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A singularly altered streamline topology allows
faster transport from deformed drops
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We analyse the effect of drop-deformation-induced change in streamline topology on
the scalar transport rate (the Nusselt number Nu) in an ambient planar linear flow. The
drop-phase resistance is assumed dominant, and the drop deformation is characterised
by the capillary number (Ca). For a spherical drop (Ca = 0) in an ambient planar
extension, closed streamlines lead to Nu increasing with the Péclet number (Pe), from
Nu0, corresponding to purely diffusive transport, to 4.1Nu0, corresponding to a large-Pe
diffusion-limited plateau. For non-zero Ca, we show that the flow field consists of
spiralling streamlines densely wound around nested tori foliating the deformed drop
interior. Now Nu increases beyond the aforementioned primary plateau, saturating in
a secondary one that approaches 22.3Nu0 for Ca → 0, Pe Ca → ∞. The enhancement
appears independent of the drop-to-medium viscosity ratio. We further show that this
singular dependence, of the transport rate on drop deformation, is generic across planar
linear flows; chaotically wandering streamlines in some of these cases may even lead to a
tertiary enhancement regime.

Key words: coupled diffusion and flow, drops, boundary integral methods

1. Introduction

Transport of heat and mass in multiphase scenarios is relevant to diverse natural
phenomena: growth of cloud condensation nuclei (Kinzer & Gunn 1951; Beard &
Pruppacher 1971; Duguid & Stampfer 1971), nutrient uptake by microswimmers (Magar,
Goto & Pedley 2003; Guasto, Rusconi & Stocker 2012; Stocker 2012) and industrial
processes (fuel atomisation in internal combustion (IC) engines (Law 1982), spray drying
(Patel, Patel & Suthar 2009), liquid–liquid extraction (Wegener, Paul & Kraume 2014)
and suspension polymerisation (Vivaldo-Lima et al. 1997; Brooks 2010)). The underlying
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aim is to calculate the transport rate from a drop or a particle immersed in an ambient
shearing flow. In non-dimensional terms, this amounts to determining the Nusselt (Nu)
or Sherwood (Sh) number, the rate of heat and mass transport measured in diffusion
units, respectively, as a function of the Péclet number (Pe). The latter is defined as
Pe = γ̇ a2/D, and compares the relative magnitudes of convection and diffusion; γ̇ here
is a characteristic shear rate, a the particle or (undeformed) drop radius and D the thermal
or mass diffusivity. Mass transport in liquids usually occurs in the convection dominant
limit (Pe � 1) : Pe ∼ O(103) for small molecules in sheared aqueous environments, but
can be several orders of magnitude larger for macromolecular solutes in viscous solvents.
Herein, we show, for a drop in an ambient planar linear flow, that deformation-induced
alteration of the interior streamline topology has a singular effect on the transport rate
in the convection dominant limit. For sufficiently large Pe, transport from even a weakly
deformed drop is enhanced more than five-fold, relative to a spherical one, for an ambient
planar extension, and by nearly an order of magnitude for an ambient simple shear flow.

For rigid particles, transport for large Pe occurs across a thin boundary layer, with Nu
scaling as the inverse boundary layer thickness. A balance of convection and diffusion
time scales yields a boundary layer thickness of O(a Pe−1/3), so Nu ∝ Pe1/3 (Leal 2007).
For drops, when the ambient phase resistance to transport is dominant, the so-called
exterior problem, the boundary layer thickness is O(a Pe−1/2) due to the interfacial slip and
Nu ∝ Pe1/2, being larger than that for a rigid particle at the same Pe. Transport for large
Pe also depends sensitively on the streamline topology (Subramanian & Koch 2006a,c;
Krishnamurthy & Subramanian 2018b), and boundary-layer-driven enhancement above
occurs only when the exterior flow has an open-streamline (Acrivos & Goddard 1965;
Gupalo & Riazantsev 1972; Gupalo, Riazantsev & Ulin 1975; Polyanin 1984; Leal 2007;
Krishnamurthy & Subramanian 2018a,b) or open-pathline (Banerjee & Subramanian
2021) topology. Owing to the unbounded domain, such a topology is a common occurrence
for the exterior problem, either in the Stokes limit itself (Krishnamurthy & Subramanian
2018a; Banerjee & Subramanian 2021) or due to deviations from Stokesian hydrodynamics
(Subramanian & Koch 2006b,c, 2007; Krishnamurthy & Subramanian 2018b). In contrast,
a closed-streamline topology is more common for a confined domain such as the
spherical drop interior. While a generic ambient linear flow leads to chaotically wandering
streamlines in the Stokes limit (Stone, Nadim & Strogatz 1991; Sabarish 2021), many
canonical flows including uniform flow, linear extensional flows and the family of planar
linear flows lead to closed interior streamlines (Sabarish & Subramanian 2023). Earlier
efforts analysing transport from a spherical drop in these flows, in the limit of a dominant
drop-phase resistance (the interior problem), have shown Nu to plateau at an order unity
value for Pe → ∞ (Newman 1931; Kronig & Brink 1951; Johns & Beckmann 1966;
Watada, Hamielec & Johnson 1970; Brignell 1975; Prakash & Sirignano 1978), implying
diffusion-limited transport due to the closed-streamline topology.

Herein, for the first time, we consider the interior problem for a deformed drop in
an ambient linear flow. While there has been extensive research on drop deformation
and breakup in linear flows over the last several decades (Taylor 1934; Rumscheidt &
Mason 1961; Torza et al. 1971; Hakimi & Schowalter 1980; Rallison 1984; Bentley &
Leal 1986b; Stone 1994), substantially less attention has been paid to the correlation
between drop deformation and streamline topology. The importance of drop deformation is
characterised by the capillary number, Ca = μγ̇ a/T , μ being the ambient fluid viscosity
and T the interfacial tension coefficient. For the interior problem in particular, one has
closed streamlines and diffusion-limited transport for Ca = 0 (spherical drop), on account
of Stokesian reversibility constraints (Newman 1931; Kronig & Brink 1951; Johns &
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Beckmann 1966; Watada et al. 1970; Brignell 1975; Prakash & Sirignano 1978), but this
must no longer be true for finite Ca. However, earlier experiments (Torza et al. 1971) and
computations (Kennedy, Pozrikidis & Skalak 1994; Komrakova et al. 2014) have suggested
the persistence of closed streamlines within a deformed drop in simple shear flow. In
contrast, we show, using the analytical velocity field for small Ca, and supporting finite-Ca
boundary integral computations, that drop deformation opens up closed streamlines. The
aforementioned sensitive dependence of transport on streamline topology implies then that
the Nu–Pe relationship is qualitatively affected by the altered streamline topology. For an
ambient planar extension, Langevin simulations show that the drop-deformation-induced
spiralling-streamline topology leads to singularly enhanced transport, for Pe → ∞, for
any non-zero Ca. The singular enhancement persists for other ambient planar linear flows,
being robust to the addition of vorticity.

This article is organised as follows. In § 2.1, we write down the equations governing
the motion within and outside a neutrally buoyant drop immersed in an ambient
shearing flow. Solving these equations for a weakly deformed drop, using a domain
perturbation technique, leads to analytical expressions for the velocity and pressure
fields which are given in Appendix A. The analytical interior velocity field is used to
solve for the scalar (temperature or concentration) field in order to determine the rate
of scalar transport. This is accomplished using Langevin simulations, details of which
are given in § 2.2. Langevin simulations using the analytical velocity field, valid for
weak deformations, are complemented by those that use the velocity field for finitely
deformed drops, determined using boundary integration computations; details of these
computations are given in § 2.3 and in Appendix B. Section 3.1 discusses the interior
streamline topology within, and scalar transport from, a spherical drop in an ambient
planar extensional flow. The deformation-induced alteration of the streamline topology,
and the accompanying transport enhancement, are examined in § 3.2. Sections 4.1 and
4.2 examine the interior streamline topology and scalar transport rate for spherical and
deformed drops, respectively, in other ambient planar linear flows. In § 5, we summarise
our findings, while also emphasising the significance of the transport enhancement, found
here for drops, in the context of other deformable microstructures.

2. Problem formulation

2.1. Governing equations and the small Ca expansion
Consider a neutrally buoyant Newtonian drop of viscosity λμ in an ambient Newtonian

fluid of viscosity μ undergoing a planar linear flow, u∞ = Γ · x, with Γ = 2γ̇

[
0 1 0
β 0 0
0 0 0

]
being the (transpose of the) velocity gradient tensor. The associated rate of strain

and vorticity tensors are given by E = γ̇ (1 + β)
[ 0 1 0

1 0 0
0 0 0

]
and Ω = γ̇ (1 − β)

[ 0 1 0
−1 0 0
0 0 0

]
,

respectively. Planar linear flows are a one-parameter family with β ∈ [−1, 1]; β = −1,
0 and 1 correspond to solid-body rotation, simple shear and planar extension, respectively.
The interval −1 ≤ β < 0 corresponds to elliptic linear flows with closed streamlines,
and 0 < β ≤ 1 corresponds to hyperbolic planar linear flows with open streamlines; see
figure 1. The schematic in figure 2 shows a drop, slightly deformed from its native spherical
form (of radius a), in an ambient hyperbolic planar linear flow. While our focus in this
work is on planar extensional flow (β = 1), we also discuss the streamline topology for
non-unity β in § 4.2, along with the implications for transport.
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(a) (b) (c) (d )

Figure 1. Members of the one-parameter planar linear flow family: (a) solid-body rotation (β = −1), (b) an
elliptic linear flow with β = −0.5, (c) a hyperbolic planar linear flow with β = 0.5 and (d) planar extension
(β = 1).

x2

x3

φθ

λμ

μ

x1

a

r

Figure 2. Schematic of a slightly deformed drop (of undeformed radius a) suspended in an ambient
hyperbolic planar linear flow.

Assuming viscous effects to be dominant, the governing equations, in non-dimensional
form, are

λ∇2û − ∇p̂ = 0, ∇ · û = 0, (2.1)

∇2u − ∇p = 0, ∇ · u = 0, (2.2)

with û(u) and p̂( p) being the interior (exterior) velocity and pressure fields. Here, a, γ̇ a
and μγ̇ have been used as the characteristic length, velocity and stress scales, respectively.
Equations (2.1)–(2.2) are subject to the following boundary conditions:

u → u∞ for x → ∞,

u = û (Velocity continuity at the interface),
1

|∇F|
∂F
∂t

+ Ca(u · n) = 0 (Kinematic boundary condition at the interface),

(σ − σ̂ ) · n = 1
Ca

(∇ · n)n (Interfacial stress balance).

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(2.3)
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Here, n is the outer unit normal to the drop surface, σ̂ = −p̂I + λ(∇û + ∇ûT) and
σ = −pI + (∇u + ∇uT) are the interior and exterior stress tensors, respectively, and
t in the kinematic condition is non-dimensionalised by γ̇ −1. Under the action of the
imposed flow, the drop deforms, attaining a steady shape for Ca less than a critical
value Cac (Cac 
 0.06 for λ = 1 and an ambient planar extension, and is higher for
other members of the planar linear flow family; see Rallison 1981; Bentley & Leal
1986a). For small Ca, one may describe the deformed drop shape using a scalar function,
F(x, t) = r − (1 + Ca f (n, t)) = 0, to O(Ca). It is then straightforward, albeit tedious,
to calculate the disturbance fields and perturbed drop shape for Ca, λCa � 1, using
a domain perturbation technique (Leal 2007), as has been done across several earlier
efforts (Cox 1969; Barthes-Biesel & Acrivos 1973; Rallison 1980; Leal 2007; Vlahovska,
Bławzdziewicz & Loewenberg 2009; Ramachandran & Leal 2012). The results, to O(Ca),
have been tabulated in Appendix A.

2.2. Langevin simulations for the interior problem
The scalar transport for the interior problem of interest is governed by the
convection–diffusion equation for the scalar concentration field, with convection being
driven by the Stokesian interior velocity field:

∂c
∂τ

+ Pe û(x) · ∇c = ∇2c. (2.4)

In (2.4), velocity and time are scaled by γ̇ a and a2/D, respectively, D being the diffusivity
coefficient; the Péclet number is defined as Pe = γ̇ a2/D; Pe � 1 denotes the convection
dominant limit. In our simulations, û(x) in (2.4) is either the small-Ca analytical form,
û(0)(x) + Ca û(1)(x) discussed in § 2.1 above, with expressions for û(0)(x) and û(1)(x)

given in Appendix A; or obtained numerically using the boundary integral method
described in § 2.3. With û(x) obtained in this manner, (2.4) is solved starting from
an initially uniform distribution, with the drop surface acting as a perfectly absorbing
boundary. The suitably normalised concentration satisfies c = 1 within the drop at τ = 0,
and c = 0 ∀τ ≥ 0 at the surface of the deformed drop which, for small Ca, is as defined
in § 2.1. The latter absorption boundary condition corresponds to the complete neglect of
any transport resistance in the exterior fluid, which in turn arises from assuming the scalar
diffusivity within the drop to be much smaller than that in the ambient fluid. In this limit,
one may neglect the asymptotically small change in concentration (from the surface to the
ambient value) in the drop exterior, and this, in turn, is equivalent to setting c to be zero at
the drop surface, as mentioned previously.

The interior streamlines, for the planar linear flows under consideration, do not conform
to any obvious symmetries, precluding the use of standard coordinate systems. Therefore,
we use Langevin simulations to simulate the transport process that, on average, is
described by (2.4). The Langevin equations (Gardiner 2004) for the individual tracers are

dx = Pe û(x) dτ +
√

2 dW (τ ). (2.5)

Here, û(x) convects the tracer particle at position x(τ ), and the final term, dW (τ ),
corresponds to the standard Wiener process satisfying 〈dW (τ )〉 = 0, 〈(dW )2〉 = dτ . We
solve the Langevin equations using a fourth-order Runge–Kutta technique with a time step
that satisfies Pe dτ � 1, ensuring numerical convergence (Wilkie 2004). In the numerical
implementation, dW (τ ) = √

dτN(0, 1), N(0, 1) being a Gaussian random variable with
zero mean and unit variance. For a sufficiently large initial number of tracers, the ensemble
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average of the tracer concentration converges to the solution of the convection–diffusion
equation. In all our runs, we start from 105 tracers uniformly distributed within the drop,
with the absorbing boundary condition implemented at each time step by removing any
tracers that end up crossing the drop surface. To address the decrease in the number
of tracers with time, and the associated increase in the amplitude of the tracer number
fluctuations, we implemented a replenishment protocol where, when the tracers reduce to
half the initial number, an equal number of new tracers are introduced at the same locations
as the original ones. This ensures that the tracer number never dips below 50 000 during
the course of any simulation, in turn ensuring accurate long-time averages required for the
Nu calculation (see the following). Further, the manner of introduction also ensures that
the addition of new tracers only affects the amplitude of the concentration profile, and not
its shape.

Using the time-dependent volume-averaged concentration obtained from the
simulations, we calculate the non-dimensional transport rate as Nu = (2/c̄)F (Kronig
& Brink 1951; Juncu 2010), where c̄(τ ) = (1/Vd)

∫
Vd

c(x, τ ) dV is the volume-averaged
concentration and F = −(1/4π)

∫
S n · ∇c(x, τ ) dS is the surface averaged flux, with the

area of the undeformed drop (4π) used for normalisation; incompressibility implies that
the drop volume Vd = 4π/3. We argue later that this definition, which is also that
used in the earlier literature (see, for instance, Kronig & Brink 1951) yields the same
Pe-dependence for the transport rate, as would be obtained from the usual definition,
based on the normal derivative of the concentration at the drop surface, when a true
steady state is made possible due to a compensating source field. The choice of the
undeformed-drop-based normalisation above is because, on one hand, surface areas of the
deformed drops remain close to the spherical value over the range of Ca examined; even
for the highest Ca (= 0.04), the deformed drop area exceeds the spherical value only by
1.3 %, implying the transport enhancements found below owe their origin to the change in
streamline topology, and not an increased surface area. On the other hand, a normalisation
that accounts for the drop deformation would involve solving for the transport rate, for the
fictitious problem of diffusion from a deformed drop.

Using the divergence theorem, the above expression for F is written as F =
−(1/4π)

∫
Vd

∇2c(x, τ ) dV , over the volume of the drop (Vd), and further use of the
convection–diffusion equation reduces this to F = −(1/4π)

∫
Vd

(∂c/∂τ)(x, τ ) dV . Since
the drop attains a steady non-spherical shape with volume equal to the original undeformed
sphere (4π/3), one may write

F = −1
3

d
dτ

[
1

Vd

∫
Vd

c(x, τ ) dV
]

= −1
3

∂ c̄
∂τ

. (2.6)

Hence, one finally obtains

Nu = −2
3

1
c̄

dc̄
dτ

= −2
3

d log c̄
dτ

. (2.7)

Since the absorption boundary condition renders the interior problem an inherently
unsteady one, both c(x, τ ) and Nu are in general functions of time (τ ). It is important,
however, to note that, for all cases examined, c(x, τ ) approaches a simple exponential
decay for sufficiently long times, and correspondingly, Nu approaches a time-independent
plateau value that equals two-thirds of the largest (least negative) eigenvalue of the
convection–diffusion operator. In each of our simulations, therefore, Nu exhibits an
algebraic decrease proportional to τ−1/2 for short times, independent of Pe, corresponding
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Simulation:

Analytical solution:

10–4

100

N
u 0

(τ
)/

N
u 0

(τ
 →

 ∞
)

101

10–3 10–2

τ

10–1 100

Nu0(τ)

(2π2/3)
Nu0(τ)

(2π2/3)
= 

1

π2

n=∞
n=1�
n=∞
n=1�

e–n2π2τ

e–n2π2τ

n2π2Nu0(τ � 1)

(2π2/3)
= 

3

π2�πτ

Figure 3. Comparison of Nu0(τ )/Nu0(τ → ∞) obtained from the Langevin simulations for Pe = 0 with
the exact analytical solution, (2/3)(

∑∞
n=1 e−n2π2τ )/(

∑∞
n=1 e−n2π2τ /n2π2) (Kronig & Brink 1951), and the

corresponding short-time asymptote 3/(π2√πτ).

to an initial diffusive transport across a thin boundary layer of thickness τ 1/2 ≈ (Dt)1/2

(see the next paragraph), but eventually asymptotes to a Pe-dependent plateau with
superposed small amplitude fluctuations that arise from the finite number of tracers
simulated. All of the Nu-values used later in this paper, in the context of the Nu–Pe
relationships, correspond to time-independent estimates, obtained by taking a decade-long
time average in this plateau regime.

To validate our simulations, we consider the analytically solvable pure diffusion
problem corresponding to Pe = 0. For this case, the time-dependent concentration field
is given by c0(x, τ ) = (2/πr)

∑∞
n=1((−1)n+1/n) sin(nπr) e−n2π2τ (Carslaw & Jaeger

1948; Kronig & Brink 1951), with the volume-averaged concentration given by c̄0(τ ) =
6
∑∞

n=1 e−n2π2τ /n2π2; accordingly, limτ→∞ Nu0 = (2/3)π2, the subscript ‘0’ denoting
the diffusion limit. For sufficiently short times, the diffusive transport occurs across a
thin O(τ 1/2) concentration boundary layer just beneath the drop surface that may now
be approximated as an infinite plane; this yields Nu0(τ ) ≈ 2/

√
πτ for τ � 1. Figure 3

shows Nu0(τ ) obtained from the Langevin simulations, alongside both the exact analytical
solution and the short-time asymptote above, and highlights the excellent agreement
between them. As mentioned previously, the short-time asymptote continues to be valid
for all Pe, although for large Pe, it gives way to convection-induced oscillations for
τ � O(Pe−1) (see the inset in figure 4b).

2.3. Boundary element method
The boundary integral formulation for the Stokes equations expresses the velocity field
at any point in terms of distributions of point forces (the single-layer potential) and
point-force dipoles/sources (the double-layer potential) on the surface of the drop. For
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Figure 4. (a) Closed streamlines in a spherical drop octant (Ca = 0, λ = 1), in an ambient planar extension,
along with the corresponding in-plane streamlines (black); the black dotted fixed-point circle corresponds to
E = −0.1628, D ∈ [0, 0.5706]. Inset (i) shows the inplane streamline pattern; inset (ii) shows all streamlines
as ordered pairs on the D–E plane (same colour code as the main plot). (b) Plot of limτ→∞ Nu/Nu0 vs Pe for
planar extension (Ca = 0, λ = 1); the Nu(τ )/Nu0-curves appear in an inset.
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an interior point x0, it may be written in non-dimensional form as (Pozrikidis 1992, 2002;
Kennedy et al. 1994)

uj(x0) = Ca
λ

u∞
j (x0) − 1

8πλ

∫
S
�fi(x)Gij(x, x0) dS(x)

+ 1 − λ
8πλ

∫
S

ui(x)Tijk(x, x0)nk(x) dS(x). (2.8)

In the above relation, S is the surface of the deformed drop and n is the unit normal
pointing into the ambient fluid. The first term on the right-hand side corresponds to the
imposed flow u∞(x) = Γ · x with Γ defined in § 2.1. In the second term, �fi(x) = (σij −
σ̂ij)nj is the jump in the interfacial force density, while the kernels of the single- and
double-layer potentials, G and T , are the Stokeslet and the associated stress tensor, given
by Gij(x, x0) = δij/|x̂| + x̂ix̂j/|x̂|3 and Tijk(x, x0) = −6(x̂ix̂jx̂k/|x̂|5), where x̂ = x − x0.
Combining the boundary integral representations for an interior and exterior point x0 (the
latter being given by (2.8) but without the λ) and, then, suitably combining the limiting
forms of these representations for x0 approaching the surface of the drop, one obtains the
following Fredholm integral equation of the second kind governing the interfacial velocity
field:

uj(x0) = 2Ca
1 + λu∞

j (x0) − 1
4π(1 + λ)

∫
S
�fi(x)Gij(x, x0) dS(x)

+ 1 − λ
4π(1 + λ)

∫ PV

S
ui(x)Tijk(x, x0)nk(x) dS(x), (2.9)

where PV signifies the improper integral that results from the double-layer potential for x0
on S (Pozrikidis 1992). For λ = 1, (2.9) reduces to a much simpler explicit relation for the
velocity field:

uj(x0) = Ca u∞
j (x0) − 1

8π

∫
S
�fi(x)Gij(x, x0) dS(x). (2.10)

For finite Ca, we obtain the interior velocity field by numerically solving either (2.9) or
(2.10), and then use it as an input for the Langevin simulations to obtain Nu.

The boundary element method (BEM) simulations start from an initially spherical drop,
with this surface discretised into a large number of triangular elements. Each element is
assigned an array of six marker points (nodes), leading to a system of linear equations for
the nodal velocity fields which has to be solved at every time step, for λ /= 1. The nodal
velocity field values are then used in evaluating the surface integrals in (2.9) or (2.10)
and, thence, the interfacial velocity field. One then uses the latter to evolve the surface,
the time step chosen for this evolution being small enough for numerical convergence.
This eventually leads to a steadily deformed surface for Ca values less than the threshold
for breakup. Note that the aforementioned procedure is along the same lines as in earlier
efforts; see, for instance, Pozrikidis (1992, 2002) and Kennedy et al. (1994). Once steady
state is achieved, the velocity field at a given interior point may be obtained by using
the original boundary integral representation, (2.8); the contribution of each triangular
element to the surface integrals in (2.8) is accounted for via an interpolation process.
It is this (appropriately interpolated) interior velocity field, associated with the steadily
deformed drop, that is then used to convect the tracers in the Langevin simulations, with
the absorbing boundary condition being implemented at the deformed drop boundary. It
is worth mentioning that the streamline topology for small but finite Ca is particularly
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sensitive to the number of surface elements, requiring sufficiently high resolution for
accurate results. The lack of resolution is very likely the reason the deformation-induced
change in streamline topology went unnoticed in earlier efforts (Rallison 1981; Kennedy
et al. 1994). We choose a much larger number of surface elements compared to the said
efforts, and for each such choice, two sets of interpolation points (13 and 19). Additional
information regarding the BEM computations is given in Appendix B.

3. Scalar transport in an ambient planar extensional flow

3.1. Transport from a spherical drop
The interior velocity field û(x), given in Appendix A, may be used to characterise the
interior streamline topology. For Ca = 0, almost all interior streamlines are closed, and
may be obtained as the curves of intersection of two one-parameter families of invariant
surfaces (Cox, Zia & Mason 1968; Torza et al. 1971; Powell 1983; Krishnamurthy &
Subramanian 2018a,b). Denoting the parameters as D and E, the invariant surfaces are
x3 = D(1 − r2)−1/3 and

x2 = ±r
(

1
2

− (1 − β)(1 + λ)
2r2(1 + β)

+ E
r2(1 − r2)2/3

)1/2

, (3.1)

with −0.1628 ≤ E ≤ 0.1628 and −0.5706 ≤ D ≤ 0.5706; for β = 1, both families
are independent of λ. Each ordered pair (D, E) corresponds to a closed streamline
(Krishnamurthy & Subramanian 2018a), the exceptions being fixed (stagnation) points,
and streamlines connecting them. Figure 4(a) depicts the closed streamlines in an octant
of a spherical drop, along with the quarter-circle of fixed points that ‘threads’ these
streamlines, for an ambient planar extensional flow. The in-plane streamlines (D = 0) in
the corresponding quadrant are also shown (in black). The streamlines in other octants
may be obtained by symmetry; the quarter-circle, when extended thus, leads to two
orthogonally oriented fixed-point circles of identical radii that intersect at (0, 0, ±√

3/5).
Figure 4(b) shows Nu/Nu0 in the long-time limit as a function of Pe, for Ca =

0 and λ = 1, for an ambient planar extension; Nu0 = (2/3)π2 being the long-time
diffusive rate of transport (Pe = 0). The normalised transport rates for arbitrary times
are shown in an inset. For small Pe, the time-dependent curves in the inset decay
monotonically to a long-time plateau, reflecting the self-adjointness of the diffusion
operator (real and negative eigenvalues). For large Pe, the decay has an oscillatory
character, reflecting transient adjustment of the iso-scalar contours and streamlines on
time scales of O(γ̇ −1Pe1/3), driven by shear-enhanced diffusion (Christov & Homsy 2009;
Juncu 2010). The main figure shows limτ→∞ Nu/Nu0 increasing from unity to a plateau
value of 4.1 for Pe � O(100). The plateau arises because tracers are rapidly convected
around closed streamlines for larger Pe, with the transport controlled by the much
slower rate at which they diffuse across these streamlines. Thus, the plateau value above
corresponds to the rate of diffusion across closed streamlines that are coincident with
iso-scalar contours (Frankel & Acrivos 1968; Acrivos 1971). It is worth mentioning that
one may, in principle, derive a streamline-averaged diffusion equation in the coordinates D
and E, that governs the scalar concentration for Pe → ∞, and whose solution should yield
the 2D-diffusion-limited plateau; however, the streamline-averaged diffusivity tensor has
to be determined numerically even for the simplest scenario of an ambient uniform flow
(Kronig & Brink 1951).

The λ-independence of the streamline topology for planar extension implies that the
effect of λ may be simply accounted for by replacing Pe by Pe(1 + λ)−1, as in figure 4(b).
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Figure 5. (a) A pair of spiralling streamlines, in a deformed-drop octant, for an ambient planar extension, for
Ca = 0.005, λ = 1: the blue and magenta curves correspond to initial points (0.7, 0, 0.05) and (0.5, 0, 0.3),
respectively, with black arrows indicating the direction of spiralling; the dark green curve is the inner limiting
torus. (b) Same streamlines as curves in the D–E plane; insets highlight the two-time-scale structure of the
D–E plane curves, and the decreasing amplitude of the fast wiggles when Ca reduces from 0.005 to 0.001.
(c) limτ→∞ Nu/Nu0 vs Pe Ca(1 + λ)−1 for various Ca for an ambient planar extension; � and © correspond
to λ = 0 and 1, respectively. Inset shows the corresponding curves from BEM-cum-Langevin simulations for
Ca = 0.005 (compared with the O(Ca) theory to illustrate good agreement) and Ca = 0.04; the double-headed
arrows indicate the lengths of the respective primary plateaus.

While the interior streamline topology exhibits a non-trivial dependence on λ for other
planar linear flows (Powell 1983; Krishnamurthy & Subramanian 2018b), precluding the
above use of a rescaled Pe, almost all interior streamlines are still closed for Ca = 0, and
as a result, Nu exhibits a Pe-dependence analogous to planar extension (see figure 8). The
large-Pe diffusion-limited plateau equals 1.08 for λ = 1 for simple shear; as expected,
Nu/Nu0 = 1 for solid-body rotation, regardless of Pe or λ.

3.2. Transport from a deformed drop
Figure 5(a) depicts a pair of streamlines within a weakly deformed drop (Ca small but
finite) in an ambient planar extension. Each streamline has a tightly spiralling character,
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winding densely around an invariant torus for sufficiently long times, with these tori
foliating the interior of the drop octant. The outer limiting torus comprises the surfaces
of the deformed octant (that include portions of the x1 ± x2 = 0 planes), and a perturbed
form of the quarter-circle of fixed points in figure 4(a); the inner limiting torus is a
closed curve (shown in green in figure 5a) that loops around the perturbed quarter-circle.
Here D and E are no longer constant along a finite-Ca streamline, but instead vary on a
time scale of O(Ca−1γ̇ −1) that, for small Ca, is much longer than the O(γ̇ −1) period
of circulation around the zero-Ca closed streamlines. This two-time-scale structure is
illustrated in figure 5(b), where small-amplitude fast oscillations are seen to be superposed
on a slow O(Ca) drift in the D–E plane. The amplitude of these oscillations decreases
with decreasing Ca, as illustrated via the pair of insets in figure 5(b). For Ca → 0, but for
times much greater than O(Ca−1γ̇ −1), the streamlines must asymptote to smooth closed
contours in the D–E plane. These contours may, in principle, be obtained from solving an
autonomous system of ordinary differential equations (ODEs) in (D, E), derived using the
method of averaging, implying the existence of an adiabatic invariant for small but finite
Ca. The latter is a function of D and E that remains constant over times of O(Ca−1γ̇ −1)
and, therefore, serves to parameterise the said contours: the method of averaging has
been applied in Sabarish & Subramanian (2023) to the exterior finite-Ca streamlines.
A closed-form expression for the analogue of the above adiabatic invariant has been
derived for the simpler problem of a translating drop (Bajer & Moffatt 1990, 1992).

Figure 5(c) shows the long-time limiting values of limτ→∞ Nu/Nu0 as a function of
Pe Ca(1 + λ)−1 for Pe � 108, and for Ca ranging from 5 × 10−4 to 0.01. The latter
value is about six times less than the critical Ca for breakup (Bentley & Leal 1986a),
ensuring the validity of the weak deformation assumption and, thence, of the O(Ca)

velocity field. Interestingly, for a deformed drop in an ambient planar extension, Nu/Nu0
is no longer bounded from above by 4.1 which now only serves as a primary plateau
attained when Pe � 1, Pe Ca � 1. As Pe Ca increases beyond O(100), Nu/Nu0 rises
above 4.1, eventually saturating in a higher secondary plateau for Pe Ca → ∞. While
the primary plateau is determined by diffusion along the two coordinates orthogonal
to the one along the zero-Ca closed streamlines, the secondary plateau is determined
by one-dimensional diffusion across invariant tori traced out by finite-Ca spiralling
streamlines in figure 5(a). The secondary plateau value is Ca-dependent in general, but
approaches 22.3 for Ca → 0. Thus, remarkably, for any finite Ca however small, one
obtains a nearly six-fold enhancement over the primary plateau (≈4.1) for sufficiently
large Pe(� Ca−1).

While the zero-Ca velocity field for planar extension exhibits a simple
(1 + λ)−1-scaling, the O(Ca) correction has a more complicated dependence on λ (see
Appendix A). Nevertheless, the secondary plateaus for λ = 0 and 1, in figure 5(c), nearly
coincide for small Ca, suggesting that the underlying adiabatic invariant parameterising
the small-Ca tori is only weakly dependent on λ. Towards validating our results based on
the O(Ca) velocity field, and extending them to larger Ca, we have used the boundary
integral method (or BEM; see § 2.3 and Appendix B) to compute the finite-Ca velocity
field that is then used in the Langevin simulations. The results of the BEM-cum-Langevin
simulations are shown as an inset in figure 5(c), and confirm the increase in Nu/Nu0
beyond the primary plateau even for finite Ca. The results for the higher Ca (= 0.04) show
the gradual disappearance of the separation between the primary and secondary plateaus
with increasing Ca, and an increase in the secondary plateau value.

To understand the mechanism underlying the emergence of the secondary plateaus in
figure 5(c), we first consider a spherical drop (Ca = 0). Figure 6(a) shows the (normalised)
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Figure 6. (a) Angle-averaged concentration profiles corresponding to the slowest decaying eigenmodes,
plotted as a function of r, for pure diffusion (Pe = 0; c(r) ∝ sin(πr)/r) and for an ambient ambient planar
extension; Pe = 106, λ = 1 in the latter case. (b) The angle-averaged concentration profiles, as a function
of radial distance r, for the slowest decaying eigenmodes for Ca = 0 (λ = 1, Pe = 3000) and 0.001 (λ = 1,
Pe = 3000, 108), for an ambient planar extension.

angle-averaged interior concentration profiles for pure diffusion and an ambient planar
extension, as a function of the radial distance (r), for Ca = 0. These correspond to
the long-time limit when the concentration profile in a given simulation decreases in
amplitude, while preserving its shape; as already seen in Figure 4(b) (inset), this long-time
regime manifests as a plateau in the Nu vs time plots. In figure 6(a), the concentration
decreases monotonically from the drop center for pure diffusion, but is a non-monotonic
function of r for planar extensional flow, with the peak concentration occurring along
the fixed point circles of radius

√
3/5 identified in figure 4(a); the concentration peak

at r = √
3/5 persists despite the angle-averaging. In light of this, one may interpret the

long-time transport, on the zero-Ca large-Pe primary plateau, as occurring due to diffusion
from the fixed point circles to the drop surface. The angle-averaged diffusion length
(1 − √

3/5) being smaller than the drop radius (unity), leads to the enhanced transport
associated with the large-Pe plateau in figure 4(b): limτ→∞ Nu/Nu0 = 4.1 as opposed to
Nu/Nu0 = 1 for pure diffusion.

Next, in figure 6(b), we compare the angle-averaged concentration profiles, again for an
ambient planar extension, for Ca = 0 and 0.001. The concentration profiles are plotted for
two Pe values chosen such that the smaller Pe(= 3000) corresponds to the primary plateau
(Pe � 1, Pe Ca � 1), and the larger Pe (= 108) corresponds to the secondary plateau
(Pe Ca � 1). The zero-Ca and finite-Ca profiles are virtually coincident at the smaller
Pe, implying that the primary plateau is insensitive to drop deformation. In contrast, at
Pe = 108, the finite-Ca profile differs markedly from the zero-Ca one, this difference being
a reflection of the qualitatively different finite-Ca streamline topology. The concentration
now peaks along the innermost torus, the singular green curve shown in figure 5(a), and
this leads to the angle-averaged concentration profile exhibiting two peaks, corresponding
to the inner and outer halves of the aforementioned singular curve. The outer peak is much
closer to the drop surface than the original zero-Ca peak, resulting in an O(1) reduction
in the effective diffusion length for any non-zero Ca and, thus, a substantial transport
enhancement associated with the secondary plateau.
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Figure 7. Concentration contours for an ambient planar extension, at the cross-section x3 = 0.5, for
(a) Ca = 0, Pe = 5 × 106, λ = 1 and (b) Ca = 0.001, Pe = 108, λ = 1; colour bars on the right-hand side
denote concentration magnitudes. Magenta dots denote the intersections of the zero-Ca fixed-point circles
with the plane x3 = 0.5, and correlate with the concentration maxima in (a). Red dots, corresponding to the
intersections of the innermost torus (singular curve), for Ca = 0.001, correlate with the maxima in (b); all
interior streamlines are depicted as black curves.

The concentration profiles, for Pe pertaining to the primary and secondary plateau
regimes, are illustrated in figure 7 via contour plots; figure 7(a) corresponds to Ca = 0,
Pe = 5 × 106 and figure 7(b) corresponds to Ca = 0.001, Pe = 108. Since there is no
difference between the large-Pe concentration profiles for Ca = 0, and that on the primary
plateau for non-zero Ca, figure 7(a) may be regarded as representative of the primary
plateau. Note that both figures are for a fixed non-zero x3 (= 0.5) because the innermost
torus (singular curve) in figure 5(a), that must correspond to the concentration maximum
for Pe on the secondary plateau, does not intersect the x1–x2 plane. Expectedly, the
concentration maxima in figure 7(a) correlate with the points of intersection of the two
fixed point circles with the plane x3 = 0.5 (shown as pink dots). In contrast, figure 7(b)
shows the bifurcation of the original zero-Ca peak value into a pair of (slightly smeared
out) maxima for small but finite Ca, in each of the four quadrants. The bifurcated maxima
correlate well with the points of intersection of the singular curve (shown as red dots), and
are consistent with the twin-peaked concentration profile in figure 6(b).

4. Scalar transport in other ambient planar linear flows

4.1. Transport from a spherical drop
Figure 8(a) depicts the inplane streamline pattern for Ca = 0, while figure 8(b,c)
characterise the geometry of the off-plane zero-Ca interior streamlines, for a drop
immersed in an ambient hyperbolic planar linear flow (with β = 0.5). The absence
of the four-fold rotational symmetry characteristic of planar extension implies that the
interior streamline pattern no longer exhibits an eight-fold symmetry as in figure 4(a).
The analogues of the two fixed-point circles in figure 4(a) now have differing radii,
and organise the off-plane streamlines into three distinct groups, and this is indicated
by the numerical labels in figure 8(a). Each of the invariant regions in figure 8(a)
is characterised by a different φ-interval, φ being the azimuthal angle in the x1–x2
plane. Region 1 corresponds to φ1 ≤ φ ≤ π − φ1 and π + φ1 ≤ φ ≤ 2π − φ1; region 2
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Figure 8. Closed streamlines within a spherical drop (Ca = 0), in an ambient planar linear flow with β = 0.5;
λ = 1. (a) The inplane streamline pattern serves to demarcate three invariant regions (regions 1, 2 and 3),
separated by pairs of homoclinic (regions 1 and 2) and heteroclinic (regions 2 and 3) orbits which are shown
as solid black curves; the expressions for the threshold angles φ1 and φ2 indicated, in terms of β and λ, are
given in the text; φ1 = 58.19◦ and φ2 = 24.09◦ in the figure. (b) and (c) Depictions of the three-dimensional
closed streamlines in the three different regions; each of these subfigures includes a pair of black dotted curves
corresponding to the fixed-point circles. The streamlines (in red and blue) that encircle the fixed-point circles
appear in (b); those (in pink) whose projections onto the x1–x2 plane encircle the drop centre appear in (c).
(d) Plot of limτ→∞ Nu/Nu0 vs Pe, for λ = 1, for a drop immersed in different members of the planar linear
flow family, ranging from simple shear flow (β = 0) to planar extension (β = 1), for Ca = 0; the primary
plateau values have been indicated.

corresponds to 0 ≤ φ ≤ 2π; while region 3 corresponds to 2π − φ2 ≤ φ ≤ φ2 and π −
φ2 ≤ φ ≤ π + φ2, where φ1 and φ2 are functions of β and λ; a fixed-point analysis of the
system dx/dt = û(0)(x) yields φ1 = tan−1 √

(5 + β + 2λ(1 − β))/(5β + 1 − 2λ(1 − β))

and φ2 = tan−1 √
(2β − λ(1 − β))/(2 + λ(1 − β)). Off-plane streamlines belonging to

two of the aforementioned regions (regions 1 and 3) are shown in figure 8(b), while
those belonging to the third group (region 2) appear in figure 8(c). Taken together, these
three groups of streamlines fill up a drop hemisphere, with the streamlines in the other
hemisphere being obtained via a reflection-symmetry.

As already mentioned, for ambient planar linear flows other than planar extension, the
interior streamline pattern exhibits a non-trivial λ-dependence. Nevertheless, and despite
the additional geometrical complexity, almost all interior streamlines remain closed curves
both for β = 0.5, as evident from figure 8(a–c), and for other β values (not shown). As
a result, scalar transport remains diffusion-limited in the limit Pe → ∞. Thus, as shown
in figure 8(d) for β = 0, 0.25, 0.5, 0.75 (and 1), with λ = 1, the limτ→∞ Nu/Nu0 − Pe
curves, for Ca = 0, exhibit a Pe-dependence analogous to that already seen in figure 4(b)

997 A39-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

79
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.796


P.K. Singeetham, S.P. Thampi and G. Subramanian

for β = 1. All of the Nu-curves start from unity for Pe → 0, and eventually saturate in
a (λ, β)-dependent large-Pe diffusion-limited plateau. For all λ, the plateau value is a
monotonically decreasing function of β. For λ = 1 in particular, the plateau reduces from
4.1 for planar extension, to 1.08 for simple shear flow and, finally, to unity (no convective
enhancement) for solid-body rotation (not shown).

4.2. Transport from a deformed drop
Figure 9(a,b) depict successive portions of a single finite-Ca interior streamline, that
starts from (x1, x2, x3) ≡ (0.01, 0.05, 0.1), again for an ambient hyperbolic planar linear
flow with β = 0.5. Similar to the planar extensional case in figure 5(a), the finite-Ca
streamline is no longer closed, and has a tightly spiralling character instead. A single
turn of the spiral is completed in a time of O(γ̇ −1), while the spiralling streamline drifts
slowly across a volume comparable to any of the invariant regions (with projections
as shown in figure 8a) in an asymptotically longer time of O(Ca−1γ̇ −1); similar to
figure 8(a), the direction of the drift is indicated by black arrows. In addition, however,
the finite-Ca streamline is also seen to cross over from one invariant region to another
on time scales even longer than O(Ca−1γ̇ −1), eventually accessing the entire (deformed)
hemisphere. Such crossings are marked by a change in colour of the spiralling streamline
in figure 9(a,b). Thus, in figure 9(a), the streamline starts off (in blue) from the point
(0.01, 0.05, 0.1) in region 1, crossing over from region 1 to region 2 (marked by a change
from blue to pink), and then crossing over to region 3 (change from pink to red) and
reaching the point (−0.85, −0.27, 0.04). In figure 9(b), the streamline continues on from
(−0.85, −0.27, 0.04), is seen to return to region 2, and then crosses over to region 3
(change from pink to red), finally ending up at (0.88, −0.37, 0.08).

The above region crossings are evidently absent for Ca = 0, and were absent for planar
extension even for finite Ca, being precluded by the greater (four-fold) symmetry of the
ambient flow. Thus, the crossings arise, for β /= 1 owing to the drop-deformation-induced
perturbation breaking open the homoclinic and heteroclinic trajectories present in the
originally spherical drop; recall that these trajectories were shown as solid black curves
in figure 8(a). The times corresponding to the aforementioned region crossings appear
to be random, this randomness being indicative of the emergence of Lagrangian chaos
for small but finite Ca and β /= 1. The onset of chaotic dynamics may be understood
from the fact that broken homoclinic/heteroclinic connections must lead to transversely
intersecting stable and unstable manifolds within the deformed drop (Rom-Kedar, Leonard
& Wiggins 1990). A short stretch of a numerically generated sequence of region crossings,
for Ca = 0.005, appears in figure 9(c), where the crossings have been characterised via a
plot of φ as a function of time. This depiction exploits the fact that, independent of x3,
each of the three originally invariant regions is characterised by a different φ-interval. The
threshold angles φ1 and φ2 demarcating the different φ-intervals were defined earlier, and
for the particular choice of parameters in figure 9(c), are φ1 = 58.19◦ and φ2 = 24.09◦.

The altered finite-Ca streamline topology described previously leads to a transport
enhancement, for sufficiently large Pe, similar to the planar extensional case discussed
in § 3.2. This is seen in figure 10 which shows the limτ→∞ Nu/Nu0 − Pe curves, for
Ca = 0.001 and 0.005 with λ = 1, possessing both primary and secondary plateaus; the
primary plateaus are those associated with a spherical drop, and were already shown in
figure 8(d). In fact, for 0 < β < 1, the difference between the primary and secondary
plateaus is seen to be greater than that for planar extension: for instance, for simple shear
flow (β = 0), for Ca = 0.005, the secondary plateau value (9.2) is almost nine times the
primary one (1.08). An intriguing feature of the Nu–Pe curve, for β = 0.75, Ca = 0.005,
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Figure 9. (a) A finite-Ca spiralling streamline, within a deformed-drop hemisphere, in an ambient planar linear
flow with β = 0.5; Ca = 0.01, λ = 1. The streamline starts from (x1, x2, x3) ≡ (0.01, 0.05, 0.1), with black
arrows indicating the direction of spiralling in different regions of the drop hemisphere; the black dashed curve
denotes the deformed drop profile in the x1–x2 plane, with the pair of black dotted curves denoting fixed-point
circles. (b) Continuation of the spiralling streamline in (a) for longer times. Note that the colour of the spiralling
streamline in both (a) and (b) changes in accordance with the region that it samples; the colour-coding follows
figure 8(a–c). (c) The apparently chaotic region crossings, of a single finite-Ca streamline, starting from
(0.01, 0.05, 0.2), illustrated via a φ vs τ plot for β = 0.5, λ = 1 and Ca = 0.005; τ = Ca t. Numerical labels
denote the particular region of the zero-Ca streamline pattern sampled (see figure 8a); accompanying insets
highlight the multiple time scale structure of the finite-Ca streamline.

is the continued slow increase of Nu even for the largest Pe values, indicating a much
more gradual approach towards a secondary plateau; unlike the planar extension, the
angle-averaged concentration profile (not shown) continuously changes along the slowly
rising curve. The zero-Ca streamline pattern for β = 0.75 has homoclinic and heteroclinic
connections similar to those shown in figure 8(a), but with the different invariant regions
being comparable in size, which in turn leads to a greater frequency of (random) region
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Figure 10. Plot of limτ→∞ Nu/Nu0 vs Pe Ca, for λ = 1, for a drop immersed in different members of the
planar linear flow family; circles (◦) and crosses (×) correspond to Ca = 0.001 and 0.005, respectively.

crossings. The delayed plateauing of the Nu/Nu0 curve, for β = 0.75, might therefore be
related to a tertiary enhancement regime at still larger Pe, arising from Lagrangian chaos.

5. Conclusions

By considering a drop in a range of ambient shearing flows, we have shown analytically
and numerically, for the first time, the transition of closed interior streamlines, to spiralling
ones, with the onset of drop deformation. Remarkably, and in contrast to earlier efforts, the
altered streamline topology leads to a singular enhancement in transport rates: transport
from even an infinitesimally deformed drop is manyfold greater than that from a spherical
one. Importantly, the singular role of streamline topology, and the associated transport
enhancement, extends beyond drops. Deformation-induced transport enhancement must
occur for virtually all other suspended elastic microstructures, including capsules, vesicles
and red blood cells in the tank-treading mode. There also exist implications for cytoplasmic
streaming in large Eukaryotic cells, where closed streamlines lead to diffusion-limited
transport (Goldstein, Tuval & van de Meent 2008).

The interior transport problem examined here is an inherently unsteady one, with the
concentration field decaying to zero, for sufficiently long times, for all cases considered.
While Nu has been defined in a manner as to asymptote to a time-independent plateau,
one may nevertheless wonder if there exists an alternate steady-state definition of scalar
transport. A steady state may be achieved by including, for instance, a spatially uniform
source within the drop, that, for sufficiently long times, compensates for the absorption
at the surface. This is equivalent to a constant forcing on the right-hand side of (2.1).
At steady state, the flux at the surface may then be computed in the usual manner. For
pure diffusion, the steady-state concentration field may be obtained analytically, being
proportional to (1 − r2), and the associated flux may then be used for purposes of
normalisation, when defining Nu. While an analytical expression is not available for a
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Figure 11. The concentration profiles corresponding to steady state (due to a spatially uniform source), and
that corresponding to the slowest decaying eigenmode, as a function of radial distance r: (a) pure diffusion
(c(r) ∝ (1 − r2)/6 and c(r) ∝ sin(πr)/r) and (b) an ambient planar extension (Pe = 106, λ = 1).

deformed drop in an ambient linear flow, the steady-state concentration field in this general
case may nevertheless be shown to be the time integral of the transient one (one in the
absence of the source forcing), and may therefore be obtained via a numerical integration
(from t = 0 to ∞) of the transient field obtained via Langevin simulations (Sabarish 2021).
In this way, one may evaluate the steady-state flux at finite Pe, with the ratio of this flux
to the steady state diffusive one above yielding an alternate non-dimensional measure
of the transport enhancement, one that only involves steady-state quantities. The two
enhancement measures above are not the same. That based on the transient concentration
field, and that has been used to generate the Nu vs Pe plots in this paper (figures 4b, 5c,
8d and 10), involves only the slowest decaying eigenmode, while the steady-state measure
involves all the eigenmodes of the convection–diffusion operator. Nevertheless, the nature
of the Nu–Pe relationship is expected to remain insensitive to this change in definition,
owing to the close resemblance of the slowest decaying eigenmode to the steady-state
concentration profile, as illustrated in figure 11(a,b), for pure diffusion and for an ambient
planar extension.

The current literature does not recognise the role of streamline topology in transport
processes, implicitly assuming drop deformation to only have a perturbative effect on the
scalar transport rate. In order to further emphasise the critical role of streamline topology,
we therefore briefly examine a drop in an ambient biaxial axisymmetric extension.
Axisymmetry of the ambient flow in this case implies that the finite-Ca streamlines
continue to be closed curves in a meridional plane, leading to the large-Pe transport
being diffusion-limited even for a deformed drop. Indeed, as shown in figure 12(a,b), the
limτ→∞ Nu/Nu0 vs Pe curves, for biaxial axisymmetric extension, only show a single
large-Pe plateau for both zero and finite Ca, with the plateau value only exhibiting a
perturbative increase from 4.5 for Ca = 0 to about 4.9 for Ca = 0.01. The insets in the
said figures show that the nature of the concentration contours remain virtually unaltered
for non-zero Ca. In fact, the lack of appreciation of the role of streamline topology in
convective enhancement has led to the few efforts in literature, which analyse transport
from deformed drops, to only consider an ambient (uniaxial or biaxial) axisymmetric
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Figure 12. (a) Plot of limτ→∞ Nu/Nu0 vs Pe for an axisymmetric biaxial extension for Ca = 0; the inset
shows the closed streamline pattern in a meridional plane, with black arrows denoting the direction of
circulation, along with the concentration contours. (b) Plot of limτ→∞ Nu/Nu0 vs Pe Ca, for various Ca
and λ = 1, for a deformed drop in an axisymmetric biaxial extension; the inset emphasises the invariance
of the closed-streamline pattern, and the concentration contours, to drop deformation. Both insets correspond
to Pe = 108, λ = 1.

extension; see, for instance, Favelukis & Lavrenteva (2013, 2014), Favelukis (2015, 2016)
and Liu et al. (2018, 2019). As expected from the above discussion, all of these efforts
find drop deformation to only have a perturbative effect. Note that, unlike Ca = 0, the
finite-Ca transport is not invariant to ambient flow reversal in the limit Pe → ∞ (Brenner
1967). Nevertheless, since the effect of drop deformation remains perturbative for both
uniaxial and biaxial extension, the respective large-Pe plateaus are expected to differ only
by O(Ca).

The significance of the disparate Nu–Pe relationships for planar (figure 5c) and
axisymmetric (figure 12b) extensional flow is best appreciated when one accounts
for the virtually identical character of these two flows in all other scenarios. Both
are prototypical strong flows that lead to material points separating exponentially in
time. Polymer molecules in both flows undergo a coil-stretch transition, leading to an
extension-thickening rheology and a dramatic departure from Newtonian behaviour. In
addition, the critical Ca, for breakup, exhibits an identical λ-dependence for both flows,
transitioning from a λ−1/6-scaling regime for small λ to a large-λ plateau (Acrivos &
Lo 1978; Hinch & Acrivos 1980), pointing to the analogous nature of drop deformation
and breakup. Indeed, the original asymptotic analysis for the critical Ca in the limit
λ→ 0, for planar extension, relied on treating this flow as an ambient axisymmetric
extension plus a three-dimensional perturbation (Hinch & Acrivos 1980); the results for
axisymmetric extension had been derived in an earlier effort (Acrivos & Lo 1978), and
those for planar extension were obtained for finite amplitudes of the said perturbation.
Despite the closely analogous behaviour in all of the aforementioned scenarios, it is shown
here that the differing nature of the finite-Ca streamlines leads to a profound difference in
scalar transport characteristics.
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Appendix A. The velocity and the pressure fields, to O(Ca), for a drop in an ambient
planar linear flow

In this appendix, we provide detailed expressions for both interior and exterior velocity
and pressure fields induced by a neutrally buoyant drop in an ambient planar linear
flow. For small Ca and λCa � 1, the flow fields have been done across several earlier
efforts (Cox 1969; Barthes-Biesel & Acrivos 1973; Rallison 1980; Leal 2007; Vlahovska
et al. 2009; Ramachandran & Leal 2012). One expands the velocity and pressure fields
as û = û(0) + Ca û(1) (u = u(0) + Ca u(1)) and p̂ = p̂(0) + Ca p̂(1) ( p = p(0) + Ca p(1)),
respectively, with the expressions for the O(1) and O(Ca) fields being given by

û(0) = Ω · x + (d(0)
2 − 6d(0)

3 r2)E · x + 12d(0)
3

5
x(x · E · x), (A1)

p̂(0) = −126d(0)
3

5
(x · E · x), (A2)

û(1) =
(

d(1)
5 r2

2
+ d(1)

7
2

+ d(1)
15 − 3d(1)

16 r2 − 120d(1)
23 r4

7

)
x(E : E)

+ (d(1)
13 − 6d(1)

14 r2 − 6d(1)
16 r2 + 120d(1)

23 r4)(E · E) · x

−
(

3d(1)
5
2

− 15d(1)
16 − 360d(1)

23 r2

7

)
x(x · (E · E) · x)

+ (15d(1)
14 − 420d(1)

23 r2)(x · E)(x · E · x) + 120d(1)
23 x(x · E · x)2

+ (d(1)
18 + 3d(1)

25 r2)(Ω · E) · x + (d(1)
19 − 3d(1)

25 r2)(E · Ω) · x

−
(

3d(1)
8
2

+ 15d(1)
25

)
x(x · (Ω · E) · x), (A3)

p̂(1) = (d(1)
5 r2 + 6d(1)

6 r4 + d(1)
7 )E : E − (3d(1)

5 + 60d(1)
6 r2)x · (E · E) · x

+105d(1)
6 (x · E · x)2 − 3d(1)

8 x · (Ω · E) · x, (A4)

u(0) = Ω · x +
(

1 − 6c(0)
3

r5

)
E · x +

(
c(0)

1
2r5 + 15c(0)

3
r7

)
x(x · E · x), (A5)
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p(0) = c(0)
1
r5 (x · E · x), (A6)

u(1) =
(

c(1)
5

2r3 + 3c(1)
6

r5 − 3c(1)
16

r5 + 30c(1)
23

r7

)
x(E : E) +

(
6c(1)

6
r5 − 6c(1)

16
r5 + 120c(1)

23
r7

)

×(E · E) · x −
(

3c(1)
5

2r5 + 30c(1)
6

r7 − 15c(1)
16

r7 + 420c(1)
23

r9

)
x(x · (E · E) · x)

−
(

15c(1)
6

r7 + 420c(1)
23

r9

)
(x · E)(x · E · x) +

(
105c(1)

6
2r9 + 945c(1)

23
r11

)
x(x · E · x)2

+ 3c(1)
25

r5 (Ω · E) · x − 3c(1)
25

r5 (E · Ω) · x −
(

3c(1)
8

2r5 + 15c(1)
25

r7

)
x(x · (Ω · E) · x),

(A7)

p(1) =
(

c(1)
5
r3 + 6c(1)

6
r5

)
E : E −

(
3c(1)

5
r5 + 60c(1)

6
r7

)
x · (E · E) · x

+ 105c(1)
6

r9 (x · E · x)2 − 3c(1)
8

r5 x · (Ω · E) · x. (A8)

The deformed drop shape, to O(Ca), is given by

r = 1 + Caf (0), (A9)

where f (0) = b(1)
1 E : nn. The expressions for the unknown constants c( j)

i , d( j)
i (i = 1 −

25) and b(1)
1 , appearing in the above equations, are as follows:

c(0)
1 = −2 + 5λ

λ+ 1
, c(0)

2 = 0, c(0)
3 = λ

6λ+ 6
,

d(0)
1 = 21λ

2(λ+ 1)
, d(0)

2 = − 3
2λ+ 2

, d(0)
3 = − 5

12(λ+ 1)
,

⎫⎪⎪⎬
⎪⎪⎭ (A10)

c(1)
4 = 0, c(1)

5 = 64 + 732λ+ 1179λ2 + 475λ3

140(λ+ 1)3 , c(1)
6 = −352 + 1138λ+ 855λ2

1080(λ+ 1)2 ,

c(1)
8 = (16 + 19λ)2

60(λ+ 1)2 , c(1)
9 = 0, c(1)

12 = 0, c(1)
14 = 352 + 1138λ+ 855λ2

1080(λ+ 1)2 ,

c(1)
15 = 0, c(1)

16 = −1568 + 458λ+ 4915λ2 + 2565λ3

7560(λ+ 1)3 , c(1)
17 = 0, c(1)

18 = 0,

c(1)
19 = 0, c(1)

20 = 0, c(1)
22 = 0, c23 = 64 + 796λ+ 855λ2

15120(λ+ 1)2 , c(1)
24 = 0,

c(1)
25 = −32 + 86λ+ 57λ2

120(λ+ 1)2 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A11)
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d(1)
4 = 0, d(1)

5 = 16 + 83λ+ 76λ2

10(λ+ 1)3 , d(1)
6 = 11(16 + 19λ)

432(λ+ 1)2 ,

d(1)
7 = (32 − 554λ− 703λ2)

60(λ+ 1)2 , d8 = −7(48 + 89λ+ 38λ2)

40λ(λ+ 1)2 ,

d(1)
9 = 0, d(1)

10 = 0, d(1)
11 = 0, d(1)

12 = 0, d(1)
13 = −9(16 + 3λ− 19λ2)

140(λ+ 1)3 ,

d(1)
14 = −2(16 + 19λ)

27(λ+ 1)2 , d(1)
15 = (−224 + 3942λ+ 8853λ2 + 4579λ3)

840(λ+ 1)3 ,

d(1)
16 = (400 + 1307λ+ 988λ2)

756(λ+ 1)3 , d(1)
17 = 0, d(1)

18 = −304λ2 + 617λ+ 304
80(λ+ 1)2 ,

d(1)
19 = 304λ2 + 617λ+ 304

80(λ+ 1)2 , d(1)
20 = 0, d(1)

21 = 0, d(1)
22 = 0,

d(1)
23 = − 7(16 + 19λ)

4320(λ+ 1)2 , d(1)
24 = 0, d(1)

25 = 48 + 89λ+ 38λ2

48(λ+ 1)2 ,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A12)

b(1)
1 = 16 + 19λ

8(λ+ 1)
. (A13)

Here, the superscripts j = 0 and 1 correspond to the O(1) and O(Ca) terms in the
respective disturbance fields. While the above expressions pertain to a general linear flow,
the Cartesian components of the interior velocity field, that result for an ambient planar
linear flow, are given by

û(0)
1 = x2((2 − 2β)λ− 5β − 1 + (β + 1)(x2

1 + 5x2
2 + 5x2

3))

2(λ+ 1)
, (A14)

û(0)
2 = x1((2β − 2)λ− β − 5 + (β + 1)(5x2

1 + x2
2 + 5x2

3))

2(λ+ 1)
, (A15)

û(0)
3 = −2(β + 1)x1x2x3

λ+ 1
, (A16)

û(1)
1 = −((β + 1)(19λ+ 16)x1(9(−127β + 239λ+ 139) + 560(β + 1)(λ+ 1)x4

1

− x2
1(−378(β − 1)λ2 + (191β + 2081)λ+ 677β + 350(β + 1)(λ+ 1)x2

2

− 910(β + 1)(λ+ 1)x2
3 + 1811) − 2870(β + 1)(λ+ 1)x4

2 − 9x2
2(−β(λ(98λ+ 741)

+ 631) + λ(98λ− 251) + 280(β + 1)(λ+ 1)x2
3 − 337) + 126(β − 1)λ2(5x2

3 − 8)

+ x2
3(573β + 350(β + 1)x2

3 − 1317) + λ(−2259β + 350(β + 1)x4
3

+ 3(509β − 541)x2
3)))/(2520(λ+ 1)3), (A17)

û(1)
2 = ((β + 1)(19λ+ 16)x2(9(−139β + 251λ+ 127) + 2870(β + 1)(λ+ 1)x4

1

+ x2
1(350(β + 1)(λ+ 1)x2

2 + 9(98(β − 1)λ2 − (251β + 741)λ− 337β − 631

+ 280(β + 1)(λ+ 1)x2
3)) − 560(β + 1)(λ+ 1)x4

2 + x2
2(378(β − 1)λ2
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+ (2081β + 191)λ+ 1811β − 910(β + 1)(λ+ 1)x2
3 + 677) + 126(β − 1)λ2(5x2

3 − 8)

− x2
3(−1317β + 350(β + 1)x2

3 + 573) − λ(2151β + 350(β + 1)x4
3

+ 3(509 − 541β)x2
3)))/(2520(λ+ 1)3), (A18)

û(1)
3 = ((β + 1)(19λ+ 16)x3(−35(β + 1)(λ+ 1)x4

1 − x2
1(−3(42(β − 1)λ2

+ (281β + 71)λ+ 167β + 41) + 1050(β + 1)(λ+ 1)x2
2 − 35(β + 1)(λ+ 1)x2

3)

− 35(β + 1)(λ+ 1)x4
2 + x2

2(3λ(71β − 42(β − 1)λ) + 123β + 843λ+ 501

+ 35(β + 1)(λ+ 1)x2
3) + 2(β + 1)(x2

3 − 1)(27(λ− 1)

+ 35(λ+ 1)x2
3)))/(1260(λ+ 1)3). (A19)

The O(1) velocity field, for planar extension, exhibits a simple (1 + λ)−1-scaling
((A14)–(A16) with β = 1), allowing for the λ-dependence to be incorporated into
a re-scaled Péclet number. In contrast, the O(Ca) correction exhibits a complicated
non-factorisable dependence on λ (see (A17)–(A19)), which, in principle, allows for a
non-trivial dependence of the finite-Ca streamline topology on λ.

Appendix B. Validation of BEM results

As indicated in the main article, capturing the change in streamline topology by
computational means requires a resolution that is much higher than that required to obtain
bulk parameters associated with a deformed drop. Towards this end, we present here a
detailed validation of the results obtained from our BEM computations.

We first illustrate the grid-independence of our BEM simulations via macroscopic
drop deformation parameters. Figure 13 shows the Taylor deformation parameter DT =
(L − B)/(L + B) (L and B denoting the major and minor axes of the ellipsoidal drop
in the plane of the flow) as a function of time, for a varying number of surface
elements, along with the time dependent O(Ca) prediction, 2Ca b(1)

1 (1 − exp(t/tc)) with
tc = (2λ+ 3)(19λ+ 16)/40(1 + λ), for an ambient planar extension (Leal 2007). The
BEM results are seen to converge only for N = 20 480 and 32 768. We use N = 20 480 for
the subsequent calculations. Figure 14 presents a more detailed comparison between drop
deformation parameters obtained using the O(Ca) velocity field, and those obtained using
BEM simulations, for N = 20 480 with 13 and 19 interpolation points, for Ca = 0.01, 0.02,
0.03 and 0.04. The first column shows deformed drop profiles in the flow-gradient plane,
the second column shows plots of r − 1 vs φ again in the flow-gradient plane, and the
third column shows Taylor deformation parameters as a function of time. There is good
agreement between theory and simulations for small Ca, which however deteriorates at
larger Ca due to the O(Ca) analysis underestimating the deformation along the extensional
axis, and overestimating it along the compressional one. Importantly, the BEM simulations
yield converged results for 13 and 19 interpolation points. In figure 15, we compare the DT
as a function of Ca with earlier BEM simulations carried out at lower resolution; the results
are in reasonable agreement.

In figure 16, we compare the Nu–Pe curves obtained using the O(Ca) velocity field,
and using the BEM velocity field, for Ca = 0.005. Capturing the Nu-behaviour at large Pe
requires higher resolution (than for the drop deformation above) since the scalar transport
becomes increasingly sensitive to the streamline topology. Accordingly, for N = 5120 and
8192, the BEM Nu-curve already exhibits a noticeable deviation for Pe corresponding
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0.015
0.0180

0.0175

0.0170

BEM-5120-13

BEM-8192-13

BEM-20480-13

BEM-32768-13

O(Ca) theory

1110 12 13

0.010

0.005

DT

0 5

t
10 15

Figure 13. Taylor deformation parameter DT as a function of t for planar extension; Ca = 0.004, λ = 1.
The number of surface elements and interpolation points used in the BEM simulations are indicated;
the solid blue line is the deformation parameter based on O(Ca) theory, given by DT = 2Ca b(1)

1 (1 −
exp(40(1 + λ)t/(2λ+ 3)(19λ+ 16))).

to the primary plateau; it is only for N = 20 480 (with 13 interpolation points) that one
begins to get good agreement with the primary plateau obtained using the O(Ca) velocity
field, and with the subsequent rise for finite values of Pe Ca. Note that, even for these
many elements, the BEM Nu-curve departs from the O(Ca) one prior to the secondary
diffusion-limited plateau. Accurately capturing this plateau requires that the simulations
faithfully capture repeated circuits of fluid elements around complete invariant tori, and
for Ca = 0.005, this require even higher resolutions.

Following the validation plots above, figure 17 presents a comparison of the interior
streamlines, obtained from the O(Ca) velocity field and from BEM simulations, via plots
of x1, x2, and x3 as functions of the scaled time τ = Ca t. The Cartesian coordinates for
both sets of streamlines exhibit a quasi-periodic behaviour with fast and slow oscillations
on time scales of O(γ̇ −1) and O(Ca−1γ̇ −1), respectively. For the smallest Ca = 0.005,
the number of interpolation points plays a significant role in determining the time
over which one obtains an accurate streamline; for instance, for 13 interpolation points,
the BEM computations fail beyond τ ≈ 60, whereas with 19 points, the streamline is
captured for τ � O(100). The situation improves for Ca = 0.01, with both choices of
interpolation points yielding accurate streamlines for τ � O(100). While the accuracy
of BEM simulations improves for larger Ca, with a decreased sensitivity to choice of
interpolation points, there is also a progressively larger deviation from the O(Ca) theory.
Thus, and interestingly, agreement with theory exhibits a non-monotonic trend, being poor
for both very small and O(1)Ca. The latter is expected, and reflects the limitation of the
small Ca theory. The former, although surprising, arises because accurately capturing
the secondary rise (and the eventual plateau) of the Nu-curve requires that the BEM
simulations capture the smallest length scale associated with the finite-Ca flow field:
the pitch of a spiralling streamline. For a given N, there is a threshold Ca below which
the aforementioned pitch reduces below the average size of a surface element, and as a
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Figure 14. Comparison between O(Ca) theory and BEM simulations. Here, each row corresponds to a fixed
Ca (row 1, Ca = 0.01; row 2, Ca = 0.02; row 3, Ca = 0.03; row 4, Ca = 0.04). First column, drop profiles in
the x1–x2 plane; second column, r − 1 vs φ in the x1–x2 plane; third column, Taylor deformation parameter DT
vs t.

result, a spiralling streamline no longer ‘sees’ a smooth drop surface, in turn leading to
a deterioration in the accuracy. On the whole, figure 17 highlights the trade-off between
the requirements for accuracy at small (limited by drop-surface discretisation) and large
(limited by the range of validity of the small-Ca theory) Ca. A combination of the O(Ca)
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Figure 15. Taylor deformation parameter as a function of Ca for a planar extension, with λ = 1: �, present
work with N = 20 480 and 13 interpolation points; �, Rallison (1981) with N = 230 (Rallison 1981); · · · ,
O(Ca) theory; �, O(Ca2) theory (Barthes-Biesel & Acrivos 1973). Note that the capillary numbers in the
previous efforts have been converted to the present definition for purposes of the comparison shown.
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Figure 16. Comparison of limτ→∞ Nu/Nu0 plotted as a function of Pe Ca for Ca = 0.005, λ = 1, for planar
extension: the BEM curves corresponding to 5120, 8192 and 20 480 elements, with 13 interpolation points, are
compared with the Nu-curve based on the O(Ca) velocity field; the inset shows the approach towards the O(Ca)

theory.
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Figure 17. Interior streamlines characterised via x1 vs τ , x2 vs τ and x3 vs τ plots, with τ = Ca t, for various
Ca and λ = 1; all curves start from the point (x1, x2, x3) ≡ (0.4222, 0.2679, 0.3). The red and green curves are
obtained using BEM simulations, while the blue curve corresponds to the O(Ca) theory: (a–c) Ca = 0.005,
(d–f ) Ca = 0.01, (g–i) Ca = 0.02 and ( j–l) Ca = 0.03. All streamlines have a two-time-scale structure, as
evident from the short-time oscillations shown via insets in the first column.
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Figure 18. Finite-Ca streamlines and Nu vs Pe curves for λ = 1. Each row of this figure corresponds to a given
Ca: row 1, Ca = 0.005; row 2, Ca = 0.01; row 3, Ca = 0.04. The first column (a, d and g) shows portions of a
given BEM finite-Ca streamline in physical space, starting from (0.5, 0, 0.225), to highlight its deviation from
a given invariant torus for the two smaller Ca values: the dashed and solid magenta curves, respectively, denote
portions of the streamline during its first and second circuits. The second column (b, e and h) shows x1 vs τ

plots, highlighting the spurious drift of the BEM streamline (pink) onto a limiting torus, for sufficiently long
times, for Ca = 0.005 and 0.01. The third column (c, f and i) depicts Nu vs Pe curves; insets in (c) and ( f ) help
highlight the better agreement with O(Ca) theory for Ca = 0.01.

theory and BEM-based simulations nevertheless helps analyse transport over a range of
Ca extending down to the spherical drop.

Finally, in figure 18, we present the results of BEM simulations with N = 20 480,
for Ca = 0.005 using 19 interpolation points, and for Ca = 0.01 and 0.04 with 13
interpolation points, in an ambient planar extension. The first column depicts portions of a
given finite-Ca streamline in physical space, the second column shows the corresponding
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plots of x1 vs τ over times longer than those in figure 17, along with the corresponding
plot from the O(Ca) theory; the third column plots the Nu–Pe curves. The third column
shows that the best agreement between the O(Ca) theory and BEM–Nu curves is achieved
for Ca = 0.01, consistent with the non-monotonic convergence trend (with increasing Ca)
already seen in figure 17. Figures 18(a) and 18(d) show that, for Ca = 0.005 and 0.01, a
BEM streamline does not end up on the same invariant torus after one complete circuit;
instead, as shown in figure 18(b,e), for sufficiently long times, there is a spurious drift
towards a limiting torus, an artifact of the insufficient number of surface elements, and
that is responsible for a physical decrease in Nu for very large Pe (not shown). Further, this
spurious drift is seen to occur on a shorter time scale for Ca = 0.005 than for Ca = 0.01.
For Ca = 0.04, however, the streamlines do wind around a single invariant torus over the
longest duration examined, and are thereby consistent on physical grounds. The difference
between the BEM Nu-curve, and the one obtained from the O(Ca) theory, in figure 18(i),
is therefore a real one; the observed decrease in the extent of the primary plateau, as
measured by the range of Pe that it encompasses, has been highlighted in the main text.
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