8] imply also a minimality of this example in
the sense that:

if we restrict ourselves to complexes Ki covered by products of trees,
then four two-dimensional cells is the minimum among all non-Leighton
pairs.

If we do not restrict ourselves, then smaller non-Leighton pairs arise.

MAIN THEOREM (a simplified version). There exist two finite two-complexes containing
two 2-cells each that have a common covering, but have not finite common coverings.

(Explicit forms of these two two-2-cell two-complexes can be found at the very end of
this paper.) Thus, the only question remaining open concerns complexes with a single 2-
cell. This question seems to be difficult (although it is closely related to the well-developed
theory one-relator groups). The point is that a classification of one-relator groups up to

commensurability is not an easy task even for the Baumslag–Solitar groups BS(n, m)
def=〈

c, d
∣∣ cnd = cm

〉
(though, in this special case, it was recently obtained [6]). Henceforth,

xky def= y−1xky, where x and y are elements of a group and k ∈Z.

1 although the authors of [8] did not pursue this purpose; it was a byproduct of their results.

https://doi.org/10.1017/S0305004122000317 Published online by Cambridge University Press

https://doi.org/10.1017/S0305004122000317


Small non-Leighton two-complexes 387

In conclusion, note that results on coverings of two-complexes can imply nontrivial facts
about graphs, because one can “model” 2-cells in graphs by means of additional vertices
and edges, see [4]. Higher dimensional complexes are of little sense here: if complexes K1

and K2 form a non-Leighton pair, then their two-skeleta also form such a pair, as is easy to
verify. A detailed exposition of the general theory of coverings and CW-complexes can be
found, e.g., in [7].

1. Algebraic lemmata

The following fact is well known [13], we give a short proof for the reader’s convenience.

COMMUTATOR LEMMA. In the group H =BS(3, 5)= 〈
c, d

∣∣ c3d = c5
〉
, the commutator

h= [cd, c] belongs to any finite-index subgroup.

Proof. Each finite-index subgroup contains a normal finite-index subgroup (see, e.g., [9])
Therefore, it suffices to show that h lies in the kernel of any homomorphism ϕ : H→K to
any finite group K.

The elements ϕ(c3) and ϕ(c5) have the same order (because they are conjugate); hence,
the order of ϕ(c) is not divisible by three. Therefore, ϕ(c) ∈ 〈

ϕ(c3)
〉
. Thus, ϕ(c)ϕ(d) ∈ 〈ϕ(c)〉

and h= [cd, c] belongs to the kernel of ϕ. This completes the proof.

BOTTLE LEMMA. If a group G has a subgroup 〈a, b〉 = 〈
a, b

∣∣ ab = a−1
〉�BS(1,−1),

and the element b lies in all finite-index subgroups of G, then any finite-index subgroup of G
contains a subgroup isomorphic to the Klein-bottle group BS(1,−1).

Proof. Any finite-index subgroup contains all elements conjugate to b, because the inter-
section R of all finite-index subgroups is normal. Therefore, a2 = b−1ba ∈ R and

〈
a2, b

〉⊆ R
It remains to note that a2b = a−2, and the groups

〈
a2

〉
and 〈b〉 are infinite; hence, the subgroup〈

a2, b
〉

is isomorphic to BS(1,−1), because,

in any group, infinite-order elements x and y such that xy = x−1

generate a subgroup isomorphic to the Klein-bottle group. (1)

Indeed, there is obvious epimorphism

ϕ : BS(1,−1)= 〈a, b〉 −→ 〈x, y〉 .
Any element g ∈BS(1,−1) can be written in the form g= akbl. If g= akbl ∈ ker ϕ, then
ker ϕ 
 [b, g]= b−1b−la−kbakbl = a±2k. Therefore, k= 0 (because |〈x〉| =∞). But then
l= 0 too, because 1= ϕ(g)= ϕ(bl)= yl, and |〈y〉| =∞. Thus, ker ϕ = {1} and ϕ is an
isomorphism. This completes the proof.

NO-BOTTLE LEMMA. The amalgamated free product

G=
〈
a, c, d

∣∣∣∣ [a, [cd, c]]= 1, c3d = c5
〉
= 〈

a, b
∣∣ [a, b]= 1

〉 ∗
b=[cd ,c]

〈
c, d

∣∣∣∣ c3d = c5
〉

of the free abelian group and the Baumslag–Solitar group BS(3, 5) contains no subgroups
isomorphic to the Klein-bottle group K =BS(1,−1).

Proof. The group BS(3, 5) does not contain subgroups isomorphic to K [11] and is torsion-
free. Therefore, applying once again (1), we obtain that the quotient
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G/ 〈〈[a, G]〉〉 = 〈a〉∞ ×BS(3, 5)

by the normal closure 〈〈[a, G]〉〉 of the set [a, G] of commutators of a and all elements of
G has no nonidentity elements conjugate their inverse. Therefore, any element of G conju-
gate to its inverse lies in N = 〈〈[a, G]〉〉. This subgroup intersects trivially the free factors
(and their conjugates). Thus, all elements of N have length at least two, and the following
conjugation criterion (see, e.g., [12]) applies:

two cyclically reduced words of length � 2 in an amalgamated free
product U ∗

W
V are conjugate if and only if one of them can be obtained

from the other by a cyclic permutation and subsequent conjugation by
an element of W.

In U ∗
W

V , an equality of reduced words u1v1 · · · = u′1v′1 · · · implies the equalities of

the double cosets Wu1W =Wu′1W, Wv1W =Wv′1W, . . . Wv1W =Wv′1WTherefore, if a
cyclically reduced word x ∈N � 〈a, b | [a, b]= 1〉 ∗

b=[cd ,c]

〈
c, d

∣∣ c3d = c5
〉

is conjugate to its

inverse, then, for a letter x1 of x, we obtain the equality x1 = bkx−1
1 bl (because the map

fk,n : i �→ k− i (mod n) from the set (of subscripts) {1, . . . , n} to itself has either a fixed
point, or an almost fixed point: fk,n(i)= i+ 1 (mod n) for some i; the latter case would
imply that x1 = bkx−1

2 bl for some adjacent letters x1 and x2 of the reduced word x, which is
impossible). Substituting x1 = bk̂x1, we obtain x̂2

1 = bl−k; thus:

(i) either x̂2
1 ∈ 〈b〉 for some x̂1 ∈ (〈a〉∞ × 〈b〉∞) \ 〈b〉;

(ii) or x̂2
1 ∈

〈
[cd, c]

〉
for some x̂1 ∈

〈
c, d

∣∣ c3d = c5
〉 \ 〈[cd, c]

〉
.

The first is impossible of course. The impossibility of the second case can be verified,
e.g., as follows:

(i) the quotient group Q= 〈
c, d

∣∣ c3d = c5
〉
/
〈〈

[cd, c]
〉〉

is torsion-free; indeed, Q is the
HNN-extension Q = 〈

c, e, d | [e, c] = 1, e3 = c5, cd = e
〉

of the abelian group A=〈
c, e | [e, c] = 1, e3 = c5

〉
, which is torsion-free (moreover, it is easy to verify that

A�Z and Q�BS(3, 5));

(ii) therefore, x̂1 lies in the normal closure F= 〈〈
[cd, c]

〉〉
, which is a free group, because,

by the Karrass–Solitar theorem (see, e.g., [12]), any subgroup of an HNN-extension
is free if it intersects conjugates of the base trivially. It remains to show that [cd, c] is
not a square in F (because in a free group an inclusion α2 ∈ 〈β〉 implies that 〈α, β〉 is
cyclic by the Nielsen–Schreier theorem and, hence, α ∈ 〈β〉 if β is not a square). The
commutator [cd, c] is not a square in F, because, assuming the contrary and noting
that automorphic images of squares are squares too, we obtain F= 〈〈

[cd, c]
〉〉= 〈〈̂

x2
〉〉⊆〈{f 2 | f ∈ F}〉 , which cannot hold in a nontrivial free group F. This completes the

proof.

2. Proof of the main theorem

Take the fundamental groups of the torus and the Klein bottle:

G1 =BS(1, 1)= 〈a, b | [a, b]= 1〉 and G−1 =BS(1,−1)=
〈
a, b

∣∣∣∣ ab = a−1
〉
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Fig. 1. Universal coverings of the standard complexes of presentations G1 (left) and G−1 (right);
vertical/horizontal edge are labelled by a and b, respectively; each small square is filled with a
2-cell.

and consider the amalgamated free products Hε =Gε ∗
b=h

H of Gε and a group

H = 〈X | R〉 ⊇ 〈h〉∞
(henceforth ε=±1). Let Kε be the standard complex of the (standard) presentation of Hε:

Hε =
〈
{a} � X

∣∣∣∣ {âha−ε} � R

〉
,

where ĥ is a word in the alphabet X±1 representing the element h ∈H.
The Cayley graphs of Gε are isomorphic surely (as abstract undirected graphs), the same

is true for the universal coverings of the standard complexes of presentations of the groups
Gε (these covering complexes are planes partitioned on squares, Figure 1).

A slightly less trivial observation is that, for groups Hε, the universal coverings are
isomorphic too:

for any infinite-order element h of any group H, the universal coverings
of complexes Kε are isomorphic. (∗)

In what follows, we explain this simple fact in details; the readers who regard this fact as
obvious, can skip to Observation (∗∗).

It suffices to show that some coverings K̂ε→Kε have isomorphic K̂ε; we prefer to
take the coverings corresponding to the normal closure 〈〈a〉〉 of a ∈Hε. In explicit form,
these complexes K̂ε are the following ones:

(i) the vertices are elements of H;

(ii) the edges with labels from X are drawn as in the Cayley graph of the group H: an
edge with label x ∈ X go from each vertex h′ ∈H to the vertex h′x ∈H;

(iii) in addition, to each vertex h′ ∈H, a directed loop (edge) ah′ labelled by a is attached;

(iv) to each cycle whose label is a relator from R, an oriented 2-cell is attached;
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(v) to each cycle with label âha−ε, an oriented 2-cell (a special cell) is attached; thus,
going along the boundary of a special cell in the positive direction, we meet two
edges labelled by a, namely, ah′ and a−ε

h′h, where, as usual, a−1
h′h means that the edge

ah′h is traversed against its direction.

The isomorphism � : K̂1→ K̂−1 is the following:

(i) the vertices, edges with labels from X and nonspecial 2-cells (corresponding to
relators from R) are mapped identically;

(ii) to define the mapping � on edges labelled by a and special 2-cells, we choose a

set T of left-coset representatives of 〈h〉 in H, and put �(athk )= a(−1)k

thk for all t ∈ T
and k ∈Z (i.e., in each coset, each second loop labelled by a is inverted); then the
mapping of singular cells are defined naturally: a cell of K̂1 with edges ah′ and a−1

h′h
on its boundary is mapped to the cell of K̂−1 containing ah′ and ah′h on its boundary.

The next simple observation is that:

if h ∈H belongs to all finite-index subgroups of H, and the complexes
Kε have a finite common covering, then the group H1 contains
a subgroup isomorphic to the Klein-bottle group BS(1,−1). (∗∗)

Indeed, in H−1, the element b= h is contained in all subgroups of finite index (because
the intersection of each such subgroup with H is of finite index in H and, therefore, contains
h). By the bottle lemma (applied to G=H−1), we obtain that each finite-index subgroup
contains a subgroup isomorphic to the Klein-bottle group. It remains to note that, if a finite
complex K̂ covers K1 and K−1, then its fundamental group π1(K̂) embeds into π1(Kε)=Hε

as a finite-index subgroup.
Now, we take a particular group H, namely, let H be the Baumslag–Solitar group:

H =BS(3, 5)= 〈
c, d

∣∣ c3d = c5
〉
, and let h ∈H be the commutator: h= [cd, c]. This element

h is contained in any finite-index subgroup of H by the commutator lemma. According
to (∗∗), this means that, if complexes Kε would have a common finite covering, then
H1 =

〈
a, c, d

∣∣ [a, [cd, c]]= 1, c3d = c5
〉

would contain the Klein-bottle group as a subgroup,
which contradicts the no-bottle lemma. Therefore, there are no finite common coverings
for complexes Kε; while an infinite common covering exists according to (∗). Thus, the
following fact is proven.

MAIN THEOREM. The standard complexes of presentations

Hε =
〈
a, c, d

∣∣∣∣ a[cd ,c] = aε, c3d = c5
〉

,

where ε=±1, containing two 2-cells and one vertex, and three edges have a common
covering, but have no finite common coverings.
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