Metabolic studies of [⁷⁵Se]selenocystine and [⁷⁵Se]selenomethionine in the rat

BY CHRISTINE D. THOMSON, BRIDGET A. ROBINSON R. D. H. STEWART AND MARION F. ROBINSON

Department of Nutrition and Department of Medicine, University of Otago, Dunedin, New Zealand

(Received 24 March 1975 – Accepted 1 May 1975)

1. The long-term fate in rats of an oral dose of [⁷⁵Se]selenocystine was compared with that of an oral dose of [⁷⁵Se]selenomethionine.

2. Urinary and faecal radioactivities were measured during the 1st week and whole-body radioactivity was determined for 10 weeks. Rats were killed at weekly intervals for 4 weeks and at weeks 6 and 10 for analysis of tissue distribution of ⁷⁵Se.

3. Intestinal absorption of [⁷⁵Se]selenocystine was 81% of the administered dose; that of [⁷⁵Se]selenomethionine was 86%. Urinary excretion of absorbed [⁷⁵Se]selenocystine was 13.9% and that of [⁷⁵Se]selenomethionine was 5.8%, in the 1st week.

4. Whole-body retention of ⁷⁵Se was greater for [⁷⁵Se]selenomethionine than for [⁷⁵Se]selenocystine but after the 1st week it decreased at a similar rate in both groups. Tissue distribution of retained ⁷⁵Se was also similar in both groups.

5. The initial utilization of $[^{75}Se]$ selenocystine was different from that of $[^{75}Se]$ selenomethionine. However, after the 1st week ^{75}Se from both sources appeared to be metabolized similarly, suggesting that dietary Se of both forms is ultimately incorporated into the same metabolic pool.

6. When these findings were compared with those of earlier studies with [⁷⁵Se]selenite and ⁷⁵Se incorporated in vivo into rabbit kidney (RK-⁷⁵Se) (Thomson, Stewart & Robinson, 1975) the metabolism of [⁷⁵Se]selenocystine resembled that of [⁷⁶Se]selenite and RK-⁷⁵Se, rather than that of [⁷⁵Se]selenomethionine.

Selenocystine is one of the main forms in which selenium exists in plant proteins (Peterson & Butler, 1962). However, little is known about the fate of selenocystine in the animal body, as reported metabolic studies of Se in animals have been concerned mainly with the metabolism of selenite, selenate and selenomethionine.

The results of a previous study (Thomson & Stewart, 1973) in rats indicated that after an initial equilibration period of rapid metabolism, the fates of oral and intravenous doses of [⁷⁵Se]selenite and [⁷⁵Se]selenomethionine were similar. A more recent study in rats (Thomson, Stewart & Robinson, 1975) indicated that the long-term fate of an oral dose of ⁷⁵Se incorporated in vivo from [⁷⁵Se]selenomethionine into rabbit kidney (RK-⁷⁵Se) was also similar to that of [⁷⁵Se]selenomethionine mixed with unlabelled rabbit kidney homogenate. However, the initial metabolism of RK-⁷⁵Se resembled that previously found for [⁷⁵Se]selenite rather than that of [⁷⁵Se]selenomethionine. The present study describes the initial and long-term metabolism of oral doses of [⁷⁵Se]selenocystine and [⁷⁵Se]selenomethionine, and compares them to the findings from the earlier studies with [⁷⁵Se]selenite and RK-⁷⁵Se.

EXPERIMENTAL

Procedures

The procedures used in the present metabolic study were almost identical to those described previously (Thomson & Stewart, 1973; Thomson *et al.* 1975).

Female Wistar rats bred from the same colony and initially weighing 90-120 g were used for the metabolic study. They were maintained on tap-water and a pelleted stock diet containing 180 g available protein and 0.025 mg Se/kg. Each of the twenty-five rats in one group were anaesthetized with 5 mg sodium pentobarbitone and given by gastric intubation a known amount (approximately 5 μ Ci) of [⁷⁵Se]selenocystine (Radiochemical Centre, Amersham, Bucks.); a second group of twenty-five rats received by the same method a known amount (approximately 2 μ Ci) of [⁷⁵Se]selenomethionine (Radiochemical Centre, Amersham, Bucks.). Each dose contained not more than 5 μ g Se.

Collection of urine and faeces

Twelve rats from each group were placed in metabolism cages for the separate collection of urine and faeces. These collections were completed at 24 h intervals for 7 d. The amount of radioactivity in measured portions of each sample was determined using an automatic sample counting system (Autogamma; Searle Analytic Inc., 2000 Nuclear Drive, Des Plaines, Illinois, USA) with a ⁷⁵Se standard and the total amount in each 24 h urine or faecal sample was expressed as a percentage of the administered dose.

Whole-body counting

Measurements of whole-body radioactivity were made with a large volume counter constructed in the Department of Medical Physics, Wakari Hospital, Dunedin (Thomson *et al.* 1975). Measurements were made for each rat shortly after administration of the dose and this initial count (day o) was used as the 100% reference value for subsequent measurements for that animal. All whole-body radioactivity measurements were corrected for radioactive decay and any variation in counting efficiency by reference to a ⁷⁵Se standard counted at the same time. Measurements for surviving rats were made once per week for 10 weeks.

Tissue retention

Once per week for 4 weeks and at weeks 6 and 10, three rats from each group were bled to death from the aorta. The heart, lungs, spleen, liver, kidneys, adrenals, ovaries and portions of the shaft of the femur and thigh muscle were removed and weighed. Blood was allowed to clot and the serum was separated from the erythrocytes. The amount of radioactivity in these tissues was measured using the automatic wellcounter with a ⁷⁵Se standard. The amount of radioactivity in whole organs was expressed as a percentage of the whole-body ⁷⁵Se for that animal at death and for the tissues was expressed as a percentage of whole-body ⁷⁵Se/g wet weight of tissue.

					Excretion			Rete	Retention
Chemical form of dose		Intestinal absorption of 75Se	Urine	Unabsorbed faecal 75Se	Endogenous faecal 75Se†	Total faecal ⁷⁵ Se	Total excretion of ⁷⁵ Se	From excretion by difference	By whole-body counting
[⁷⁵ Se]selenocystine	Mean se	1.18 1.2	11.4 0.6	0.2 0.2	8·2 0.4	27'I 0'5	38.5 0.0	6.0 5.19	1.3 1.3
[75Se]selenomethionine	Mean se	86.4 0.8	5.0 0.2	13.6 0.8	8.6 0.4	22.2	27:2 0:8	72.8 0.8	0.17 0.77

Table 1. Absorption, excretion and retention of ⁷⁵Se (as a percentage of the administered dose) by rats during the 1st week after oral doses of [75Se]selenocystine and [75Se]selenomethionine* Values for the group receiving [⁷⁵Se]selenocystine were significantly different from those for the group receiving [⁷⁵Se]selenomethionine (P < 0.001), except values for endogenous faceal ⁷⁵Se.

* For details of procedures, see p. 502. † Calculated as the difference between total faecal ⁷⁵Se and unabsorbed faecal ⁷⁵Se.

503

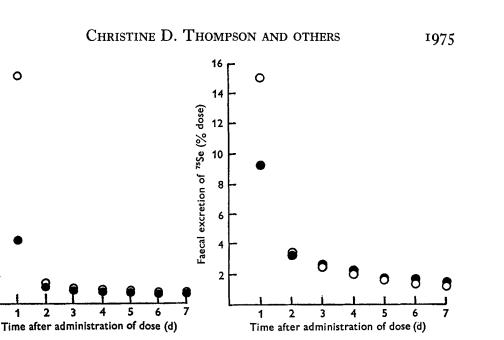


Fig. 2

Fig. 1

2

1

3

504

8

7

6

5

4

3

2

1

Urinary excretion of 75Se (% dose)

0

Fig. 1. Urinary excretion of ⁷⁵Se in two groups, each of twelve rats, given oral doses of either [⁷⁵Se]selenocystine (\bigcirc) or [⁷⁵Se]selenomethionine (\bigcirc). For details of procedures, see p. 502. Fig. 2. Faecal excretion of ⁷⁵Se in two groups, each of twelve rats, given oral doses of either $[^{75}Se]$ selenocystine (O) or $[^{75}Se]$ selenomethionine (\bullet). For details of procedures, see p. 502.

RESULTS

Se balance during the 1st week

The intestinal absorption of the ⁷⁵Se tracer was calculated by plotting cumulative faecal excretion of 75Se v. time (Lutwak, 1969). The straight line joining the last three points on the curve was extrapolated to the zero-time intercept and this point was taken to represent the proportion of tracer not absorbed (Thomson & Stewart, 1973). Mean absorption of [75Se]selenocystine was 81.1% of the administered dose and that of $[^{75}Se]$ selenomethionine was 86.4% of the dose (Table 1).

Urinary excretion of ⁷⁵Se during the 1st week is shown in Fig. 1. The rats given [⁷⁵Se]selenocystine excreted 8.3 % of the administered dose in the urine during the 1st day but those given [75Se]selenomethionine excreted only $2\cdot 3\%$ (P < 0.001). During the 2nd day urinary loss of ⁷⁵Se decreased to 0.8 (SE 0.02) and 0.6 (SE 0.02)% of the dose respectively and on day 7 it was 0.4 % of the dose/d for both groups. There was no significant difference between daily urinary excretion of 75Se by the two groups for days 5-7. Cumulative urinary excretion at the end of the 1st week was 11.4% of the dose for rats given [75Se]selenocystine and 5.0% of the dose for those given [75Se]selenomethionine (P < 0.001) (Table 1). This accounted for 13.9 and 5.8% of the absorbed radioactivity respectively.

Faecal loss of ⁷⁵Se during the 1st week is shown in Fig. 2. The rats given [⁷⁵Se]selenocystine excreted 15.0% of the administered dose in the faeces during the 1st day but those given [75Se]selenomethionine excreted only 9.2% (P < 0.001). For the

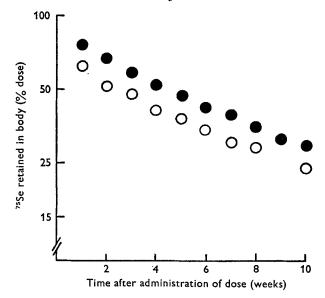


Fig. 3. Whole-body ⁷⁵Se in groups of rats given oral doses of either [⁷⁵Se]selenocystine (\bigcirc) or [⁷⁵Se]selenomethionine (\bigcirc). Each point represents the mean value for all surviving rats in that group. For details of procedures, see p. 502.

remainder of the week faecal loss was similar in both groups. Cumulative faecal loss at the end of the week was $27 \cdot 1\%$ of the dose for rats given [⁷⁵Se]selenocystine and $22 \cdot 2\%$ of the dose for those given [⁷⁵Se]selenomethionine (P < 0.001; Table 1). Endogenous faecal loss of ⁷⁵Se during the 1st week was determined as the difference between total faecal ⁷⁵Se and unabsorbed ⁷⁵Se. This amounted to $8 \cdot 2\%$ of the dose, or 10.0% of the absorbed radioactivity, for the rats given [⁷⁵Se]selenocystine, and 8.6% of the dose, or 9.9% of the absorbed radioactivity, for those given [⁷⁵Se]seleno-methionine.

Whole-body retention and turnover of 75Se

Combined urinary and faecal excretion of ⁷⁵Se at the end of the 1st week was $38\cdot5\%$ of the dose of [⁷⁵Se]selenocystine but only $27\cdot2\%$ of the dose of [⁷⁵Se]-selenomethionine (P < 0.001; Table 1). Whole-body retentions of ⁷⁵Se measured by whole-body counting on day 7 agreed closely with retention values calculated from urinary and faecal excretion. Retention of [⁷⁵Se]selenocystine calculated from excretion measurements was $61\cdot5\%$ of the dose; that estimated from whole-body counting was $62\cdot1\%$. Retentions of [⁷⁵Se]selenomethionine calculated by these two methods were 72.8 and 77.0\% of the dose respectively. When expressed as a percentage of the dose absorbed, retention of [⁷⁵Se]selenocystine calculated from excretion measurements was 75.8 and from whole-body counting was 76.5, while retentions of [⁷⁵Se]selenomethionine were 84.2 and 89.1 respectively. The close agreement between values for whole-body retention of ⁷⁵Se at the end of the 1st week obtained by whole-body counting and those derived by measurement of urinary and faecal loss indicated that there was negligible respiratory loss of ⁷⁶Se in these animals.

Mean whole-body ⁷⁵Se in the surviving rats of the two groups during the 10-week

505

				(Mean	values for	(Mean values for three rats)						
Chemical form of dose			[⁷⁵ Se]sel	[⁷⁵ Se]selenocystine	0			[]	⁵ Se]selen	[⁷⁵ Se]selenomethionine	ne	
Time after dose (weeks)	Ĺ	17	3	4	9	∫ º	H	61	e	4	9	р Р
					Λ%	% Whole-body 75Se retained/organ	Se retained/	organ				
Liver	0.2	6.2	5.2	5.2	5.3	4.6	6.5	4.5	4.2	4.1	4.2	4:2
Kidney	6.4	6.9	6.3	6.9	6.5	4.5	2.2	7.5	5.3	5.4	4.3	4.2
Heart	0.58	0.53	0.52	0.57	0.54	0.53	0.42	0.41	0.47	0.45	0.45	0.47
Lung	1.2	1.2	I.I	6.0	1.1	0. I	0.1	6.0	6.0	0. I	1.4	6.0
Spleen	1.2	I·I	0.I	1.1	6.0	0.8	6.0	6.0	o.8	2.0	2.0	0.5
Adrenals	0.21	0:30	0.39	6.0	0.41	0.37	0.23	0.20	o.36	15.0	0.37	0.25
Ovaries	0.23	0.22	61. o	L1.0	91.o	£1.0	0.22	0.18	0.15	0.15	0.15	11.0
					% Whole	% Whole-body ⁷⁵ Se r	e retained/g wet wt tissue	t wt tissue	6)			
Erythrocytes	0.57	6g.o	0.73	0.88	<i>LL</i> .0		99.0	0.29	0.62	0.74	0.86	0.53
Serum	1.2	9.I	1.2	1.1	0.1	1.1	0.1	0.1	0.1	6.0	o.8	2.0
Thigh muscle	0.24	0.26	25.0	0.29	6.27	0.28	0.49	o.36	0.38	0.35	0.32	0.35
Bone (shaft of the femur)	o-68	0-74	0.57	0.49	0.38	0.33	0.40	0.64	0.54	0.41	0.41	62.0
			Ч *	or details	of proce	* For details of procedures, see p. 502.	502.					

Table 2. Distribution of retained whole-body ⁷⁵Se in tissues of rats during 10 weeks after oral doses of

Vol. 34

Studies of ⁷⁵Se in rats

507

period is shown in Fig. 3. Whole-body retention of [⁷⁵Se]selenocystine was less than that of [⁷⁵Se]selenomethionine at the end of the 1st week (P > 0.001) and this difference was maintained throughout the study. For both groups the whole-body retention curve could be resolved into two exponential components and regressions for each were calculated by the method of least squares. The first phase, which represented urinary and faecal loss during an initial equilibration period of 3 weeks, had a half-time of 5 d for the rats given [⁷⁵Se]selenocystine and 6 d for those given [⁷⁵Se]selenomethionine. The second phase from weeks 4 to 10, followed a single exponential curve with half-times of 54 and 49 d respectively for the two groups. There was no significant difference between the slope-constants of this second exponent for each of the two groups.

Tissue distribution of 75Se

There was no consistent difference between concentrations of whole-body ⁷⁵Se in tissues of rats given [⁷⁵Se]selenocystine and in those of rats given [⁷⁵Se]selenomethionine (Table 2). Liver and kidney contained the greatest total amount of radioactivity with lesser amounts in the other organs studied. The highest concentrations of ⁷⁵Se were found in kidney and adrenals ($4\cdot4-6\cdot2$ and $3\cdot7-5\cdot8\%$ whole-body ⁷⁵Se/g respectively on day 7), whereas the concentration in liver was $0\cdot9-1\cdot0\%$ whole-body ⁷⁵Se/g.

Although the concentration of 75 Se in skeletal muscle was low (0.4 % whole-body 75 Se/g on day 7), because this tissue comprises 43 % of the total body-weight (Donaldson, 1924) approximately 25 % of the retained 75 Se was contained within it.

DISCUSSION

The striking finding of the present study was that the initial utilization by rats of Se derived from selenocystine resembled that of Se derived from selenite or from RK-⁷⁵Se (rabbit kidney labelled in vivo with ⁷⁵Se) rather than that of Se derived from selenomethionine (Thomson & Stewart, 1973; Thomson *et al.* 1975). The relevant findings from the three experiments are compared in Table 3. Intestinal absorption of ⁷⁵Se administered as selenocystine was 5% less than that of ⁷⁵Se given as selenomethionine, a difference similar to that found in the previous studies between the absorption of (*a*) [⁷⁵Se]selenite and [⁷⁵Se]selenomethionine and (*b*) RK-⁷⁵Se and [⁷⁵Se]selenomethionine. Urinary loss of absorbed ⁷⁵Se derived from selenocystine was also greater than that from selenomethionine. In this respect too, the early metabolism of [⁷⁵Se]selenocystine resembled that of [⁷⁵Se]selenite and RK-⁷⁵Se and differed from that of [⁷⁵Se]selenomethionine. There is no obvious explanation for the lower absorption of [⁷⁵Se]selenomethionine in the present study compared with that found previously, but it might be related to the quantity of food remaining in the gut of the rat at the time of administration of the dose.

After the initial period of equilibration, the metabolism of ⁷⁵Se was similar in both groups of rats studied. Thus on days 5–7 urinary loss of radioactivity was the same for both groups, as were both endogenous faecal ⁷⁵Se during the 1st week and the distribution of whole-body ⁷⁵Se between the various tissues studied after 7 d. Moreover the long-term whole-body turnover of ⁷⁵Se was similar in both groups with half-times

NUT 34

Table 3. Comparison of results obtained for absorption (as a percentage of the administered dose), excretion and retention (as a
percentage of absorbed radioactivity) of ^{75}Se by rats during the 1st week after oral doses of $[^{75}Se]$ selenite, $RK^{-75}Se$, $[^{75}Se]$ -
selenocystine and [75Se]selenomethionine
(Mean values for ten or twelve rats/treatment)

		Tatastinol	-	Excretion	Ket	Ketention
Chemical form of dose	Source of results	absorption of ⁷⁵ Se	Urine	Endogenous faecal ⁷⁵ Se*	From excretion by difference	By whole-body counting
[⁷⁵ Se]selenite	Thomson & Stewart (1973)	16	6.£1	7.21	73.3	72.3
RK- ⁷⁵ Se	Thomson et al. (1975)	87	13.3	12.4	74.2	12.7
[75Se]selenocystine	Present study	81	6.£1	0.01	75.8	76.5
[⁷⁵ Se]selenomethionine	Thomson & Stewart (1973)	95	4.4	2.11	84:4	2.62
[75Se]selenomethionine + rabbit	Thomson et al. (1975)	16	2.6	12.7	8.64	5.62
kidney hornogenate [75Se]selenomethionine	Present study	86	5.8	6.6	84.2	1.68

1016 * Calculated as the difference between total faecal ⁷⁵Se and unabsorbed faecal ⁷⁵Se. 1975

https://doi.org/10.1017/S0007114575000542 Published online by Cambridge University Press

of 49 and 54 d. This compared with half-times of 50–59 d found previously after oral and intravenous administration of [⁷⁵Se]selenite and [⁷⁵Se]selenomethionine (Thomson & Stewart, 1973) and 54–55 d following oral administration of RK-⁷⁵Se and [⁷⁵Se]selenomethionine mixed with rabbit kidney homogenate (Thomson *et al.* 1975).

Therefore, although there were differences in initial utilization, long-term metabolism of retained Se in the rat appears to be independent of the chemical form from which it is derived.

New Zealand is a low-Se country and the stock pellet diet used in all three experiments contained only 0.025 mg Se/kg. This happens to have been the level used by other workers in their low-Se basal diets for studies in rats of the effect of adding different amounts and forms of dietary Se. Cary, Allaway & Miller (1973) found that below 0.1 mg Se/kg diet, differences in the dietary form of Se, for example selenite, selenomethionine or seleniferous grain, did not produce measurable differences in tissue Se concentrations. Our studies using the four different forms of Se support and extend this view. Further, Burk, Seely & Kiker (1973) found that with the basal diet (0.024 mg Se/kg) the urinary output accounted for about 10% of an intraperitoneal injection of [75Se]selenite; our values for urinary output from oral dosing, when expressed as a percentage of absorbed radioactivity, are of the same order with selenite, but with selenocystine and RK-75Se are consistently slightly higher, and with selenomethionine are slightly lower.

Results obtained in the previous study with RK-⁷⁵Se (Thomson *et al.* 1975) suggest that Se administered to rabbits as selenomethionine is not incorporated in vivo into kidney protein in this same chemical form, but are consistent with the release by digestion of [⁷⁵Se]selenite from the labelled kidney homogenate in the gastrointestinal tract of the rats. Results of the present study might suggest that oxidation of [⁷⁵Se]selenocystine during digestion could release [⁷⁵Se]selenite. It is not yet understood why the metabolism of [⁷⁵Se]selenocystine resembles that of [⁷⁵Se]selenite and of RK-⁷⁵Se but not that of [⁷⁵Se]selenomethionine until after the 1st week, or whether this was in any way associated with the very low dietary intake of Se by the rats (Stadtman, 1974). The results are however in general agreement with Frost's (1972) hypothesis of the central role of selenite in the metabolism of Se.

This work was supported by the Medical Research Council of New Zealand and by the Golden Kiwi Committee for Promotion of Medical Research in New Zealand.

REFERENCES

Burk, R. F., Seely, R. J. & Kiker, K. W. (1973). Proc. Soc. exp. Biol. Med. 142, 214.

Cary, E. E., Allaway, W. H. & Miller, M. (1973). J. Anim. Sci. 36, 285.

Donaldson, H. H. (1924). The Rat: Data and Reference Tables, 2nd ed., p. 185. Philadelphia: The Wistar Institute of Anatomy and Biology.

- Frost, D. V. (1972). CRC Critical Rev. Toxic. 1, 467.
- Lutwak, L. (1969). Am. J. clin. Nutr. 22, 771.

Peterson, P. J. & Butler, G. W. (1962). Aust. J. biol. Sci. 15, 126.

Stadtman, T. C. (1974). Science, N.Y. 183, 915.

Thomson, C. D. & Stewart, R. D. H. (1973). Br. J. Nutr. 30, 139.

Thomson, C. D., Stewart, R. D. H. & Robinson, M. F. (1975). Br. J. Nutr. 33, 45.

Printed in Great Britain