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Time-periodic generalised solitary waves with a
hydraulic fall
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In an open channel flow, deviations to the lower topography can induce abrupt changes
in the wave height, known as hydraulic jumps. This phenomenon occurs when the flow
switches from subcritical to supercritical (or vice versa), and is commonly observed
in rivers, flumes and weirs. Theoretical insight is typically sought through the study
of reduced models such as the forced Korteweg–de Vries equation, in which previous
work has predominantly focused on either stationary formulations or the initial transient
behaviour caused by perturbations. In a joint theoretical and numerical study of the
free-surface Euler equations, Keeler & Blyth (J. Fluid Mech., vol. 993, 2024, A9) have
detected a new class of unsteady solutions to this problem. These emerge from an unstable
steady solution, and feature large-amplitude time-periodic ripples emitted from a sudden
decrease in the water depth forced by topography, known as a hydraulic fall.
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1. Introduction

The influence of submerged objects and topography on the motion of surface water waves
has long been an object of study due to the fascinating wave patterns that can emerge, and
the application of these in engineering. Well-known examples of this behaviour include
Kelvin wake patterns that form in a wedge behind moving disturbances in a fluid, such
as ships (Reed & Milgram 2002), and von Kármán vortex streets generated behind bluff
bodies (Thompson, Leweke & Hourigan 2021). Similar phenomena are also induced by
topography, such as sea or river beds which confine the flowing fluid from below. For
instance, at larger scales topography is known to enhance wave amplitudes and promote
breaking (Peregrine 1983), and at smaller scales the effect of confinement and vibration at
different frequencies excites Faraday wave patterns (Westra, Binks & Van De Water 2003).
In rivers, tidal forcing can produce tidal bores, where a travelling surface wave propagates
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Time evolution

(a) (b)

Figure 1. Numerical solutions for the flow of an irrotational fluid past indented topography. A steady unstable
solution, denoted a hydraulic fall, is shown in (a). The transient behaviour from the instability eventually
approaches a time-periodic solution, shown in (b). Figures produced from numerical results of Keeler & Blyth
(2024).

upstream against the river current. This is an example of a moving hydraulic jump, in
which the mean fluid levels upstream and downstream of the wave differ (Baines 2022).

Surface waves may also exhibit a hydraulic jump induced by fluid flow past a static
deformation in the topography. This is known as a hydraulic fall if the upstream depth is
greater than that downstream (Shen 1992). Here, the upstream fluid speed is slower than
the surface wavespeed (subcritical flow), and the downstream fluid speed is faster than
the wavespeed (supercritical flow). Thus, hydraulic-fall solutions permit surface waves of
different forms to propagate upstream and downstream. They are typically associated with
near-critical flows in which the upstream Froude number, Fr = U/

√
gH, is close to but

smaller than 1. The non-dimensional Froude number characterises the balance between
inertia (the upstream fluid speed U) and gravity (measured with the gravitational constant
g and the upstream fluid depth H).

Given a specified topography, the aim is to solve for the fluid velocity and the wave
surface. This is known as the forward problem, in contrast to the inverse problem,
where one wishes to predict the topography given surface measurements. The modelling
assumptions of inviscid, irrotational, and two-dimensional (2-D) flow are usually used,
which have been supported by experimental evidence (Fadda & Raad 1997). This results
in a nonlinear free-boundary problem for Laplace’s equation posed on a 2-D domain.
Due to the lack of exact solutions, progress is made numerically. Typical numerical
approaches to solve this formulation include boundary-integral methods and conformal
mapping, which yield a 1-D formulation for the wave surface (Ambrose et al. 2022), and
the finite-element methods applied to the full 2-D problem. To make analytical progress,
many authors additionally use weakly nonlinear and long-wave assumptions, which yield
a forced Korteweg–de Vries (KdV) equation for the wave height defined on one spatial
domain (Dias & Vanden-Broeck 2002).

2. The numerical findings of Keeler & Blyth (2024)

In their recent work, Keeler & Blyth (2024) considered the free-surface flow of a 2-D fluid
satisfying the nonlinear Euler equations bounded from below by topography. Numerical
solutions were obtained with the finite-element method on a truncated domain. Their
choice for this topography, y(x) = a exp(−b2x2), represents a 2-D ‘bump’ for a > 0, and
a ‘dip’ for a < 0, both of which are localised near x = 0. Here, a and b are specified
constants. The key result of their work is the discovery of time-periodic solitary waves in
this formulation, which emerge from linearly unstable solutions of the steady formulation.
An example of this process is shown in figure 1.

Steady free-surface flow over protruding topography, analogous to a > 0, has been well
studied in the potential flow literature for a plethora of geometries and submerged objects,

998 F1-2

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

74
9 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.749


Time-periodic solitary waves

–0.02 –0.01 0 0.01 0.02
0.8

0.9

1.0

1.1

1.2

a

Fr

–100 0 100

1.0
1.1
1.2

x

y

0

5

10

t

–100 0 100

0.8
0.9
1.0

x

y

0

5

10

t

–100 0 100
1.0
1.1
1.2

x

y

0

5

10

t

–100 0 100
1.0
1.2
1.4

x

y

0

2

4

t
(×104)

(×104)

(×102)

(×102)

(a) (c)

(b) (d )

Figure 2. Parameter values of steady solutions calculated by Keeler & Blyth (2024) are shown in the (a, Fr)
plane. Solutions with Fr < 1 are hydraulic falls, where the downstream (x → ∞) fluid level is lower than that
of the upstream (x → −∞) level. For the converse case with Fr > 1, the solutions are hydraulic rises. The
qualitative stability properties of these solutions differ depending on the sign of the topography amplitude, a.
Time-evolution plots for four different solutions are shown in (a–d). The solutions with indented topography
(a < 0) are unstable, and time evolution ultimately reveals that these settle into time-periodic behaviour. Figure
adapted from Keeler & Blyth (2024).

and significant progress has been made through both numerical (Dias & Vanden-Broeck
2002) and asymptotic (Lustri, McCue & Binder 2012) approaches. However, fewer
works have investigated time-dependent effects beyond the initial disturbances that can
arise. In their work, Keeler & Blyth (2024) begin by considering steady solutions
of this formulation with a > 0 and Fr < 1. They isolate branches of these solutions,
confirm with a formal linear stability analysis that these are temporally stable to small
perturbations and also show through time evolution that large perturbations result in
convergence to the original steady state. Steady solutions for a > 0 and Fr > 1 are
found to be unstable; perturbations to these solutions induce a solitary wave that travels
upstream. Time-evolution plots with a = 0.01 for both of these examples, demonstrating
the nonlinear stability of these solutions, are shown in figure 2(c,d).

However, the time-dependent behaviour for free-surface flows over indented topography
has been discovered by Keeler & Blyth (2024) to be significantly different than that
for protruding topography. Here, the steady solutions (with a < 0) are linearly unstable,
meaning that small-amplitude perturbations from the steady state initially grow in time.
By investigating the long-time behaviour of these perturbations, Keeler & Blyth (2024)
discovered that the fluid surface eventually approaches motion which is periodic in time.
Time-evolution plots demonstrating this behaviour are shown in figure 2(a,b). Solution
(a), with Fr > 1, contains non-decaying oscillatory waves downstream, whereas solution
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(b), with Fr < 1, contains oscillatory behaviour in both the upstream and downstream
directions. For this latter case, the oscillatory behaviour is emitted from the central wave
crest; large-amplitude travelling waves propagate upstream, and smaller-amplitude waves
propagate downstream. The result is a fluid surface that repeats the same unsteady motion
after an interval in time, with the oscillatory behaviour extending to spatial infinity. They
are denoted generalised solitary waves, since the amplitude of the oscillations does not
decay in the far field. These results emphasise the importance of considering solution
stability, and the long-time trends of unstable configurations for free-boundary problems.

3. Future directions

The time-periodic surface waves discovered by Keeler & Blyth (2024) in the fluid flow
past an indented topography raise a number of interesting questions that warrant additional
investigation.

Firstly, it is possible that additional time-periodic solutions exist, which are not
associated with the parameter values of the unstable solutions initially calculated by
Keeler & Blyth (2024). To investigate this, one can alter the initial value problem with
the requirement that the solution returns to its original profile after a period of time.
Such an approach has recently been used by Wilkening & Zhao (2023) to calculate
time-periodic water waves with spatially periodic topography. Secondly, analytical results
have been obtained for hydraulic-fall solutions with protruding topography by Kamchatnov
et al. (2013), who applied Whitham modulation theory to the forced KdV equation which
models shallow water flows. An earlier numerical study of this transient phenomenon in
the forced KdV equation was performed by Wu (1987). It would be very interesting to
see if such an analysis can be adapted to predict the time-periodic solutions uncovered by
Keeler & Blyth (2024). Lastly, it is unknown if this time-periodic behaviour can manifest
physically, or if some other neglected effect is required in the model, such as the third
spatial dimension from which transverse instabilities can emerge. Experimental results
exist for hydraulic falls over protruding topography (Tam et al. 2015), confirming the
stability of these solutions (analogous to the solution in figure 2d), but not for indented
topography. Evidence for the physical existence of these time-periodic solutions would
continue to highlight the value of numerical and theoretical investigations into simplified
formulations of similar problems across fluid dynamics.
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