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Abstract

We consider the optimal proportional reinsurance problem for an insurer with two
dependent classes of insurance business, where the two claim number processes are
correlated through a common shock component. Using the technique of stochastic
linear–quadratic control theory and the Hamilton–Jacobi–Bellman equation, we derive
the explicit expressions for the optimal reinsurance strategies and value function,
and present the verification theorem within the framework of the viscosity solution.
Furthermore, we extend the results in the linear–quadratic setting to the mean–variance
problem, and obtain an efficient strategy and frontier. Some numerical examples are
given to show the impact of model parameters on the efficient frontier.
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1. Introduction

Using reinsurance, insurers are able to transfer some of their risks to another party,
potentially at the expense of making less profit. Thus, finding the optimal reinsurance
strategy to balance their risk and profit is of great interest to them. In fact, optimal
reinsurance problems have attracted a lot of interest in the actuarial literature in the past
few years, and the technique of stochastic control theory and the Hamilton–Jacobi–
Bellman (HJB) equation are frequently used to cope with these problems (see, for
example, [7, 10, 12, 15, 16]).

The mean–variance framework proposed by Markowitz [13] has become one of
the milestones in mathematical finance. The author aimed to seek the best allocation
among a number of (risky) assets in order to achieve the optimal trade-off between the
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expected return and its risk (say, variance) over a fixed time horizon. Since then, the
mean–variance criterion has become popular in measuring the risk in finance theory.
There are now numerous papers on the mean–variance problem and its extension to
finance. For example, Li and Ng [9] developed an embedding technique to change
the original mean–variance problem into a stochastic linear–quadratic (LQ) control
problem in a discrete-time setting. This technique was extended by Zhou and Li [19],
along with an indefinite stochastic LQ control approach, to the continuous-time case.
Before 2005, all applications using the mean–variance criterion focused on classical
financial portfolio allocation problems. In his study of the optimal reinsurance strategy
problem for the classical compound Poisson insurance risk model, Bäuerle [2] first
pointed out that the mean–variance criterion could also be of interest in insurance.
Under the mean–variance framework, by using the stochastic LQ control theory, the
explicit solutions of the efficient strategy and efficient frontier are derived. There have
been further extensions and improvements in insurance applications (see, for example,
[4] and the references therein).

The contribution of the present paper is to consider the optimal mean–variance
reinsurance for a compound Poisson risk model with two dependent classes of
insurance business, generalizing the results of Bäuerle [2] from an independent risk
model to a dependent risk model, and increasing the number of control variables from
one to two. The analysis becomes more complicated as a result.

Although research on optimal reinsurance is increasing rapidly, only a few papers
deal with the problem in relation to dependent risks. Under the criteria of maximizing
the expected utility of terminal wealth and maximizing the adjustment coefficient,
Centeno [5] studied the optimal excess of loss retention limits for two dependent
classes of insurance risks. Bai et al. [1] also investigated the optimal excess of loss
reinsurance to minimize the ruin probability for the diffusion risk model. Liang and
Yuen [11] considered the optimal proportional reinsurance with dependent risks under
the variance premium principle. Using a nonstandard approach, they investigated the
conditions for the existence and uniqueness of the optimal reinsurance strategies, and
derived the closed-form expressions for the optimal reinsurance strategy and the value
function for the compound Poisson risk model as well as for the diffusion risk model.
In this paper, under the mean–variance criterion, we study the optimal proportional
reinsurance for the dependent compound Poisson risk model. Using stochastic LQ
control theory [19] and the HJB equation, we derive the explicit expressions of the
optimal reinsurance strategies and value function, and present the verification theorem
within the framework of the viscosity solution. Furthermore, we extend the results in
the LQ setting to the mean–variance problem, and obtain the explicit solutions for the
efficient strategy and efficient frontier.

The rest of the paper is organized as follows. In Section 2 the model and the mean–
variance problem are given. The main results and the explicit expressions for the
optimal values are derived in Sections 3 and 4. In Section 5, some numerical examples
are presented to illustrate the impact of some model parameters on the efficient frontier.
The paper concludes with a summary in Section 6.
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2. Model formulation

Suppose that an insurance company has two dependent classes of insurance
business such as motor and life insurance. Let Xi be the claim size random variables
for the first class with common distribution QX(x), and Yi be the claim size random
variables for the second class with common distribution QY (y). Their moments are
denoted by µ1X = E(Xi), µ1Y = E(Yi), µ2X = E(X2

i ) and µ2Y = E(Y2
i ). Assume that

QX(x) = 0 for x ≤ 0, QY (y) = 0 for y ≤ 0, 0 < QX(x) ≤ 1 for x > 0, and 0 < QY (y) ≤ 1
for y > 0. Then, the aggregate claim processes for the two classes are given by

St = S1(t) + S2(t)

with

S1(t) =

M1(t)∑
i=1

Xi and S2(t) =

M2(t)∑
i=1

Yi,

where Mi(t) is the claim number process for class i (i = 1, 2). It is assumed that Xi and
Yi are independent claim size random variables, and that they are independent of M1(t)
and M2(t). The two claim number processes are correlated such that

M1(t) = N1(t) + N(t) and M2(t) = N2(t) + N(t),

with N1(t), N2(t) and N(t) being three independent Poisson processes with parameters
λ1, λ2 and λ, respectively. It is obvious that the dependence of the two classes of
business is due to a common shock governed by the counting process N(t). This model
has been studied extensively in the literature (see, for example, [17, 18]).

As usual, the risk reserve process is defined as Rt = R0 + ct − St, where R0 is the
amount of initial risk reserve, and c is the premium rate. Moreover, we allow the
insurance company to continuously reinsure a fraction of its claim with the retention
levels q1t ≥ 0 and q2t ≥ 0 for Xi and Yi, respectively. Note that qit ∈ [0, 1] corresponds
to a reinsurance cover and qit > 1 corresponds to acquiring new business (see, for
example, [2]). A strategy qt = (q1t, q2t) is said to be admissible if q1t and q2t are
Ft-predictable processes and satisfy q1t ≥ 0 and q2t ≥ 0 for all t ≥ 0. We denote the
set of all admissible strategies by U. Let the (re)insurance premium rate at time t
be calculated by the expected value principle (see, for example, [8]), and {Rq

t , t ≥ 0}
denote the wealth of the insurer at time t under the strategy qt = (q1t, q2t). This process
then yields

dRq
t = cq dt − q1t dS1(t) − q2t dS2(t), (2.1)

with

cq = (λ1 + λ)µ1X[(1 + η1)q1t − (η1 − θ1)] + (λ2 + λ)µ1Y [(1 + η2)q2t − (η2 − θ2)].

Here θi > 0 (i = 1, 2) and ηi > 0 (i = 1, 2) are the corresponding safety loadings of the
insurer and reinsurer, respectively. Without loss of generality, we assume that ηi > θi,
i = 1, 2.
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The problem now is to find the reinsurance policy so that the expected terminal
wealth satisfies E[Rq

T ] = b, where b is a constant, while the risk, measured by the
variance of the terminal wealth

Var Rq
T = E(Rq

T − b)2,

is minimized. Then the variance-minimizing problem can be formulated as the
following optimization problem:

minimize Var Rq
T = E(Rq

T − b)2,

such that


E[Rq

T ] = b,
q ∈ U,
(R, q) satisfy (2.1).

(2.2)

This is the so-called mean–variance problem, and can be dealt with by introducing
a Lagrange multiplier β ∈ R, which means that problem (2.2) can be solved via the
following optimal problem:

minimize E[(Rq
T − b)2 + 2β(ERq

T − b)],

such that

q ∈ U,
(R, q) satisfy (2.1),

(2.3)

where the factor 2 in front of β is introduced for convenience. Clearly, problem (2.3)
is equivalent to

minimize E[Rq
T − (b − β)]2,

such that

q ∈ U,
(R, q) satisfy (2.1)

(2.4)

for a fixed β.
To obtain the optimal value and optimal strategy of problem (2.2), we need to

maximize the optimal value in (2.3) over β ∈ R according to the Lagrange duality
theorem [3]. Since problems (2.3) and (2.4) have the same optimal control for fixed β,
we maximize the optimal value in (2.4) over β ∈ R. For further simplification, we set
xt = Rt − (b − β); then our controlled stochastic differential equation (2.1) becomes

dxq
t = cq dt − q1t dS1(t) − q2t dS2(t),

x0 = R0 − (b − β), (2.5)

and the optimal problem (2.4) is equivalent to

minimize E[ 1
2 (xq

T )2],

such that

q ∈ U,
(x, q) satisfy (2.5).

(2.6)

Now we define the objective function as

Jq(t, x) = E[ 1
2 (xq

T )2 | xq
t = x],
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and thus the corresponding value function is given by

V(t, x) = inf
q∈U

Jq(t, x) = inf
q∈U

E[ 1
2 (xq

T )2 | xq
t = x]

with the boundary condition V(T, x) = x2/2. In Sections 3 and 4 we will show how
to solve the mean–variance problem using the stochastic control theory and the HJB
equation.

Remark 2.1. In this paper, we assume that continuous trading is allowed and that all
assets are infinitely divisible. Also, we work on a complete probability space (Ω,F ,
P) on which the process Rq

t is well-defined. The information at time t is given by the
complete filtration Ft generated by Rq

t .

3. The HJB equation and verification theorem

Let C1,2([0, T ] × R) denote the space of φ(t, x) so that φ and its partial derivatives
φt, φx, φxx are continuous on [0, T ] × R. We use the dynamic programming approach
described by Fleming and Soner [6] to solve problems (2.5)–(2.6). From the standard
arguments, for V ∈ C1,2, we obtain the HJB equation for problems (2.5)–(2.6) as
follows: 

inf
q∈U
{Vt + cqVx + λ1E[V(t, x − q1X) − V(t, x)]

+ λ2E[V(t, x − q2Y) − V(t, x)]
+ λE[V(t, x − q1X − q2Y) − V(t, x)]} = 0,
V(T, x) = 1

2 x2.

(3.1)

Suppose that the solution of the HJB equation (3.1) has the form

V(t, x) = 1
2 P(t)x2 + Q(t)x + L(t); (3.2)

then we have

Vt = 1
2 Pt x2 + Qt x + Lt, Vx = P(t)x + Q(t), Vxx = P(t), (3.3)

where Pt, Qt and Lt are the derivatives of P(t), Q(t) and L(t), respectively.
For convenience, we denote

a1 = (λ1 + λ)µ1X , a2 = (λ2 + λ)µ1Y ,
b2

1 = (λ1 + λ)µ2X , b2
2 = (λ2 + λ)µ2Y ,

B = a1(η1 − θ1) + a2(η2 − θ2).

Substituting (3.3) into (3.1) yields

inf
q∈U

{ 1
2 Pt x2 + Qt x + Lt + (a1η1q1 + a2η2q2 − B)(P(t)x + Q(t))

+ 1
2 P(t)(b2

1q2
1 + b2

2q2
2 + 2ρb1b1q1q2)

}
= 0, (3.4)

where ρ = λµ1Xµ1Y/b1b2, (0 < ρ < 1).
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Let

f (q) = (a1η1q1 + a2η2q2)(P(t)x + Q(t)) + 1
2 P(t)(b2

1q2
1 + b2

2q2
2 + 2ρb1b1q1q2). (3.5)

We have
∂ f
∂q1

= P(t)b2
1q1 + (P(t)x + Q(t))a1η1 + q2P(t)ρb1b2,

∂ f
∂q2

= P(t)b2
2q2 + (P(t)x + Q(t))a2η2 + q1P(t)ρb1b2,

∂2 f
∂q2

1

= P(t)b2
1,

∂2 f
∂q2

2

= P(t)b2
2,

∂2 f
∂q1∂q2

=
∂2 f

∂q2∂q1
= P(t)ρb1b2.

Since ∣∣∣∣∣∣∣∣∣∣∣∣∣
∂2 f
∂q2

1

∂2 f
∂q1∂q2

∂2 f
∂q2∂q1

∂2 f
∂q2

2

∣∣∣∣∣∣∣∣∣∣∣∣∣
= P2(t)b2

1b2
2(1 − ρ2) > 0,

f is a convex function with respect to q1(or q2); therefore, without the restriction q ∈ U,
the minimizer of f (q) in (3.5) satisfies the equations

P(t)b2
1q1 + (P(t)x + Q(t))a1η1 + q2P(t)ρb1b2 = 0,

P(t)b2
2q2 + (P(t)x + Q(t))a2η2 + q1P(t)ρb1b2 = 0.

(3.6)

Solving equations (3.6) yields

q̄1 = m1

(
x +

Q(t)
P(t)

)
,

q̄2 = m2

(
x +

Q(t)
P(t)

)
,

where

m1 = −
a1η1b2

2 − a2η2ρb1b2

b2
1b2

2(1 − ρ2)
and m2 = −

a2η2b2
1 − a1η1ρb1b2

b2
1b2

2(1 − ρ2)
. (3.7)

Because of the constraints of (q∗1, q
∗
2) ∈ U and the result

(a2b1/a1ρb2)η2

(a2ρb1/a1b2)η2
=

1
ρ2 > 1,

we need to discuss the following five cases:
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1. η1 < (a2ρb1/a1b2)η2 (that is, m1 > 0, m2 < 0);
2. η1 = (a2ρb1/a1b2)η2 (that is, m1 = 0, m2 < 0);
3. η1 > (a2b1/a1ρb2)η2 (that is, m1 < 0, m2 > 0);
4. η1 = (a2b1/a1ρb2)η2 (that is, m1 < 0, m2 = 0);
5. (a2ρb1/a1b2)η2 < η1 < (a2b1/a1ρb2)η2 (that is, m1 < 0, m2 < 0).

Case 1. Let η1 < (a2ρb1/a1b2)η2.
In this case, m1 > 0 and m2 < 0. If x + Q(t)/P(t) > 0, then q̄1 > 0 and q̄2 < 0, and
because of the restriction of q∗ ∈ U, we have to choose q∗2 = 0. Inserting q∗2 into
(3.5) with ∂ f (q)/∂q1 = 0, we obtain q1 = −(a1η1/b2

1){x + Q(t)/P(t)} < 0; then we get
q∗1 = 0. Thus, the optimal strategy to minimize the left-hand side of equation (3.4)
is q∗ = (q∗1, q

∗
2) = (0, 0). Substituting q∗ = (0, 0) back into (3.4) and grouping terms

according to the powers of x leads to
1
2 Pt = 0, Qt − BP(t) = 0 and Lt − BQ(t) = 0,

with the boundary conditions P(T ) = 1, Q(T ) = 0 and L(T ) = 0. It is not difficult to get

P(t) = 1, Q(t) = −B(T − t) and L(t) = 1
2 B2(T − t)2.

Substituting the expressions for P(t), Q(t), L(t) into (3.2) and rearranging, we obtain

V(t, x) = 1
2 [x − B(T − t)]2.

If x + Q(t)/P(t) ≤ 0, then q̄1 ≤ 0 and q̄2 ≥ 0. For the restriction q∗ ∈ U, we have
to choose q∗1 = 0; then in the same manner as above, we get q2 = −(a2η2/b2

2){x +

Q(t)/P(t)} ≥ 0. Therefore, the optimal strategy is q∗ = (q∗1, q
∗
2) with q∗1 = 0 and q∗2 =

−(a2η2/b2
2){x + Q(t)/P(t)}. Substituting q∗ back into (3.4) and grouping terms with

like powers of x yields 
Pt − A2P(t) = 0,
Qt − A2Q(t) − BP(t) = 0,

Lt −
1
2

A2
Q(t)2

P(t)
− BQ(t) = 0,

with the boundary conditions P(T ) = 1, Q(T ) = 0, L(T ) = 0, where A2 = (a2η2/b2)2.
Solving the above differential equations, we derive

P(t) = e−A2(T−t),

Q(t) = −B(T − t)e−A2(T−t),

L(t) = 1
2 B2(T − t)2e−A2(T−t).

Substituting the expressions for P(t), Q(t), L(t) into (3.2) and rearranging yields

V(t, x) = 1
2 e−A2(T−t)[x − B(T − t)]2.

Along the same lines, we can get the optimal results for the other four cases as
follows.
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Case 2. Let η1 = (a2ρb1/a1b2)η2.
The minimum of the left-hand side of the equation (3.1) is attained at

q∗t =


(0, 0), x > B(T − t),(
0,−

a2η2

b2
2

[x − B(T − t)]
)
, x ≤ B(T − t),

and the solution of equation (3.1) is

V(t, x) =

 1
2 [x − B(T − t)]2, x > B(T − t),
1
2 e−A2(T−t)[x − B(T − t)]2, x ≤ B(T − t).

Case 3. Let η1 > (a2b1/a1ρb2)η2.
The minimum of the left-hand side of the equation (3.1) is attained at

q∗t =


(0, 0), x > B(T − t),(
−

a1η1

b2
1

[x − B(T − t)], 0
)
, x ≤ B(T − t),

and the solution of equation (3.1) is

V(t, x) =

 1
2 [x − B(T − t)]2, x > B(T − t),
1
2 e−A1(T−t)[x − B(T − t)]2, x ≤ B(T − t),

where A1 = (a1η1/b1)2.

Case 4. Let η1 = (a2b1/a1ρb2)η2.
The minimum of the left-hand side of the equation (3.1) is attained at

q∗t =


(0, 0), x > B(T − t),(
−

a1η1

b2
1

[x − B(T − t)], 0
)
, x ≤ B(T − t),

and the solution of equation (3.1) is

V(t, x) =

 1
2 [x − B(T − t)]2, x > B(T − t),
1
2 e−A1(T−t)[x − B(T − t)]2, x ≤ B(T − t).

Case 5. Let (a2ρb1/a1b2)η2 < η1 < (a2b1/a1ρb2)η2.
The minimum of the left-hand side of the equation (3.1) is attained at

q∗t =

(0, 0), x > B(T − t),

(m1[x − B(T − t)],m2[x − B(T − t)]), x ≤ B(T − t),
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and the solution of equation (3.1) is

V(t, x) =

 1
2 [x − B(T − t)]2, x > B(T − t),
1
2 eA(T−t)[x − B(T − t)]2, x ≤ B(T − t),

where A = 2(a1m1η1 + a2m2η2) + m2
1b2

1 + m2
2b2

2 + 2m1m2ρb1b2.
We summarize all the above results in the following theorem.

Theorem 3.1. Let m1, m2 be given as in (3.7). Then for any t ∈ [0,T ], the minimizer of
the left-hand side of the equation (3.1) is

q∗t =

(0, 0), x > B(T − t),

(q∗1(t, x), q∗2(t, x)), x ≤ B(T − t),
(3.8)

where

(q∗1(t, x), q∗2(t, x)) =



(
0,−

a2η2

b2
2

[x − B(T − t)]
)
, η1 ≤

a2ρb1

a1b2
η2,

(m1[x − B(T − t)],m2[x − B(T − t)]),
a2ρb1

a1b2
η2 < η1 <

a2b1

a1ρb2
η2,(

−
a1η1

b2
1

[x − B(T − t)], 0
)
, η1 ≥

a2b1

a1ρb2
η2.

Moreover, the solution of the HJB equation (3.1) is given by

V(t, x) =

 1
2 [x − B(T − t)]2, x > B(T − t),

V1(t, x), x ≤ B(T − t),
(3.9)

where

V1(t, x) =



1
2 e−A2(T−t)[x − B(T − t)]2, η1 ≤

a2ρb1

a1b2
η2,

1
2 eA(T−t)[x − B(T − t)]2,

a2ρb1

a1b2
η2 < η1 <

a2b1

a1ρb2
η2,

1
2 e−A1(T−t)[x − B(T − t)]2, η1 ≥

a2b1

a1ρb2
η2,

with A1 = (a1η1/b1)2, A2 = (a2η2/b2)2 and A = 2(a1m1η1 + a2m2η2) + m2
1b2

1 + m2
2b2

2 +

2m1m2ρb1b2.

At the end of this section, we verify that the solution of the HJB equation (3.1)
given in (3.9) is, indeed, the value function of our stochastic control problem (2.5)–
(2.6). Since Vxx(t, x) does not exist at the point x = B(T − t), this means that V(t, x)
does not possess the necessary smoothness properties to qualify as a classical solution
of the HJB equation (3.1). By the definition of viscosity solution and the same method
as given by Bi and Guo [4], we can also show that V(t, x) given in (3.9) is a viscosity
solution of the HJB equation (3.1). Then the verification theorem within the framework
of the viscosity solution is given as follows.
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Theorem 3.2 (Verification theorem). Let q∗ and V(t, x) be given as in (3.8) and (3.9).
Then the value function of stochastic control problem (2.5)–(2.6) is V(t, x) for all
(t, x) ∈ [0,T ] × R, and for t ≤ s ≤ T, the optimal strategy is given by

q∗s =

(0, 0), x > B(T − t),
(q∗1(s, x∗s), q∗2(s, x∗s)), x ≤ B(T − t),

where x∗s is the risk reserve with optimal strategy q∗s,

(q∗1(s, x∗s), q
∗
2(s, x∗s))

=



(
0,−

a2η2

b2
2

[x∗s − B(T − s)]
)
, η1 ≤

a2ρb1

a1b2
η2,

(m1[x∗s − B(T − s)],m2[x∗s − B(T − s)]),
a2ρb1

a1b2
η2 < η1 <

a2b1

a1ρb2
η2,(

−
a1η1

b2
1

[x∗s − B(T − s)], 0
)
, η1 ≥

a2b1

a1ρb2
η2

for t ≤ s < T ∧ τq∗ and

(q∗1(s, x∗s), q
∗
2(s, x∗s)) = (0, 0) for T ∧ τq∗ ≤ s ≤ T,

in which

τq∗ = inf{s ≥ t, x∗s − B(T − s) > 0}.

Proof. The proof comprises the following three cases:

Case (1) η1 ≤ (a2ρb1/a1b2)η2 ,

Case (2) (a2ρb1/a1b2)η2 < η1 < (a2b1/a1ρb2)η2 ,

Case (3) η1 ≥ (a2b1/a1ρb2)η2.

Since the proofs of cases (1) and (3) are similar to case (2), we present only the
proof of case (2) in detail.

When x > B(T − t) at the initial time t, we define q∗s = (q∗1(s, xs), q∗2(s, xs)) = (0, 0)
for any s ∈ (t,T ], and the corresponding dynamical reserve process is given as

dxq∗
s = −B ds, t < s ≤ T.

We prove that q∗ is the optimal strategy. Note that if xq∗
s = x − B(s − t), then

xq∗

T = x − B(T − t) > 0.
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Also, note that

xq∗
s − B(T − s) = x − B(T − t) > 0.

For any admissible strategy q ∈ U,

dxq
s = cq ds −

(
q1sd

M1(s)∑
i=1

Xi + q2sd
M2(s)∑
i=1

Yi

)
= [(λ + λ1)µ1X(1 + η1)q1s + (λ + λ2)µ1Y (1 + η2)q2s − B] ds

−

(
q1sd

M1(s)∑
i=1

Xi + q2sd
M2(s)∑
i=1

Yi

)
.

It is not difficult to find that

Exq
T > Exq∗

T = xq∗

T > 0

and, thus,

E(xq
T )2 ≥ (Exq

T )2 > (Exq∗

T )2 = E[(xq∗

T )2],

which implies that q∗ is optimal. The optimal value is

Jq∗(t, x) = 1
2 E[(xq∗

T )2 | xq∗
t = x]

= 1
2 [xq∗

T ]2

= 1
2 [x − B(T − t)]2

= V(t, x).

When x ≤ B(T − t) at the initial time t, let q be any admissible strategy. We define

q̂ = (q̂1, q̂2) =

q, t ≤ s < T ∧ τq,

(0, 0), T ∧ τq ≤ s ≤ T ,

in which

τq = inf{s ≥ t | xq
s − B(T − s) > 0},

and

T ∧ τq =

{
τq, τq ≤ T,
T, τq > T.

By the definition of q̂ and the same analysis as in the former part of this proof, we get

E[(xq
T )2 | xq

t = x] ≥ E[(xq̂
T )2 | xq̂

t = x].
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Thus, the optimal problem can be restricted to the class of the strategy q̂ such that
when T ∧ τq̂ ≤ s ≤ T , we have q̂s = (0, 0), where

τq̂ = inf{s ≥ t | xq̂
s − B(T − s) > 0}.

All such strategies can be denoted by the set U′ ⊂ U. For arbitrary q̂ ∈ U′, applying
Itô’s lemma (see, for example, [14]) to V(t, x) yields

V(T ∧ τq̂, x
q̂
T∧τq̂

) = V(t, x) +

∫ T∧τq̂

t
(Vt + cq̂Vx) ds

+

∫ T∧τq̂

t

∫ ∞

0
V(s, xq̂

s− − q̂1sx) − V(s, xq̂
s−)N1(ds, dx)

+

∫ T∧τq̂

t

∫ ∞

0
V(s, xq̂

s− − q̂2sy) − V(s, xq̂
s−)N2(ds, dy)

+

∫ T∧τq̂

t

∫ ∞

0

∫ ∞

0
V(s, xq̂

s− − q̂1sx − q̂2sy) − V(s, xq̂
s−)N(ds, dx, dy),

where N(dt, dx), N(dt, dy) and N(dt, dx, dy) are Poisson random measures. Let

M1(dt, dx) = N1(dt, dx) − λ1 dtQX(dx),
M2(dt, dy) = N2(dt, dy) − λ2 dtQY (dy),

M(dt, dx, dy) = N(dt, dx, dy) − λ dtQX(dx)QY (dy).

Then M1(dt, dx), M2(dt, dy) and M(dt, dx, dy) are the compensated Poisson random
measures.

Note that

V(T ∧ τq̂, x
q̂
T∧τq̂

) = V(t, x) +

∫ T∧τq̂

t
(Vt + cq̂Vx) ds

+

∫ T∧τq̂

t

∫ ∞

0
V(s, xq̂

s− − q̂1sx) − V(s, xq̂
s−)M1(ds, dx)

+

∫ T∧τq̂

t

∫ ∞

0
V(s, xq̂

s− − q̂2sy) − V(s, xq̂
s−)M2(ds, dy)

+

∫ T∧τq̂

t

∫ ∞

0
V(s, xq̂

s− − q̂1sx − q̂2sy) − V(s, xq̂
s−)M(ds, dx, dy)

+ λ1

∫ T∧τq̂

t

∫ ∞

0
V(s, xq̂

s− − q̂1sx) − V(s, xq̂
s−)QX(dx) ds

+ λ2

∫ T∧τq̂

t

∫ ∞

0
V(s, xq̂

s− − q̂2sy) − V(s, xq̂
s−)QY (dy) ds

+ λ

∫ T∧τq̂

t

∫ ∞

0

∫ ∞

0
V(s, xq̂

s− − q̂1sx − q̂2sy)

−V(s, xq̂
s−)QX(dx)QY (dy) ds.
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Since V(t, x) satisfies the HJB equation, we have

V(T ∧ τq̂, x
q̂
T∧τq̂

)≥ V(t, x) +

∫ T∧τq̂

t

∫ ∞

0
V(s, xq̂

s− − q̂1sx) − V(s, xq̂
s−)M1(ds, dx)

+

∫ T∧τq̂

t

∫ ∞

0
V(s, xq̂

s− − q̂2sy) − V(s, xq̂
s−)M2(ds, dy)

+

∫ T∧τq̂

t

∫ ∞

0
V(s, xq̂

s− − q̂1sx − q̂2sy)

−V(s, xq̂
s−)M(ds, dx, dy). (3.10)

The equality is obtained when the policy q = q∗. Note that

E
[∫ T∧τq̂

t

∫ ∞

0
|V(s, xq̂

s− − q̂1sx) − V(s, xq̂
s−)|QX(dx) ds

]
<∞,

E
[∫ T∧τq̂

t

∫ ∞

0
|V(s, xq̂

s− − q̂2sy) − V(s, xq̂
s−)|QY (dy) ds

]
<∞

and

E
[∫ T∧τq̂

t

∫ ∞

0

∫ ∞

0
|V(s, xq̂

s− − q̂1sx − q̂2sy) − V(s, xq̂
s−)|QX(dx)QY (dy) ds

]
<∞,

and thus these integrals are martingales. Taking the conditional expectation on both
sides of (3.10) yields

E[ 1
2 (xq̂

T )2 | xq̂
t = x] ≥ V(t, x),

when q̂ = q∗, therefore the equality is obtained, which completes the proof of the
theorem. �

4. The efficient strategy and efficient frontier

In this section we apply the results in Section 3 to solve the mean–variance problem,
and derive the efficient strategy and efficient frontier of problem (2.2). Our primitive
mean–variance problem refers to finding the optimal reinsurance strategy such that
the expected terminal wealth satisfies ERq

T = b, where b is a constant, while the risk
measured by the variance of the terminal wealth Var Rq

T = E(Rq
T − ERq

T )2 = E(Rq
T − b)2

is minimized. If we let b be a variable, then our mean–variance problem (2.2) can
be changed into a multi-objective optimization problem that maximizes the expected
terminal wealth ERq

T , and at the same time minimizes the variance of the terminal
wealth Var Rq

T over q ∈ U. The optimal reinsurance strategy for the multi-objective
optimization problem is called a variance-minimizing strategy corresponding to a fixed
b, and the set of all points (Var R∗T , b) is called the variance-minimizing frontier. When
b ≥ R0 − BT , the optimal reinsurance strategy for the multi-objective optimization
problem is called an efficient strategy, the corresponding (Var R∗T , b) is an efficient
point, and the set of all efficient points when b runs over [R0 − BT,∞) is called the
efficient frontier.
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Since we have set xt = Rt − (b − β), we get

E[ 1
2 (xq

T )2] = 1
2 E[(Rq

T − b)2 + 2β(ERq
T − b) + β2].

Therefore, for every fixed β, we have

min
q∈U

E[(Rq
T − b)2 + 2β(ERq

T − b)]

=

[R0 − (b − β) − BT ]2 − β2, R0 > (b − β) + BT ,
2V1(0, x0) − β2, R0 ≤ (b − β) + BT ,

(4.1)

where

2V1(0, x0) − β2 =



e−A2T [R0 − (b − β) − BT ]2 − β2, η1 ≤
a2ρb1

a1b2
η2,

eAT [R0 − (b − β) − BT ]2 − β2,
a2ρb1

a1b2
η2 < η1 <

a2b1

a1ρb2
η2,

e−A1T [R0 − (b − β) − BT ]2 − β2, η1 ≥
a2b1

a1ρb2
η2.

Furthermore, when R0 > (b − β) + BT , the variance-minimizing strategy is

q∗t = (0, 0), 0 ≤ t < T.

When R0 ≤ (b − β) + BT , let G(t, R∗t ) = R∗t − (b − β) − B(T − t); then the variance-
minimizing strategy is

q∗t = (q∗1(t,R∗t ), q∗2(t,R∗t )), (4.2)

where

(q∗1(t,R∗t ), q∗2(t,R∗t )) =



(
0, −

a2η2

b2
2

·G(t,R∗t )
)
, η1 ≤

a2ρb1

a1b2
η2,

(m1 ·G(t,R∗t ), m2 ·G(t,R∗t )),
a2ρb1

a1b2
η2 < η1 <

a2b1

a1ρb2
η2,(

−
a1η1

b2
1

·G(t,R∗t ), 0
)
, η1 ≥

a2b1

a1ρb2
η2,

for 0 ≤ t < T ∧ τq∗ , and
(q∗1(t,R∗t ), q∗2(t,R∗t )) = (0, 0)

for T ∧ τq∗ ≤ t < T , in which

τq∗ = inf{t ≥ 0,G(t,R∗t ) > 0}.

Note that the above value still depends on the Lagrange multiplier β. Making use of
the fact that R0 ≤ b + BT , which ensures that ERq

T = b can be satisfied, we see that to
obtain the minimum Var Rq

T and the optimal strategy for the original control problem
(2.2), it is sufficient to maximize the value in (4.1) over β ∈ R by the Lagrange duality
theorem (see, for example [3]). The above discussion leads to the following theorem.
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Theorem 4.1. Assume that R0 ≤ b + BT. Then the efficient frontier of problem (2.2) is

Var R∗T =



e−A2T (R0 − b − BT )2

1 − e−A2T , η1 ≤
a2ρb1

a1b2
η2,

eAT (R0 − b − BT )2

1 − eAT
,

a2ρb1

a1b2
η2 < η1 <

a2b1

a1ρb2
η2,

e−A1T (R0 − b − BT )2

1 − e−A1T , η1 ≥
a2b1

a1ρb2
η2.

Moreover, the efficient strategy is q∗t = (q∗1(t,R∗t ), q∗2(t,R∗t )), where

(q∗1(t,R∗t ), q∗2(t,R∗t )) =



(
0,−

a2η2

b2
2

H(t,R∗t , A2)
)
, η1 ≤

a2ρb1

a1b2
η2,

(m1H(t,R∗t , A),m2H(t,R∗t , A)),
a2ρb1

a1b2
η2 < η1 <

a2b1

a1ρb2
η2,(

−
a1η1

b2
1

H(t,R∗t , A1), 0
)
, η1 ≥

a2b1

a1ρb2
η2,

for 0 ≤ t < T ∧ τq∗ , and
(q∗1(t,R∗t ), q∗2(t,R∗t )) = (0, 0)

for T ∧ τq∗ ≤ t < T, in which

H(t,R∗t , y) = R∗t +
e−yT (R0 − Bt) − B(T − t) − b

1 − e−yT

and R∗t is the risk reserve with optimal strategy q∗t .

Proof. Suppose first that R0 ≤ BT + b − β. When η1 ≤ (a2ρb1/a1b2)η2, from (4.1), we
have

min
q∈U

E[(Rq
T − b)2 + 2β(ERq

T − b)] = 2V(0, x0) − β2

= (e−A2T − 1)β2 + 2e−A2T (R0 − b − BT )β + e−A2T (R0 − b − BT )2. (4.3)

Maximizing expression (4.3) over β ∈ R yields

β∗ =
e−A2T (R0 − b − BT )

1 − e−A2T .

Substituting β∗ into (4.1) and (4.2), the efficient strategy of the mean–variance problem
is given by

q∗t = (q∗1(t,R∗t ), q∗2(t,R∗t )),

where q∗1(t,R∗t ) = 0, 0 ≤ t < T , and

q∗2(t,R∗t ) =

−
a2η2

b2
2

[
R∗t +

e−A2T (R0 − Bt) − B(T − t) − b
1 − e−A2T

]
, 0 ≤ t < T ∧ τq∗ ,

0, T ∧ τq∗ ≤ t < T.
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Note that the efficient frontier is

Var R∗T =
e−A2T (R0 − b − BT )2

1 − e−A2T .

When (a2ρb1/a1b2)η2 < η1 < (a2b1/a1ρb2)η2, from (4.1), we have

min
q∈U

E[(Rq
T − b)2 + 2β(ERq

T − b)] = 2V1(0, x0) − β2

= (eAT − 1)β2 + 2eAT (R0 − b − BT )β + eAT (R0 − b − BT )2.

Since
A = 2(a1m1η1 + a2m2η2) + m2

1b2
1 + m2

2b2
2 + 2m1m2ρb1b2

= −
a2

1b2
2η

2
1 + a2

2b2
1η

2
2 − 2ρa1a2b1b2η1η2

b2
1b2

2(1 − ρ2)

and
a2

1b2
2η

2
1 + a2

2b2
1η

2
2 − 2ρa1a2b1b2η1η2 ≥ 2(1 − ρ)a1a2b1b2η1η2 > 0,

we have A < 0, which means that the result of (4.4) is a concave function with respect
to β.

Maximizing expression (4.4) over β ∈ R yields

β∗ = −
eAT (R0 − b − BT )

eAT − 1
.

Substituting β∗ back into (4.1) and (4.2), we derive the efficient strategy of the mean–
variance problem,

q∗t = (q∗1(t,R∗t ), q∗2(t,R∗t )),

where

q∗1(t,R∗t ) =

m1

[
R∗t −

eAT (R0 − Bt) − B(T − t) − b
eAT − 1

]
, 0 ≤ t < T ∧ τq∗ ,

0, T ∧ τq∗ ≤ t < T,

and

q∗2(t,R∗t ) =

m2

[
R∗t −

eAT (R0 − Bt) − B(T − t) − b
eAT − 1

]
, 0 ≤ t < T ∧ τq∗ ,

0, T ∧ τq∗ ≤ t < T.

The efficient frontier is

Var R∗T =
eAT (R0 − b − BT )2

1 − eAT .

When η1 ≥ (a2b1/a1ρb2)η2, along the same lines as in the case of η1 ≤ (a2ρb1/a1b2)η2,
we can also get the explicit expression for the efficient strategy and the efficient
frontier. We omit the detailed proof here. Since R0 ≤ b + BT − β∗ is equivalent to
R0 ≤ b + BT , the proof is now complete. �
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Figure 1. The efficient frontiers for different λ.

Remark 4.2. Under the assumption of R0 ≤ b + BT , the solution of the mean–variance
problem consists of only one region, since once the boundary is reached, we apply
the full reinsurance q∗t = (0, 0) for the remaining time and the risk reserve falls on the
straight line R0 − Bt and reaches b at time T , which is the same as in [2].

Remark 4.3. The efficient strategy and efficient frontier in [2] can be derived directly
from Theorem 4.1 by setting η1 = η2, θ1 = θ2, α1 = α2, λ1 = λ2 and λ = 0.

5. Numerical examples

In this section, we assume that the claim sizes Xi and Yi are exponentially distributed
with parameters α1 and α2, respectively. Then we have µ1X = 1/α1, µ1Y = 1/α2, µ2X =

2/α2
1, µ2Y = 2/α2

1. Here we only take the case (a2ρb1/a1b2)η2 < η1 < (a2b1/a1ρb2)η2 in
Theorem 4.1 as an example to verify our outcomes in the foregoing. In the following
examples, we show how the dependence between two classes of insurance business
affects the efficient frontiers, and we present the impact of the parameters λ1, α1 and η
on the efficient frontier.

Example 5.1. Let λ2 = 5, T = 10, R0 = 4, α1 = 1.5, α2 = 1, θ1 = 0.1, θ2 = 0.12,
η1 = 0.12, η2 = 0.125. The results are shown in Figures 1 and 2.

From Figure 1 (λ1 = 1) and Figure 2 (λ = 4), we see that when Var R∗T is small
enough, a greater value of λ (λ1) yields a smaller value of ER∗T with the same Var R∗T .
On the other hand, when Var R∗T is large enough, a greater value of λ (λ1) yields a
greater ER∗T with the same Var R∗T . Besides, the top half of the parabola is the efficient
frontier and the whole parabola is the variance-minimizing frontier. Similar results are
shown in Figures 3 and 4.
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Figure 2. The efficient frontiers for different λ1.

Figure 3. The efficient frontiers for different α1.

Example 5.2. Let λ1 = 1, λ2 = 5, λ = 4, T = 10, R0 = 4, α2 = 1, θ1 = 0.1, θ2 = 0.12,
η2 = 0.125. The results are given in Figures 3 and 4.

From Figure 3 (η1 = 0.11) and Figure 4 (α1 = 1.5), we see that a greater value of α1

gives a greater value of ER∗T with the same value Var R∗T , whereas a greater η1 gives a
smaller ER∗T with the same Var R∗T .
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Figure 4. The efficient frontiers for different η1.

6. Conclusion

Here we summarize the main results of the paper. From an insurer’s point of view,
we consider the optimal proportional reinsurance strategy in a compound Poisson
risk model with two dependent classes of insurance business, where the two claim
number processes are correlated. By the stochastic control theory and HJB equation,
we derive the explicit expressions for the optimal reinsurance strategies and value
function in the LQ setting, and present the verification theorem within the framework
of the viscosity solution. Furthermore, we extend the results in the LQ setting to the
mean–variance problem and obtain the efficient strategy and efficient frontier. Some
numerical examples are given to show the impact of model parameters on the efficient
frontier.

Later, we may extend our work to the case of a diffusion approximation risk model
with two dependent classes of insurance business which has already been discussed
in [1] and [11]. However, we find that under the mean–variance framework, the
HJB equation for the diffusion approximation case is exactly the same as that in the
compound Poisson risk model (see, for example, [8]); then the optimal strategies and
value function are the same, which is very different from the other risk measures.

Although the literature on optimal reinsurance is increasing rapidly, very few of
these contributions deal with the problem in relation to dependent risks. Therefore,
there are still some interesting problems in this direction that can be further studied.
For example, one may consider the optimal reinsurance with dependent risks under
additional constraints on the probability of ruin, which is a very challenging problem,
though some useful results have already been derived.
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