PROBLEMS FOR SOLUTION

P.164. For n=1, 2, ... define e_n by $e_1=1, e_{2n}=e_n, e_{2n+1}=-e_n$. Show that

$$\sum_{i=1}^{2^{n}-1} e_{i} i^{k} = \begin{cases} 0 & \text{for } 1 \le k \le n-1 \\ (-1)^{n+1} n! \ 2^{\binom{n}{2}} & \text{for } k = n. \end{cases}$$

L. MOSER,

UNIVERSITY OF ALBERTA, Edmonton, Alberta

SOLUTIONS

P.159. Let M be a metric space, M_0 a compact subset and $T: M \to M$ an isometry. Then if $TM_0 \subset M_0$ or $TM_0 \supset M_0$ we have $TM_0 = M_0$.

J. B. WILKER, PAHLAVI UNIVERSITY, SHIRAZ, IRAN

Solution by C. Davis, University of Toronto, Toronto, Ontario. Assume $TM_0 \notin M_0$. By compactness, there exists $x \in M_0 \setminus TM_0$ for which $d = \sup \{d(x, TM_0) : x \in M_0\} > 0$ is attained; that is, $d(x, TM_0) = d$. Because T is an isometry, $d(T^nx, T^{n+1}M_0) = d$, $n=0, 1, \ldots$. But this means in particular that for m > n, $d(T^nx, T^mx) \ge d > 0$. Thus the sequence $(T^nx)_{n=0}^{n=0}$ in M_0 cannot contain any convergent subsequence, which contradicts compactness.

Also solved by L. Cooper, D. Ž. Djoković, D. Lind, J. Marsden, S. Reich, P. Smith, and the proposer.

P.161. For any positive integer *n* and any *n* numbers c_1, \ldots, c_n , let further numbers c_{n+1}, c_{n+2}, \ldots be defined as continued fractions

$$c_{n+1} = 1 - c_n/1 - c_{n-1}/1 - \cdots + c_2/1 - c_1,$$

$$c_{n+2} = 1 - c_{n+1}/1 - c_n/1 - \cdots + c_3/1 - c_2,$$

and so on. Prove that the sequence c_i is periodic with period n+3; that is, $c_{n+4} = c_1, c_{n+5} = c_2$, and so on.

H. S. M. Coxeter, University of Toronto, Toronto, Ontario

Solution by S. Reich, Israel Institute of Technology. Suppose we prove the following lemma. Given c_1, \ldots, c_n , if c_{n+1}, c_{n+2}, \ldots are defined (when possible) as in the problem then $c_{n+4} = c_1$.

Then we are done because when we apply the lemma to c_2, \ldots, c_{n+1} we obtain $c_{n+5} = c_2$, and so on.

PROBLEMS FOR SOLUTION

The lemma itself will be established by induction on n. For $n \le 4$ the result is checked directly. Suppose now the lemma holds for some $n \ge 4$ and let us consider any sequence c_1, c_2, \ldots, c_n , a of length n+1, which we write also as d_1, \ldots, d_{n+1} . The numbers d_{n+2}, d_{n+3}, \ldots are defined by the sequence $d_1 (=c_1), \ldots, d_{n+1}(=a)$ and the numbers c_{n+1}, c_{n+2}, \ldots are defined by the sequence c_1, \ldots, c_n of length n. Let f_1, f_2, f_3, f_4 be defined as continued fractions

$$f_{1} = 1 - c_{n}/1 - c_{n-1}/1 - \dots - c_{2}/1 - c_{1},$$

$$f_{2} = 1 - c_{n}/1 - c_{n-1}/1 - \dots - c_{3}/1 - c_{2},$$

$$f_{3} = 1 - c_{n}/1 - c_{n-1}/1 - \dots - c_{4}/1 - c_{3},$$

$$f_{4} = 1 - c_{n}/1 - c_{n-1}/1 - \dots - c_{5}/1 - c_{4}.$$

From the definition we find that

$$\begin{split} c_{n+1} &= f_1, \\ c_{n+2} &= 1 - f_1 / f_2, \\ c_{n+3} &= f_1 (f_3 - f_2) / f_2 (f_3 - f_1), \\ c_{n+4} &= (f_4 - f_3) (f_2 - f_1) / (f_3 - f_1) (f_4 - f_2). \end{split}$$

By the inductive hypothesis the last expression equals c_1 . Again from the definition we see that

$$\begin{aligned} &d_{n+2} = 1 - a/f_1, \\ &d_{n+3} = a(f_2 - f_1)/f_1(f_2 - a), \\ &d_{n+4} = (f_3 - f_2)(f_1 - a)/(f_2 - a)(f_3 - f_1), \\ &d_{n+5} = (f_4 - f_3)(f_2 - f_1)/(f_3 - f_1)(f_4 - f_2), \end{aligned}$$

whence $d_{n+5} = c_{n+4} = c_1$, and the desired result follows.

Also solved by L. Cooper and the proposer.

154