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Abstract

Previous studies have suggested that a hospital patient’s risk of developing healthcare facility-
onset (HCFO) Clostridioides difficile infections (CDIs) increases with the number of concur-
rent spatially proximate patients with CDI, termed CDI pressure. However, these studies were
performed either in a single institution or in a single state with a very coarse measure of con-
currence. We conducted a retrospective case-control study involving over 17.5 million
inpatient visits across 700 hospitals in eight US states. We built a weighted, directed network
connecting overlapping inpatient visits to measure facility-level CDI pressure. We then
matched HCFO-CDIs with non-CDI controls on facility, comorbidities and demographics
and performed a conditional logistic regression to determine the odds of developing
HCFO-CDI given the number of coincident patient visits with CDI. On average, cases’ visits
coincided with 9.2 CDI cases, which for an individual with an average length of stay corre-
sponded to an estimated 17.7% (95% CI 12.9–22.7%) increase in the odds of acquiring
HCFO-CDI compared to an inpatient visit without concurrent CDI cases or fully isolated
from both direct and indirect risks from concurrent CDI cases. These results suggest that,
either directly or indirectly, hospital patients with CDI lead to CDIs in non-infected patients
with temporally overlapping visits.

Introduction

Clostridioides difficile is a significant cause of morbidity and mortality [1, 2]. While
community-onset C. difficile infections (CDIs) are increasing, healthcare facility-onset CDIs
(HCFO-CDIs) still comprise the majority of cases. Also, HCFO-CDI is associated with
three times the cost per patient compared to similar non-HCFO-CDI patients [3].
Individual risk factors include increased age [4], use of proton-pump inhibitors [5], acid sup-
pressing drugs and antibiotics [6].

Several studies have found C. difficile contamination on healthcare worker hands and sur-
faces in healthcare facilities [7–12]. Also, significant spatiotemporal clustering of CDI cases
[13] provides evidence of direct or indirect transmission of C. difficile between patients. In
addition, the number of infected or colonised individuals in close spatial and temporal prox-
imity to a given patient, known as ‘pressure’, has been found to be a significant risk factor for
infection from several other pathogens such as methicillin-resistant Staphylococcus aureus
[14], vancomycin-resistant Enterococcus [15], multi-antimicrobial-resistant Acinetobacter
spp, carbapenem-resistant Pseudomonas aeruginosa [16] and multi-antimicrobial-resistant
Acinetobacter baumannii [17]. CDI pressure is an important risk factor at the very local
level of room sharing or adjacent rooms [18], as well as at the unit level [19, 20], and
whole genome sequencing (WGS) has provided evidence of links between cases connected
by a common unit [21].

C. difficile spores persist in the environment, and lingering spores can lead to secondary
infections [22]. In addition, a WGS study showed that 22% of C. difficile transmission events
occurred between units, and the authors identified potential super-spreaders affecting CDIs
across the hospital [23]. This suggests that in addition to local CDI pressure, the movement
of patients throughout a healthcare facility and peripatetic healthcare workers visiting multiple
units may lead to broader CDI pressure on the facility level. Indeed, Miller et al. demonstrated
that hospital-wide CDI pressure is a risk factor for HCFO-CDI [24]. While previous studies of
CDI pressure were limited to a small number of healthcare facilities over a short time period,
Miller et al.’s study on hospital-level CDI pressure considered all hospitals in California.
However, the measure of CDI pressure was limited to temporally aggregating CDI cases to
3-month periods. The current study expands on this work in two important ways. First, we
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devised a method for determining CDI pressure that is specific to
each patient’s visit rather than relying on coarse temporal aggre-
gation. Second, we measured CDI pressure over a much larger
geographic area and over a longer time period in order to deter-
mine if patient-level risk due to hospital-level CDI pressure can be
generalised across different settings in different states.

Methods

Data

This study utilised data from the State Inpatient Databases (SID),
a family of administrative claims database available through the
Healthcare Cost and Utilization Project (HCUP). The SID con-
tain information regarding discharge abstracts for 100% of
inpatient visits to non-federal hospitals for specific states and
years. The study included data from the SID for eight different
states: Arkansas from 2005 to 2014, Arizona from 2005 to 2007,
Iowa from 2009 to 2015, Nebraska from 2009 to 2014, North
Carolina from 2005 to 2010, Utah from 2005 to 2012, Vermont
from 2011 to 2015 and Wisconsin from 2013 to 2015. There
was a total of 16 876 332 inpatient visits between these eight states.
CDI cases were identified as visits with either an International
Classification of Disease, Ninth Revision, Clinical Modification
(ICD-9-CM) diagnosis code of 008.45 or an International
Classification of Disease, Tenth Revision, Clinical Modification
(ICD-10-CM) diagnosis code of A04.7. Our main interest con-
cerned HCFO-CDI, i.e. patients who were infected with CDI dur-
ing their stay at a hospital.

Analysis

Cohort
We built a decision tree to classify patient visits with a CDI as
either an HCFO-CDI or community acquired/indeterminate.
The full decision tree providing details on this classification is
given in Appendix A, and is built on the definitions provided
in [25–27]. To ensure comparability between cases and controls,
inclusion criteria applied to the HCFO-CDIs (such as length of
stay greater than 3 days) was also applied to the controls. Each
of the HCFO-CDIs was matched with a non-CDI control based
on age, gender, hospital, diagnoses and admission year. For the
purposes of matching, patients were binned into 10-year age
groups (0–10, 11–20, 21–30, etc.). Patients were matched sequen-
tially based on their diagnoses, at each step using a coarser diag-
nosis categorisation. They were first matched on Diagnosis-
Related Group (DRG), a patient classification system consisting

of 467 categories; if there was no match here, they were next
matched on their primary Clinical Classifications Software (CCS)
code, of which there are 285 distinct categories; finally, if both
DRG and CCS code failed to provide a match, we used Major
Diagnostic Category (MDC), which consists of only 25 diagnosis
groups. If a particular HCFO-CDI could not be matched based
on any of these three diagnosis systems (in addition to age, gender
and hospital), this case was excluded from the cohort. When there
were multiple matches for an HCFO-CDI based on the four cri-
teria, a single match was randomly selected from among them.
Once a control was matched to an HCFO-CDI, it could not be
matched to any other HCFO-CDIs. Of the 99.8% HCFO-CDIs
which were successfully matched to a control, approximately 94%
were matched based on DRG, 5% were matched on CCS code
and 1% were matched on MDC.

CDI potential transmission network
We constructed a weighted, directed network for each state, where
every vertex in the network represented either a CDI case (includ-
ing cases not classified as HCFO-CDIs) or a matched control in
our cohort. These networks captured the probability that a patient
with CDI had the opportunity to cause a HCFO-CDI in another
patient. Generally, this consisted of looking at all pairs of hospital
visits, determining if these pairs coincided in time and occurred at
the same facility, and considering if one patient had CDI and the
other entered the hospital without CDI. More specifically, for each
state’s network there was a directed edge present from case i to
case/control j if i’s visit intersected with j’s visit. Thus, edges
could only emanate from CDI cases, but they could be received
by both cases and controls. The HCUP SID provides a linking
variable to connect hospital visits with patients, alongside the hos-
pital of each visit, the admission and discharge month of each
visit, the length of stay for each visit and the number of days
between visits. To protect patient identities, the precise admission
and discharge days are not provided, and therefore it is in general
impossible to be completely certain that two patients had inter-
secting visits. To remedy this issue, we devised a method for com-
puting the probability that the ith patient’s visit intersected with
the jth patient’s visit based on their respective facilities, admis-
sion/discharge months and lengths of stay, and we then took
this probability to be the weight for the edge from i to j. Upon
constructing each state’s network, the in-degree for patient i
was computed by the sum of the weighted edges received by i.
Due to the methods used to construct the weighted network,
the in-degree for patient i equals the expected number of other
patients at the same facility with a CDI (HCFO or otherwise)

Table 1. Total numbers of hospitals, admissions and HCFO-CDIs for each of the eight states included in the study

State Years Number of hospitals Total admissions Total HCFO-CDIs

Arkansas 2005–2014 110 3 891 638 6209

Arizona 2005–2007 80 2 244 437 9273

Iowa 2009–2015 117 1 805 473 3109

Nebraska 2009–2014 89 1 258 818 1674

North Carolina 2005–2010 108 4 361 475 12 071

Utah 2005–2012 51 1 862 873 4917

Vermont 2011–2015 14 214 553 397

Wisconsin 2013–2015 148 1 820 219 3158
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whose visits overlapped with that of i. See Appendix B for a
detailed description of how the network was constructed for
each state.

Statistical analysis
We employed conditional logistic regression on our matched
cohort using a 0–1 indicator for a HCFO-CDI as the response
variable. We used each patient’s in-degree as the primary covari-
ate of interest to capture CDI pressure. We added patient length
of stay as a term in the model to account for the fact that
HCFO-CDI patients tended to have prolonged hospital stays
(which in turn inflated their in-degrees). We used empirical
logit plots to determine if a transformation was required to
meet modelling assumptions, and used AIC to determine whether
or not an interaction term between in-degree and length of stay
was necessary. The interpretation of the (exponentiated) coeffi-
cient for in-degree can be interpreted in two ways. First, it can
refer to the change in the odds of a HCFO-CDI due to each add-
itional concurrent CDI case; this is the way we focus on in the
Results section. Alternatively, it can easily be shown mathematic-
ally to be equivalent to the change in the odds of a HCFO-CDI
due to each concurrent CDI case above the average number of
concurrent CDI cases at the facility an individual’s visit corre-
sponds to. In this way, we can understand a positive statistically
significant regression coefficient for in-degree to have a global
interpretation in the sense that such an effect is not determined
by the size and overall prevalence of any specific facility. Rather,
in-patients staying at a facility experiencing a higher (lower)
than average number of CDI cases is at an increased (decreased)
risk of HCFO-CDI, and that this risk is amplified (dampened) by
the degree to which a facility is above (below) its average
prevalence.

To control for differences in patient characteristics not cap-
tured by our matching scheme, we also included 29 indicator vari-
ables for various Elixhauser comorbidities (see Table 2). We
further incorporated temporal sine and cosine terms into the
model to account for seasonality with regards to CDI. All statis-
tical analyses were conducted using the R programming language
[28], using the R packages dbplyr [29], survival [30] and
Matrix [31].

Table 2. Results from the conditional logistic regression model evaluating the
effect of CDI pressure on HCFO-CDI risk

Variable

Odds ratio/exponentiated
regression coefficient

(95% CI) P value

Expected # of concurrent
CDI cases

1.046 (1.036–1.056) <0.001

log (Length of stay) 4.555 (4.366–4.752) <0.001

(Expected # of concurrent
CDI cases) × (log (length of
stay))

0.982 (0.979–0.985) <0.001

Sine 1.054 (1.030–1.079) <0.001

Cosine 0.988 (0.965–1.011) 0.307

Alcohol abuse 0.887 (0.809–0.972) 0.010

Deficiency anaemias 0.996 (0.952–1.042) 0.874

Rheumatoid arthritis/
collagen vascular diseases

1.052 (0.954–1.160) 0.307

Chronic blood loss
anaemia

1.078 (0.958–1.212) 0.212

Congestive heart failure 0.943 (0.900–0.988) 0.134

Chronic pulmonary
disease

0.903 (0.867–0.941) <0.001

Coagulopathy 1.014 (0.949–1.083) 0.675

Depression 0.992 (0.932–1.055) 0.788

Diabetes, uncomplicated 0.849 (0.810–0.889) <0.001

Diabetes with chronic
complications

0.887 (0.823–0.956) 0.002

Drug abuse 0.808 (0.712–0.917) <0.001

Hypertension 0.829 (0.799–0.859) <0.001

Hypothyroidism 0.940 (0.887–0.996) 0.036

Liver disease 1.090 (0.991–1.199) 0.075

Lymphoma 1.180 (1.039–1.340) 0.011

Fluid and electrolyte
disorders

1.428 (1.381–1.478) <0.001

Metastatic cancer 0.776 (0.714–0.844) <0.001

Other neurological
disorders

0.989 (0.933–1.047) 0.701

Obesity 0.829 (0.773–0.889) <0.001

Paralysis 0.902 (0.826–0.984) 0.021

Peripheral vascular
disorders

0.956 (0.888–1.030) 0.240

Psychoses 0.982 (0.894–1.079) 0.707

Pulmonary circulation
disorders

0.794 (0.719–0.877) <0.001

Renal failure 1.163 (1.108–1.221) <0.001

Solid tumour without
metastasis

0.994 (0.905–1.091) 0.896

Peptic ulcer disease
excluding bleeding

1.182 (0.592–2.359) 0.636

Valvular disease 0.875 (0.807–0.949) 0.001

Weight loss 1.154 (1.095–1.217) <0.001

(Continued )

Table 2. (Continued.)

Variable

Odds ratio/exponentiated
regression coefficient

(95% CI) P value

Admission year (reference: 2005)

2006 0.916 (0.865–0.969) 0.002

2007 0.889 (0.840–0.942) <0.001

2008 0.841 (0.779–0.909) <0.001

2009 0.847 (0.787–0.911) <0.001

2010 0.915 (0.851–0.984) 0.016

2011 1.016 (0.924–1.118) 0.741

2012 0.915 (0.831–1.006) 0.067

2013 0.749 (0.675–0.831) <0.001

2014 0.832 (0.751–0.922) <0.001

2015 0.818 (0.724–0.925) 0.001
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Sensitivity analysis
If the estimated effect of CDI pressure were solely due to inflated
in-degrees caused by longer lengths of stay, making controls and
cases have similar in-degree distributions ought to nullify the
effect of CDI pressure in our analysis. To investigate the robust-
ness of our results to issues related to length of stay, we performed
a sensitivity analysis. Instead of including length of stay as a cov-
ariate, we adjusted the networks to account for differing length of
stay distributions between cases and controls. Specifically, we cal-
culated the difference in mean length of stay between the
HCFO-CDIs and controls in our cohort; then when computing
the edges in each network for the HCFO-CDIs, we decreased
their lengths of stay by this difference. If any of the resulting
lengths of stay were less than 1 day, we took them to be 1 day
(adjusting the corresponding discharge months if necessary).
We then ran a conditional logistic regression model using
in-degree as calculated from the resulting modified networks; as
before, Elixhauser comorbidities and seasonality terms were also
included as covariates.

Results

Using the classification tree shown in Appendix A, we identified a
total of 40 808 HCFO-CDIs between the eight states over the span
of each of their data. This total excluded 963 HCFO-CDIs for
which we were not able to find a matching control, although
such patients still contributed to CDI pressure in our constructed
networks, as did all other CDIs. Table 1 provides a breakdown of
the total numbers of hospitals, admissions and HCFO-CDIs by
state. Figure 1 provides a consort schematic showing the total
numbers used in our analyses.

The mean (S.D.) numbers of coincident CDI cases were 6.9
(7.1), 9.2 (9.0) and 8.4 (8.4) for the controls, HCFO-CDI cases
and HCFO-CDI cases after adjusting for length of stay differences
respectively. Figure 2 compares the distributions of the expected
number of coincident CDI cases for HCFO-CDI cases and con-
trols using a qq-plot. The dashed line corresponds to equivalent
distributions, and from this we can see that every quantile for
the cases is larger than that of the controls (equivalent plots

adjusting cases for length of stay showed similar results).
Marginal distributions for both cases and controls are provided
as violin plots in the margins.

Table 2 displays the results of the conditional logistic regres-
sion model for our primary analysis. While it was clear that
in-degree had a strong linear relationship with the response (on
the logit scale), length of stay required a log transformation to sat-
isfy model assumptions. Using AIC, we determined that the inter-
action term between in-degree and (log) length of stay was an
important predictor of HCFO-CDI status. The coefficients for
length of stay and in-degree were both positive as expected,
while the interaction term had a negative coefficient, implying
that as the length of stay increases the risk associated with each
additional concurrent CDI patient is attenuated. For a patient
with the average length of stay of 4.53 days, each additional con-
current CDI case (i.e. in-degree) was associated with a 1.8%
increase in the odds of acquiring CDI (P value < 0.001; 95% CI
1.3–2.2%). On average, the in-degree of cases was 9.2 leading to
a 17.7% (95% CI 12.9–22.7%) increase in the odds of a
HCFO-CDI compared to an inpatient visit without concurrent
CDI cases or the case where the patient is fully isolated from
both direct and indirect risks from concurrent CDI cases.
Figure 3 visualises the change in the odds ratio due to in-degree
for an average length of stay, holding all other variables constant.
Our sensitivity analysis regarding length of stay provided stronger
results, yielding cases having a mean in-degree of 8.4, leading to a
22% (P value < 0.001; 95% CI 20–25%) increase in the odds of
HCFO-CDI compared to an inpatient visit without concurrent
CDI cases or the case where the patient is fully isolated from
both direct and indirect risks from concurrent CDI cases.

Discussion

The degree to which CDI may transmit in hospital settings has
been a question of numerous investigations. Indeed, some whole-
genome sequencing studies have questioned the transmissibility of
CDI in healthcare settings, as genetic links between CDI cases
have often been difficult to establish. However, our group and
others have found evidence for the role of the hospital

Fig. 1. Number of inpatient hospital visits that were classified as HCFO-CDIs, all other CDIs, matched controls and all other non-CDI cases.
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environment in the transmission of CDI [13, 18–20, 24]. In this
study, we used coincident cases of CDI as a measure of CDI pres-
sure and found that controlling for seasonality, temporal trends
and patient comorbidities, for an individual with the average
length of stay, each additional concurrent CDI patient was asso-
ciated with a 1.8% increase in the odds of HCFO-CDI. The num-
ber of concurrent CDI patients can be large (for cases, this ranged
from 0 to 86, with a mean of 9.2), implying that this represents a
clinically significant increase in risk due to concurrent CDI
patients at the same facility.

This study expands upon a body of research linking environ-
mental infection pressure within healthcare settings to risk of
transmission. Most prior investigations’ results of CDI pressure
have been based on a single or small group of connected health-
care facilities. While such investigations provide highly granular
information for identifying and linking CDI cases, they are unable
to characterise the extent to which the effect of CDI pressure may
generalise to a broader range of healthcare settings and popula-
tions. In contrast, our study covered eight states and 717 hospitals
across the USA, suggesting that the increase in risk of HCFO-CDI
due to an increase in interhospital CDI pressure generalises across
diverse settings. Miller et al. studied CDI pressure using state-wide
discharge data from California to characterise a measure of
CDI pressure across a wide range of healthcare settings [24].

However, this study, which relied on deidentified patient data,
lacked the temporal granularity of exact admission dates required
to establish epidemiological linkages between cases and CDI pres-
sure. CDI pressure was defined at a hospital-quarterly level and
thus may not directly correspond to the exact pressure that indi-
vidual patients encounter. This study represents the first attempt
to infer greater temporal granularity in CDI pressure using dei-
dentified population-level discharge data. This approach may be
utilised to study the effect of environmental infection pressure
on other healthcare-associated infections and to better capture
exposure risk on future investigations utilising such data sources.
In addition, we carefully matched cases and controls, thereby
accounting for demographics, the reason for the inpatient visit
and, by matching on facility, any unmeasured facility-level con-
founder variables.

There were several limitations of this study. First, since the
HCUP SID include only partial information on admission and
discharge dates, we could only compute the expected, rather
than actual, number of coincident CDI cases. Second, there was
no information in the HCUP SID on asymptomatic infections,
yet some evidence exists that suggests this may be an important
transmission pathway [32]. Third, because spores may persist in
the environment for up to 5 months, risk from past patients,
unaccounted for in our analysis, may also contribute to a patient’s

Fig. 2. QQ-plot comparing the distributions of the in-degree, i.e. the expected number of concurrent CDI cases, for HCFO-CDI cases (vertical) and controls (hori-
zontal). The dashed line serves as a reference showing where we would expect the points to lie should the distributions be equal. Violin plots show the marginal
in-degree distributions.
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risk of HCFO-CDI. Fourth, we do not have access lab results nor
testing dates to confirm cases of CDI or the timing of symptoms
relative to hospital admission. Thus, we cannot directly confirm
CDI surveillance definitions or the exact length of stay prior to
diagnosis. While some researchers have found strong sensitivity
and specificity for identifying CDI cases [33, 34], others have
found the sensitivity of ICD codes to be 50% or less, and the site-
specific testing methods which was unavailable to us may have
strong influence on this as well [35, 36]. Fifth, our data do not
contain patient locations, and hence we are unable to account
for the fact that some patients may be roommates while others
may be situated in different wards or floors, nor do we know at
the facility level the percentage of patients sharing their room
with other patients. Additionally, because the dates of the
patients’ visits are inexact, we were unable to account for the
number of days of overlap between two patients’ visits.

Despite these limitations, our results provide further evidence
for the role of hospital environments and the transmission of
CDI. In our analysis, patients who were admitted to hospitals
with a high probability of having an overlapping stay with other
CDI patients were at increased risk for CDI. Moreover, as the
expected number of other overlapping CDI cases increased so
did their risk for CDI. As our study included a large number of
institutions and geographic locations in the USA, our findings
suggest that prior studies of CDI pressure within a small number
of facilities were not anomalous, and that this effect, which still
may prove to be heterogeneous across facilities and states, is
nevertheless prevalent across a wide range of settings. Thus, our
results continue to provide evidence for the role of institutional
CDI pressure and risk for CDI.
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Appendix

Appendix A: Decision Tree for classifying HCFO-CDIs
Figure A1 displays the decision tree used to classify patient visits. Since

only admission month, discharge month, length of stay and time between vis-
its are given, visits with a length of stay (LOS) greater than 30 days made it too
uncertain whether the time at which the patient was infected with C. difficile
overlapped with other patient visits, and hence we excluded such patients.
Following [25–27], any CDI visits with a LOS of 3 days or fewer were consid-
ered community acquired and were not included as cases (HCFO-CDIs) in our
analysis; we therefore also excluded non-CDI visits with LOS ≤3. Any CDI vis-
its which had either a primary CDI diagnosis or a present on admission tag
associated with the CDI diagnosis were also considered to be community
acquired, unless the patient had another hospital visit within the past 4
weeks, in which case they were considered to have a community-onset
healthcare-associated CDI [25]; both types of patient visits were excluded
from our cohort. We defined a readmission to be a CDI visit which had a pre-
vious CDI visit within the last 12 weeks. We did not include readmissions as
cases in our statistical analysis, and hence we also excluded from our set of
potential matched controls those non-CDI visits which had a previous CDI
visit within the last 12 weeks. However, we treated CDI visits which were
patient transfers specially, where a patient transfer was defined to be a visit
with an admission date equal to a discharge date of a previous visit; see
Appendix B for more details on transfer patients.

Appendix B: Constructing the CDI potential transmission networks
By looking at the location and time of each patient’s visit, we constructed a

network that corresponds to potential transmission events between patients.
The exact time of each inpatient visit is not included in the HCUP SID due
to privacy concerns. The information available for each visit includes the

Fig. A1. A tree illustrating how inpatient visits were classified in the study. LOS, length of stay; POA, present on admission tag or CDI was primary diagnosis;
HCFO-CDI, healthcare-associated infection.
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admission month, discharge month and length of stay. From these data, we
computed the probability of each pair of inpatient visits being coincident in
time and location. Let ai and di denote the admission and discharge month,
respectively, for the ith inpatient visit. For a pair of visits i and j which occurred
at the same hospital facility, we considered the following eight scenarios:

1. ai = di = aj = dj, i.e. the i
th and jth visits took place entirely within the same

month.
2. ai + 1 = di = aj = dj, i.e. i’s visit spanned two distinct months, while j’s

visit spanned only the month in which i was discharged.
3. ai = di− 1 = aj = dj, i.e. i’s visit spanned two distinct months, while j’s visit

spanned only the month in which i was admitted.
4. ai = di = aj + 1 = dj, i.e. j’s visit spanned two distinct months, while i’s visit

spanned only the month in which j was discharged.
5. ai = di = aj = dj− 1, i.e. j’s visit spanned two distinct months, while i’s visit

spanned only the month in which j was admitted.
6. ai + 1 = di = aj + 1 = dj, i.e. both i’s and j’s visits spanned two distinct

months, and both visits were admitted in the same month and discharged
in the same month.

7. ai + 1 = di = aj = dj− 1, i.e. both i’s and j’s visits spanned two distinct
months, and j was admitted in the same month that i was discharged.

8. ai = di− 1 = aj + 1 = dj, i.e. both i’s and j’s visits spanned two distinct
months, and i was admitted in the same month that j was discharged.

Graphically, these scenarios can be viewed as shown in Figure A2.
Let Nk denote the number of days in the kth earliest month of the set {ai, di,

aj, dj} according to the calendar year; e.g. if i was admitted in March and dis-
charged in April, j was admitted in February and discharged in March, then
N1 = 28, N2 = 31 and N3 = 30. Let ℓi denote the length of stay of the ith

inpatient visit. Then assuming that any day in a month is just as likely to
be the admission date as any other day in the same month, the probability
that two visits i and j were coincident can be computed in the following way:

• Scenario 1:
∑N1− ℓj+1

s=1
[min (s+ℓj−1, N1−ℓi+1)−max (1, s− ℓi+1)+1]

(N1−ℓi+1)(N1− ℓj+1)

• Scenario 2:

∑min (N1+N2−ℓj , N1+ℓi−1)

s=N1+1
[N1−max (N1− ℓi+2, s− ℓi+1)+1]

(ℓi−1)(N2− ℓj+1)

• Scenario 3:

∑N1
s=N1− ℓi+2

[N1− ℓj+2−max (1, s− ℓj+1)]

(ℓi−1)(N1− ℓj+1)

• Scenario 4: Similar to Scenario 2.
• Scenario 5: Similar to Scenario 3.
• Scenario 6: Always equal to 1.
• Scenario 7: If N1 +N2− ℓj + 2≤N1 + ℓi− 1, then

∑N1+ℓi−1

s=N1+N2−ℓj+2
[N1−(s−ℓi)]

(ℓi−1)(ℓj−1) ,
else 0.

• Scenario 8: Similar to Scenario 7.

Using these rules, we constructed a network for all HCFO-CDIs as deter-
mined by the decision tree in Figure A1. Controls matched to our cases which
were taken from the pool of potential controls identified by the decision tree
were also included in the graph. However, visits corresponding to controls
were assigned zero out-degree, i.e. no edges emanated from any control as
they had no CDI diagnosis. All visits belonging to the other five classifications
shown in Figure A1 were included in the network. Community-acquired infec-
tions were assigned zero in-degree, as they acquired CDI outside of the hos-
pital. Readmissions had an in-degree of 1, with this single unit of in-degree
attributed to the prior CDI visit corresponding to their readmission visit.
For community-onset healthcare-associated infections, we computed their
in-degree using all visits preceding the index visit which took place entirely
(i.e. both admission and discharge) within the prior 4 weeks; for simplicity,
we assumed independence between the prior visits in this computation.
These previous visits were not used when computing their out-degree.

The computation of in-degree and out-degree was most involved for transfer
patients. These patients’ consecutive visits were viewed as a single visit involving
two facilities; however, we separately computed the in-degree and out-degree for
the two visits, respecting the facilities involved for each visit. Each transfer
patient was assigned to one of six possible cases based on CDI diagnoses and
indication of CDI being present on admission (POA) (either through a specific
present on admission tag associated with the CDI diagnosis or by the CDI being
a primary diagnosis). These cases, detailed in Table A1, dictated how we com-
puted the in-degrees and out-degrees for the two visits comprising the transfer.
For example, the first row of the table represents the case where a transfer patient
had no CDI diagnosis in his/her first visit and then had CDI diagnosed as pre-
sent on admission in his/her second visit. Such a patient only had the potential
for non-zero in-degree in his/her first visit, and only had the potential for non-
zero out-degree in his/her second visit.

Fig. A2. A depiction of the eight possible scenarios for
how two inpatient visits could intersect in time at a
given hospital.

Table A1. The six possible cases for transfer patients along with the visits that
their in-degrees and out-degrees could be non-zero for

Visit 1 Visit 2 In-degree Out-degree

No CDI CDI, POA Visit 1 Visit 2

No CDI CDI, not POA Visits 1 and 2 Visit 2

CDI, POA CDI, POA Neither visit Visits 1 and 2

CDI, POA CDI, not POA Neither visit Visits 1 and 2

CDI, Not POA CDI, POA Visit 1 Visits 1 and 2

CDI, Not POA CDI, not POA Visit 1 Visits 1 and 2
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