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Cumulants of the q-semicircular Law,
Tutte Polynomials, and Heaps

Matthieu Josuat-Vergès

Abstract. The q-semicircular distribution is a probability law that interpolates between the Gaussian

law and the semicircular law. There is a combinatorial interpretation of its moments in terms of match-

ings, where q follows the number of crossings, whereas for the free cumulants one has to restrict the

enumeration to connected matchings. The purpose of this article is to describe combinatorial prop-

erties of the classical cumulants. We show that like the free cumulants, they are obtained by an enu-

meration of connected matchings, the weight being now an evaluation of the Tutte polynomial of a

so-called crossing graph. The case q = 0 of these cumulants was studied by Lassalle using symmetric

functions and hypergeometric series. We show that the underlying combinatorics is explained through

the theory of heaps, which is Viennot’s geometric interpretation of the Cartier–Foata monoid. This

method also gives a general formula for the cumulants in terms of free cumulants.

1 Introduction

Let us consider the sequence {mn(q)}n≥0 defined by the generating function

∑

n≥0

mn(q)zn
=

1

1−
[1]qz2

1− [2]qz2

1− . . .

,

where [i]q =
1−qi

1−q
. For example, m0(q) = m2(q) = 1, m4(q) = 2 + q, and the odd

values are 0. The generating function being a Stieltjes continued fraction, mn(q) is the

n-th moment of a symmetric probability measure on R (at least when 0 ≤ q ≤ 1).

An explicit formula for the density w(x) such that mn(q) =
∫

xnw(x)dx is given by

Szegö [22]:

w(x) =





1
π

√
1− q sin θ

∞∏
n=1

(1− qn)|1− qne2iθ|2 if−2 ≤ x
√

1− q ≤ 2,

0 otherwise,

where θ ∈ [0, π] is such that 2 cos θ = x
√

1− q. At q = 0, it is the semicircu-

lar distribution with density (2π)−1
√

4− x2 supported on [−2, 2], whereas at the
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limit q → 1 it becomes the Gaussian distribution with density (2π)−1/2e−x2/2. This

law is therefore known either as the q-Gaussian or the q-semicircular law. It can

be conveniently characterized by its orthogonal polynomials, defined by the relation

xHn(x|q) = Hn+1(x|q) + [n]qHn−1(x|q) together with H1(x|q) = x and H0(x|q) = 1,

and called the continuous q-Hermite polynomials (but we do not insist on this point

of view, since the notion of cumulant is not particularly relevant for orthogonal poly-

nomials).

The semicircular law is the analogue in free probability of the Gaussian law [15,

19]. More generally, the q-semicircular measure plays an important role in noncom-

mutative probability theories [3, 5, 7, 8, 24, 25]. This was initiated by Bożejko and

Speicher [7,8] who used creation and annihilation operators on a twisted Fock space

to build generalized Brownian motions.

The goal of this article is to examine the combinatorial meaning of the classical cu-

mulants kn(q) of the q-semicircular law (we recall the definition in the next section).

The first values lead to the observation that

k̃2n(q) =
k2n(q)

(q− 1)n−1

is a polynomial in q with nonnegative coefficients. For example:

k̃2(q) = k̃4(q) = 1, k̃6(q) = q + 5, k̃8(q) = q3 + 7q2 + 28q + 56.

We actually show in Theorem 3.5 that this k̃2n(q) can be given a meaning as a gen-

erating function of connected matchings, i.e., the same objects that give a combina-

torial meaning to the free cumulants of the q-semicircular law. However, the weight

function that we use here on connected matching is not as simple as in the case of

free cumulants, it is given by the value at (1, q) of the Tutte polynomial of a graph

attached to each connected matching, called the crossing graph.

There are various points where the evaluation of Tutte polynomials has combi-

natorial meaning, in particular (1, 0), (1, 1), and (1, 2). In the first and third case

(q = 0 and q = 2), they can be used to give an alternative proof of Theorem 3.5.

These will be provided in Sections 5 and 6 respectively. The integers k̃2n(0) were

recently considered by Lassalle [17] who defines them as a sequence simply related

with Catalan numbers, and further studied in [2]. Being the (classical) cumulants of

the semicircular law, it might seem unnatural to consider this quantity, since this law

belongs to the world of free probability, but on the other hand the free cumulants of

the Gaussian have numerous properties (see [4]). The interesting feature is that this

particular case q = 0 can be proved via the theory of heaps [10, 26]. As for the case

q = 2, even though the q-semicircular is only defined when |q| < 1 its moments and

cumulants and the link between still exist, because (2.1) can be seen as an identity

between formal power series in z. The particular proof for q = 2 is an application of

the exponential formula.

2 Preliminaries

Let us first make precise some terms used in the introduction. Besides the moments

{mn(q)}n≥0, the q-semicircular law can be characterized by its cumulants {kn(q)}n≥1,
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formally defined by

(2.1)
∑

n≥1

kn(q)
zn

n!
= log

( ∑

n≥0

mn(q)
zn

n!

)
,

or by its free cumulants {cn(q)}n≥1 [19], formally defined by C(zM(z)) = M(z),

where

M(z) =
∑

n≥0

mn(q)zn, C(z) = 1 +
∑

n≥1

cn(q)zn.

These relations can be reformulated using set partitions.

For any finite set V , let P(V ) denote the lattice of set partitions of V , and let

P(n) = P({1, . . . , n}). We will denote by 1̂ the maximal element and by µ the

Möbius function of these lattices, without mentioning V explicitly. Although we

will not use it, let us mention that µ(π, 1̂) = (−1)#π−1(#π − 1)!, where #π is the

number of blocks in π. See [21, Chapter 3] for details. When we have some sequence

(un)n≥1, for any π ∈ P(V ) we will use the notation uπ =
∏

b∈π u#b. Then the rela-

tions between moments and cumulants read

(2.2) mn(q) =
∑

π∈P(n)

kπ(q), kn(q) =
∑

π∈P(n)

mπ(q)µ(π, 1̂).

These are equivalent via the Möbius inversion formula, and both can be obtained

from (2.1) using Faà di Bruno’s formula. When V ⊂ N, let NC(V ) ⊂ P(V ) denote

the subset of noncrossing partitions, which form a sublattice with Möbius function

µNC . Then we have ([15, 19])

(2.3) mn(q) =
∑

π∈NC(n)

cπ(q), cn(q) =
∑

π∈NC(n)

mπ(q)µNC (π, 1̂).

Equations (2.2) and (2.3) can be used to compute the first non-zero values:

k2(q) = 1, k4(q) = q− 1, k6(q) = q3 + 3q2 − 9q + 5,

c2(q) = 1, c4(q) = q, c6(q) = q3 + 3q2.

Let M(V ) ⊂ P(V ) denote the set of matchings, i.e., set partitions into blocks of

size 2. As is customary, a block of σ ∈ M(V ) will be called an arch. When V ⊂ N, a

crossing [16] of σ ∈M(V ) is a pair of arches {i, j} and {k, ℓ} such that i < k < j < ℓ.

Let cr(σ) denote the number of crossings of σ ∈M(V ). Let N(V ) = M(V )∩NC(V )

denote the set of noncrossing matchings, i.e., those such that cr(σ) = 0. Let also

M(2n) = M({1, . . . , 2n}) and N(2n) = N({1, . . . , 2n}). Let Pc(n) ⊂ P(n) denote

the set of connected set partitions, i.e., π such that no proper interval of {1, . . . , n} is

a union of blocks of π, and let Mc(2n) = M(2n)∩Pc(2n) denote the set of connected

matchings.

It is known [16] that for any n ≥ 0, the moment m2n(q) counts matchings on 2n

points according to the number of crossings:

(2.4) m2n(q) =
∑

σ∈M(2n)

qcr(σ).
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Lehner [18] showed that (2.3) and (2.4) give a combinatorial meaning for the free

cumulants:

c2n(q) =
∑

σ∈Mc(2n)

qcr(σ).

See [4] for various properties of connected matchings in the context of free probabil-

ity. Let us also mention that both quantities m2n(q) and c2n(q) are considered in an

article by Touchard [23].

3 A Combinatorial Formula for kn(q)

We will use the Möbius inversion formula in equation (2.2), but we first need to

consider the combinatorial meaning of the products mπ(q).

Lemma 3.1 For any σ ∈M(2n) and π ∈ P(2n) such that σ ≤ π, let cr(σ, π) be the

number of crossings ({i, j}, {k, ℓ}) of σ such that {i, j, k, ℓ} ⊂ b for some b ∈ π. Then

we have:

(3.1) mπ(q) =
∑

σ∈M(2n)
σ≤π

qcr(σ,π).

Proof Denoting σ|b = {x ∈ σ : x ⊂ b}, the map σ 7→ (σ|b)b∈π is a natural bijection

between the set {σ ∈ M(2n) : σ ≤ π} and the product Πb∈πM(b), in such a way

that cr(σ, π) =
∑

b∈π cr(σ|b). This allows us to factor the right-hand side in (3.1)

and obtain mπ(q).

From equation (2.2) and the previous lemma, we have:

k2n(q) =
∑

π∈P(2n)

mπ(q)µ(π, 1̂) =
∑

π∈P(2n)

∑

σ∈M(2n)
σ≤π

qcr(σ,π)µ(π, 1̂)

=

∑

σ∈M(2n)

∑

π∈P(2n)
π≥σ

qcr(σ,π)µ(π, 1̂) =
∑

σ∈M(2n)

W (σ),

(3.2)

where for each σ ∈M(2n) we have introduced:

(3.3) W (σ) =
∑

π∈P(2n)
π≥σ

qcr(σ,π)µ(π, 1̂).

A key point is to note that W (σ) only depends on how the arches of σ cross with

respect to each other, which can be encoded in a graph. This leads to the following

definition.

Definition 3.2 Let σ ∈M(2n). The crossing graph G(σ) = (V, E) is as follows. The

vertex set V contains the arches of σ (i.e., V = σ), and the edge set E contains the

crossings of σ (i.e., there is an edge between the vertices {i, j} and {k, ℓ} if and only

if i < k < j < ℓ).
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See Figure 1 for an example. Note that the graph G(σ) is connected if and only if

σ is a connected matching in the sense of the previous section.

b b b b b b b b b b b b

1 2 3 4 5 6 7 8 9 10 11 12

b b

b

b
b

b

{1, 6}

{2, 8}

{7, 9}
{3, 5}

{4, 11}

{10, 12}

Figure 1: A matching σ and its crossing graph G(σ).

We also need the following definition for a general graph.

Definition 3.3 Let G = (V, E) be a graph, and let π ∈ P(V ). Then we denote by

i(E, π) the number of elements in the edge set E such that both endpoints are in the

same block of π.

Lemma 3.4 Let σ ∈ M(2n) and let G(σ) = (V, E) be its crossing graph. Then we

have

(3.4) W (σ) =
∑

π∈P(V )

qi(E,π)µ(π, 1̂).

Proof There is a natural bijection between the interval [σ, 1̂] in P(2n) and the set

P(V ), in such a way that cr(σ, π) = i(E, π). Hence equation (3.4) is just a rewriting

of (3.3) in terms of the graph G(σ).

Now we can use Proposition 4.1. It allows to recognize (q − 1)−n+1W (σ) as an

evaluation of the Tutte polynomial TG(σ), except that it is 0 when the graph is not

connected.

Gathering equations (3.2), (3.4), and Proposition 4.1, we have proved the follow-

ing theorem.

Theorem 3.5 For any n ≥ 1,

k̃2n(q) =
∑

σ∈Mc(2n)

TG(σ)(1, q).

In particular, k̃2n(q) is a polynomial in q with nonnegative coefficients.
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4 The Tutte Polynomial of a Connected Graph

For any graph G = (V, E), let TG(x, y) denote its Tutte polynomial; we give a short

definition here and refer the reader to [1, Chapter 9] for details. This graph invariant

can be computed recursively via edge deletion and edge contraction. Let e ∈ E, let

G\e = (V, E\e) and G/e = (V/e, E\e) where V/e is the quotient set where both

endpoints of the edge e are identified. Then the recursion is

(4.1) TG(x, y) =





xTG/e(x, y) if e is a bridge,

yTG\e(x, y) if e is a loop,

TG/e(x, y) + TG\e(x, y) otherwise.

The initial case is that TG(x, y) = 1 if the graph G has no edge. Here, a bridge is an

edge e such that G\e has one more connected component than G, and a loop is an

edge with identical endpoints.

Proposition 4.1 Let G = (V, E) be a graph (possibly with multiple edges and loops).

Let n = #V . We have:

(4.2)
1

(q− 1)n−1

∑

π∈P(V )

qi(E,π)µ(π, 1̂) =

{
TG(1, q) if G is connected,

0 otherwise.

Proof Denote by UG the left-hand side in (4.2) and let e be an edge of G. Suppose

that e ∈ E is a loop; it is then clear that i(E\e, π) = i(E, π)−1, so UG = qUG\e. Then

suppose that e is not a loop, and let x and y be its endpoints. We have

UG −UG\e =
1

(q− 1)n−1

∑

π∈P(V )

(
qi(E,π) − qi(E\e,π)

)
µ(π, 1̂).

In this sum, all terms where x and y are in different blocks of π vanish. So we can

keep only π such that x and y are in the same block, and these can be identified with

elements of P(V/e) and satisfy i(E\e, π) = i(E, π)− 1. We obtain

UG −UG\e =
1

(q− 1)n−2

∑

π∈P(V/e)

qi(E\e,π)µ(π, 1̂) = UG/e.

This is a recurrence relation that determines UG, and it remains to describe the initial

case. So, suppose the graph G has n vertices and no edge, i.e., G = (V,∅). We have

i(∅, π) = 0. By the definition of the Möbius function, we have

∑

π∈P(V )

µ(π, 1̂) = δn1,

hence UG = δn1 as well in this case.

We have thus a recurrence relation for UG, and it remains to show that the right-

hand side of (4.2) satisfies the same relation. This is true, because when x = 1, and

when we consider a variant of the Tutte polynomial that is 0 for a non-connected

graph, then the first case of (4.1) becomes a particular case of the third case.
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Remark 4.2 Proposition 4.1 can also be derived from results of Burman and Sha-

piro [9], at least in the case where G is connected. More precisely, in the light of

[9, Theorem 9] we can recognize the sum in the left-hand side of (4.2) as the external

activity polynomial CG(w), where all edge variables are specialized to q−1. It is known

to be related to TG(1, q); see for example [20, Section 2.5].

5 The Case q = 0, Lassalle’s Sequence and Heaps

In the case q = 0, the substitution z → iz recasts equation (2.1) as

(5.1) − log

( ∑

n≥0

(−1)nCn
z2n

(2n)!

)
=

∑

n≥1

k̃2n(0)
z2n

(2n)!
,

where Cn =
1

n+1

(
2n
n

)
is the n-th Catalan number, known to be the cardinal of N(2n);

see [21]. The integer sequence {k̃2n(0)}n≥1 = (1, 1, 5, 56, . . . ) was previously defined

by Lassalle [17] via an equation equivalent to (5.1), and [17, Theorem 1] states that

the integers k̃2n(0) are positive and increasing (stronger results are also true; see [2,

17]).

The goal of this section is to give a meaning to (5.1) in the context of the theory

of heaps [26], [10, Appendix 3]. This will give an alternative proof of Theorem 3.5

for the case q = 0, based on a classical result on the evaluation TG(1, 0) of a Tutte

polynomial in terms of some orientations of the graph G.

Definition 5.1 A graph G = (V, E) is rooted when it has a distinguished vertex

r ∈ V , called the root. An orientation of G is root-connected if for any vertex v ∈ V

there exists a directed path from the root to v.

Proposition 5.2 (Greene and Zaslavsky [14]) If G is a rooted and connected graph,

TG(1, 0) is the number of its root-connected acyclic orientations.

The notion of heap was introduced by Viennot [26] as a geometric interpretation

of elements in the Cartier–Foata monoid [10], and has various applications in enu-

meration. We refer the reader to [10, Appendix 3] for a modern presentation of this

subject (including a comprehensive bibliography).

Let M be the monoid built on the generators (xi j)1≤i< j subject to the relations

xi jxkℓ = xkℓxi j if i < j < k < ℓ or i < k < ℓ < j. We call it the Cartier–Foata

monoid, but in other contexts it could be called a partially commutative free monoid

or a trace monoid as well. Following [26], we call an element of M a heap.

Any heap can be represented as a “pile” of segments, as in the left part of Fig-

ure 2 (this is remindful of [6]). This pile is described inductively: the generator xi j

corresponds to a single segment whose extremities have abscissas i and j, and mul-

tiplication m1m2 is obtained by placing the pile of segments corresponding to m2

above the one corresponding to m1. In terms of segments, the relation xi jxkℓ = xkℓxi j

if i < j < k < ℓ has a geometric interpretation: segments are allowed to move

vertically as long as they do not intersect (this is the case of x34 and x67 in Figure 2).

Similarly, the other relation xi jxkℓ = xkℓxi j if i < k < ℓ < j can be treated by think-

ing of each segment as the projection of an arch as in the central part of Figure 2. In
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this three-dimensional representation, all the commutation relations are translated

in terms of arches that are allowed to move along the dotted lines as long as they do

not intersect.

A heap can also be represented as a poset. Consider two segments s1 and s2 in

a pile of segments, then the relation is defined by saying that s1 < s2 if s1 is always

below s2, after any movement of the arches (along the dotted lines and as long as

they do not intersect, as above). This way, a heap can be identified with a poset

where each element is labeled by a generator of M and two elements whose labels

do not commute are comparable. See the right part of Figure 2 for an example and

[10, Appendice 3] for details.

1 2 3 4 5 6 7

1
2

3
4

5
6

7

b

b

b

b

b

b

4,6

6,7

1,6
3,4

4,7

Figure 2: The heap m = x46x67x34x16x47 as a pile of segments and the Hasse diagram of the

associated poset.

Definition 5.3 For any heap m ∈ M, let |m| denote its length as a product of

generators. Moreover, m ∈ M is called a trivial heap if it is a product of pairwise

commuting generators. Let M◦ ⊂ M denote the set of trivial heaps.

Let Z[[M]] denote the ring of formal power series in M, i.e., all formal sums∑
m∈M αmm with multiplication induced by the one of M. A fundamental result

of Cartier and Foata [10] is the identity in Z[[M]] as follows:

(5.2)

( ∑

m∈M◦

(−1)|m|m

)−1

=

∑

m∈M

m.

Note that M◦ contains the neutral element of M, so that the sum in the left-hand side

is invertible, being a formal power series with constant term equal to 1.

Definition 5.4 An element m ∈ M is called a pyramid if the associated poset has a

unique maximal element. Let P ⊂ M denote the subset of pyramids.

A fundamental result of the theory of heaps links the generating function of pyra-

mids with the one of all heaps [10,26]. It essentially relies on the exponential formula
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for labeled combinatorial objects and reads

(5.3) log
( ∑

m∈M

m
)
=comm

∑

p∈P

1

|p| p,

where the sign =comm means that the equality holds in any commutative quotient of

Z[[M]]. Combining (5.2) and (5.3), we obtain

(5.4) − log
( ∑

m∈M◦

(−1)|m|m
)
=comm

∑

p∈P

1

|p| p.

Now, let us examine how to apply this general equality to the present case.

The following lemma is a direct consequence of the definitions and permits us to

identify trivial heaps with noncrossing matchings.

Lemma 5.5 The map

(5.5) Φ : xi1 j1
· · · xin jn

7−→
{
{i1, j1}, . . . , {in, jn}

}

defines a bijection between the set of trivial heaps M◦ and the disjoint union of N(V ),

where V runs through the finite subsets (of even cardinal) of N>0.

For a general heap m ∈ M, we can still define Φ(m) via (5.5), but it may not be a

matching; for example Φ(x1,2x2,3) = {{1, 2}, {2, 3}}. Let us first consider the case of

m ∈ M such that Φ(m) is really a matching.

Lemma 5.6 Let σ ∈ M(V ) for some V ⊂ N>0. Then the heaps m ∈ M such that

Φ(m) = σ are in bijection with acyclic orientations of G(σ). Thus, such a heap m ∈ M

can be identified with a pair (σ, r), where r is an acyclic orientation of the graph G(σ).

Proof An acyclic orientation r on G(σ) defines a partial order on σ by saying that

two arches x and y satisfy x < y if there is a directed path from y to x. In this partial

order, two crossing arches are always comparable, since they are adjacent in G(σ). We

recover the description of heaps in terms of posets, as described above, so each pair

(σ, r) corresponds to a heap m ∈ M with Φ(m) = σ.

To treat the case where m ∈ M such that Φ(m) is not a matching, such as x12x23,

we are led to introduce a set of commuting variables (ai)i≥1 such that a2
i = 0 and con-

sider the specialization xi j 7→ aia j that defines a morphism of algebras ω : Z[[M]]→
Z[[a1, a2, . . .]]. This way, for any m ∈ M we have either ω(m) = 0 or Φ(m) ∈M(V )

for some V ⊂ N>0.

Let m ∈ M such that ω(m) 6= 0. As seen in Lemma 5.6, it can be identified with

the pair (σ, r), where σ = Φ(m), and r is an acyclic orientation of G(σ). Then the

condition defining pyramids is easily translated in terms of (σ, r). Indeed we have

m ∈ P if and only if the acyclic orientation r has a unique source (where a source is a

vertex having no ingoing arrows).
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Under the specialization ω, the generating function of trivial heaps is

(5.6) ω

( ∑

m∈M◦

(−1)|m|m

)
=

∑

n≥0

(−1)nCne2n,

where e2n is the 2n-th elementary symmetric function in the ai ’s. Indeed, let V ⊂
N>0 with #V = 2n. Then the coefficient of

∏
i∈V ai in the left-hand side of (5.6)

is (−1)n#N(V ) = (−1)nCn, as can be seen using Lemma 5.5. In particular, it only

depends on n, so that this generating function can be expressed in terms of the e2n.

Moreover, since the variables ai have vanishing squares, their elementary symmetric

functions satisfy

e2n =
1

(2n)!
e2n

1 ,

so that the right-hand side of (5.6) is actually the exponential generating of the Cata-

lan numbers (evaluated at e1). It remains to explain the meaning of taking the loga-

rithm of the left-hand side of (5.6) using pyramids and equation (5.4).

Note that the relation =comm becomes a true equality after the specialization xi j 7→
aia j . So taking the image of (5.4) under ω and using (5.6), this gives

− log

( ∑

n≥0

(−1)nCne2n

)
=

∑

p∈P

1

|p|ω(p).

The argument used to obtain (5.6) shows as well that the right-hand side of the pre-

vious equation is
∑

xn

n
e2n, where xn = #{p ∈ P : ω(p) = a1 · · · a2n}. So we have

− log

( ∑

n≥0

(−1)nCne2n

)
=

∑

n≥0

xn

n
e2n,

and comparing this with (5.1), we obtain k̃2n(0) = xn

n
.

Clearly, a graph with an acyclic orientation always has a source, and it has a unique

source only when it is root-connected (for an appropriate root, viz. the source). So

a pyramid p such that ω(p) 6= 0 can be identified with a pair (σ, r) where r is a

root-connected acyclic orientation of G(σ). Then using Proposition 5.2, it follows

that

xn = n
∑

σ∈Mc(2n)

TG(σ)(1, 0).

Here, the factor n in the right-hand side accounts for the n possible choices of the

source in each graph G(σ). Eventually, we obtain

(5.7) k̃2n(0) =
∑

σ∈Mc(2n)

TG(σ)(1, 0);

i.e., we have proved the particular case q = 0 of Theorem 3.5.

Let us restate the result in an equivalent form. We can consider that if σ ∈M(2n),

the graph G(σ) has a canonical root which is the arch containing 1. Then equation

(5.7) gives a combinatorial model for the integers k̃2n(0).
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Theorem 5.7 The integer k̃2n(0) counts pairs (σ, r), where σ ∈ M
c(2n), and r is an

acyclic orientation of G(σ) whose unique source is the arch of σ containing 1.

From this, it is possible to give a combinatorial proof that the integers k̃2n(0) are

increasing, as suggested by Lassalle [17] who gave an algebraic proof. Indeed, we can

check that pairs (σ, r) where {1, 3} is an arch of σ are in bijection with the same

objects but of size one less, hence k̃2n(0) ≤ k̃2n+2(0).

Before ending this section, note that the left-hand side of (5.1) is − log( 1
z

J1(2z))

where J1 is the Bessel function of order 1. There are quite a few other cases where the

combinatorics of Bessel functions are related to the theory of heaps; see the articles

of Fédou [11, 12], Bousquet-Mélou and Viennot [6].

6 The Case q = 2, the Exponential Formula

The specialization at (1, 2) of a Tutte polynomial has combinatorial significance in

terms of connected spanning subgraphs (see [1, Chapter 9]), so it is natural to con-

sider the case q = 2 of Theorem 3.5. This case is special, because the factor (q−1)n−1

disappears, so that k̃2n(2) = k2n(2). We can then interpret the logarithm in the sense

of combinatorial species, by showing that k̃2n(2) counts some primitive objects and

m2n(2) counts assemblies of those, just like permutations that are formed by assem-

bling cycles (this is the exponential formula for labeled combinatorial objects; see

[1, Chapter 3]). What we obtain is another more direct proof of Theorem 3.5, based

on an interpretation of TG(1, 2) as follows.

Proposition 6.1 (Gioan [13]) If G is a rooted and connected graph, TG(1, 2) is the

number of its root-connected orientations.

This differs from the more traditional interpretation of TG(1, 2) in terms of con-

nected spanning subgraphs mentioned above, but it is what naturally appears in this

context.

Definition 6.2 Let M+(2n) be the set of pairs (σ, r), where σ ∈ M(2n) and r is an

orientation of the graph G(σ). Such a pair is called an augmented matching and is

depicted with the convention that the arch {i, j} lies above the arch {k, ℓ} if there is

an oriented edge {i, j} → {k, ℓ}, and behind it if there is an oriented edge {k, ℓ} →
{i, j} .

See Figure 3 for example. Clearly, #M+(2n) = m2n(2). Indeed, each graph G(σ) =

(V, E) has 2#E orientations, and #E = cr(σ), so this follows from (2.4).

Notice that if there is no directed cycle in the oriented graph (G(σ), r), the aug-

mented matching (σ, r) can be identified with a heap m ∈ M as defined in the pre-

vious section. The one in Figure 3 would be x3,5x4,11x10,12x1,6x7,9x2,8. Actually, the

application of the exponential formula in the present section is quite reminiscent of

the link between heaps and pyramids as seen in the previous section.

Definition 6.3 Recall that each graph G(σ) is rooted with the convention that the

root is the arch containing 1. Let I(2n) ⊂M
+(2n) be the set of augmented matchings
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b b b b b b b b b b b b

1 2 3 4 5 6 7 8 9 10 11 12

b b

b

b
b

b

{1, 6}

{2, 8}

{7, 9}
{3, 5}

{4, 11}

{10, 12}

Figure 3: An augmented matching (σ, r) and the corresponding orientation of G(σ).

(σ, r) such that σ is connected and r is a root-connected orientation of G(σ). The

elements of I(2n) are called primitive augmented matchings. For any V ⊂ N>0 with

#V = 2n, we also define the set I(V ), with the same combinatorial description as

I(2n) except that matchings are based on the set V instead of {1, . . . , 2n}.

Using Proposition 6.1, we have

#I(2n) =
∑

σ∈Mc(2n)

TG(σ)(1, 2),

so that the particular case q = 2 of Theorem 3.5 is the equality #I(2n) = k2n(2).

To prove this from (2.1) using the exponential formula, we have to see how an aug-

mented matching can be decomposed into an assembly of primitive ones, as stated

in Proposition 6.4. This decomposition thus proves the case q = 2 of Theorem 3.5.

Note also that the bijection given below is equivalent to the first identity in (2.2).

Proposition 6.4 There is a bijection

M
+(2n) −→

⊎
π∈P(n)

∏
V∈π

I(V ).

Proof Let (σ, r) ∈M
+(2n); the bijection is defined as follows. Consider the vertices

of G(σ) that are accessible from the root. This set of vertices defines a matching on

a subset V1 ⊂ {1, . . . , 2n}. For example, in the case of Figure 3, the root is {1, 6}
and the only other accessible vertex is {2, 8}, so V1 = {1, 2, 6, 8}. Together with the

restriction of the orientation r on this subset of vertices, this defines an augmented

matching (σ1, r1) ∈ M+(V1) that is primitive by construction. By repeating this

operation on the set {1, . . . , 2n}\V1, we find V2 ⊂ {1, . . . , 2n}\V1 and (σ2, r2) ∈
I(V2), and so on. See Figure 4 for the result, in the case of the augmented matching

in Figure 3.

The inverse bijection is easily described. If (σi , ri) ∈ I(Vi) for any 1 ≤ i ≤ k

where π = {V1, . . . ,Vk}, let σ = σ1 ∪ · · · ∪ σk, and the orientation r of G(σ) is as

follows. Let e be an edge of G(σ) and x1, x2 be its endpoints, with x1 ∈ σ j1
and x2 ∈

σ j2
. If j1 = j2, the edge e is oriented in accordance with the orientation r j1

= r j2
.

Otherwise, say j1 < j2, then the edge e is oriented in the direction x1 ← x2.
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b b b b

1 2 6 8

b b b b b b

3 4 5 10 11 12

b b

7 9

Figure 4: Decomposition of an augmented matching into primitive ones.

7 Cumulants in Terms of Free Cumulants

In this section, {µn}n≥0 is any sequence of moments, and {kn}n≥1 and {cn}n≥1 are

the corresponding cumulants and free cumulants defined by (2.2) and (2.3). It was

shown by Lehner [18] that (2.2) and (2.3) imply

(7.1) cn =

∑

π∈Pc(n)

kπ.

By a triangularity argument, this can clearly be inverted to have kn in terms of c1, c2,

etc. But it cannot be done using a Möbius function as in (2.2) and (2.3), because in

this case we have that

cπ 6=
∑

ρ∈P
c(n)

ρ≤π

kρ

in general, contrary to

mπ =

∑

ρ∈P(n)
ρ≤π

kρ if π ∈ P(n), mπ =

∑

ρ∈NC(n)
ρ≤π

cρ if π ∈ NC(n).

Still, we obtain an explicit inverse formula for (7.1) in the theorem below.

For any set partition π ∈ P(V ) for some V ⊂ N, we can define a crossing graph

G(π), whose vertices are the blocks of π, and there is an edge between b, c ∈ π if

{b, c} is not a noncrossing partition. Note that π is connected if and only if the graph

G(π) is connected. The two different proofs for the semicircular cumulants show the

following theorem as well.

Theorem 7.1 For any n ≥ 1, we have

kn =

∑

π∈Pc(n)

cπ(−1)1+#πTG(π)(1, 0).

Let us sketch the proofs. If π ∈ P(n), similar to Lemma 3.1, we have

mπ =

∏

b∈π

( ∑

ρ∈NC(b)

cρ

)
=

∑

ρ∈P(n)
ρEπ

cρ,

where the relation ρEπ means that ρ ≤ π and ρ|b is a noncrossing partition for each

b ∈ π. Indeed the map ρ 7→ (ρ|b)b∈π is a bijection between {ρ ∈ P(n) : ρE π} and
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∏
b∈π NC(b). The same computation as in (3.2) and (3.3) gives

(7.2) kn =

∑

π∈P(n)

mπµ(π, 1̂) =
∑

ρ,π∈P(n)
ρEπ

cρµ(π, 1̂) =
∑

ρ∈P(n)

cρW (ρ),

where

W (ρ) =
∑

π∈P(n)
ρEπ

µ(π, 1̂).

Denoting G(ρ) = (V, E) the crossing graph of ρ, the previous equality is rewritten

W (ρ) =
∑

µ(π, 1̂), where the sum is over π ∈ P(V ) such that for any b ∈ π, e ∈ E,

the block b does not contain both endpoints of the edge e. Then the case q = 0 of

Proposition 4.1 shows that

W (ρ) =

{
(−1)1+#ρTG(ρ)(1, 0) if ρ ∈ P

c(n),

0 otherwise.

Together with (7.2), this completes the first proof of Theorem 7.1.

As for the second proof, we follow the outline of Section 5, but with another defi-

nition for M, M◦, P, and ω. Let M be the monoid with generators (xV ), where V runs

through finite subsets of N>0, and with relations xV xW = xW xV if {V,W} is a non-

crossing partition. We also denote M◦ ⊂ M the corresponding set of trivial heaps,

i.e., products of pairwise commuting generators, and an element xb1
· · · xbi

∈ M◦ is

identified with {b1, . . . , bi} ∈ NC(∪i
j=1b j). The subset P ⊂ M is characterized by

Definition 5.4. Now, we consider the morphism ω defined on Z[[M]] by

ω(xV ) = −c#V

∏
i∈V

ai .

We have

ω

( ∑

m∈M◦

(−1)|m|m

)
=

∑

V

∑

π∈NC(V )

(−1)#π ∏
b∈π

ω(xb)

=

∑

V

∑

π∈NC(V )

cπ
∏

i∈V

ai

=

∑

n≥0

mnen =

∑

n≥0

mn
en

1

n!
.

We still understand that V ⊂ N>0 is finite, (ai)i≥1 are commuting variables with van-

ishing squares, and en is the n-th elementary symmetric function in the ai ’s. Equa-

tion (5.4) is still valid as such with the new definition of M◦ and P, and taking the

image by ω gives

− log

( ∑

n≥0

mn
en

1

n!

)
=

∑

p∈P

1

|p|ω(p).
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By extracting the coefficient of a1 · · · an on both sides, we get

(7.3) −kna1 · · · an =

∑ 1

|p|ω(p)

where the sum is over p ∈ P that can be written in the form p = xV1
· · · xVk

, where

π = {V1, . . . ,Vk} ∈ P(n). We can gather the terms corresponding to a same π. Note

that

ω(p) = (−1)#πcπa1 · · · an.

From (7.3), we obtain

(7.4) −kna1 · · · an =

∑

π∈P(n)

xπ

#π
(−1)#πcπa1 · · · an,

where xπ is the number of p ∈ P that are a product of xb, where b runs through the

blocks of π. Following the ideas in Section 5, such a p is characterized by π together

with an acyclic orientation of the graph G(π) having a unique source. So xπ is the

number of such orientations, which is equal to #π · TG(π)(1, 0) if π is connected and

0 otherwise. Knowing the value of xπ , from equation (7.4), we complete the second

proof of Theorem 7.1.

8 Final Remarks

It would be interesting to explain why the same combinatorial objects appear for

both c2n(q) and k2n(q). This suggests that there exists some quantity that interpolates

between the classical and free cumulants of the q-semicircular law; however, building

a noncommutative probability theory that encompasses the classical and free ones

appears to be elusive (see [25] for a precise statement). It means that building such

an interpolation would rely not only on the q-semicircular law and its moments, but

on its realization as a noncommutative random variable. This might be feasible using

q-Fock spaces [7, 8] but is beyond the scope of this article.
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convexes dirigés. J. Combin. Theory Ser. A 60(1992), no. 2, 196–224.
http://dx.doi.org/10.1016/0097-3165(92)90004-E

https://doi.org/10.4153/CJM-2012-042-9 Published online by Cambridge University Press

http://arxiv.org/abs/1202.1203v1
http://dx.doi.org/10.1016/j.aim.2010.10.025
http://arxiv.org/abs/1102.0748
http://dx.doi.org/10.1016/0097-3165(92)90004-E
https://doi.org/10.4153/CJM-2012-042-9


878 M. Josuat-Vergès
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