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Radical Ideals in Valuation Domains

John E. van den Berg

Abstract. An ideal I of a ring R is called a radical ideal if I = R(R) where R is a radical in the sense of

Kurosh–Amitsur. The main theorem of this paper asserts that if R is a valuation domain, then a proper

ideal I of R is a radical ideal if and only if I is a distinguished ideal of R (the latter property means

that if J and K are ideals of R such that J ⊂ I ⊂ K then we cannot have I/ J ∼= K/I as rings) and

that such an ideal is necessarily prime. Examples are exhibited which show that, unlike prime ideals,

distinguished ideals are not characterizable in terms of a property of the underlying value group of the

valuation domain.

1 Introduction

Our purpose in this paper is to describe the radical ideals of a valuation domain R.

These are those ideals I of R of the form I = R(R) where R is a radical in the sense of
Kurosh-Amitsur.

The problem of describing the radical ideals of principal ideal domains and, more
generally, Dedekind domains, is addressed in [9] and [8]. The latter paper also
considers natural extensions such as matrix rings and semigroup and polynomial

rings. The following theorem due to Propes [9, Theorem 5] and McConnell [8, The-
orem 1.1] provides a characterization of the radical ideals in a Dedekind domain.

Theorem The following statements are equivalent for a nonzero proper ideal I of a

Dedekind domain R:

(i) I is a radical ideal of R, i.e., I = R(R) for some radical R;

(ii) there exist distinct prime ideals P1, P2, . . . , Pn of R such that

(a) I = P1P2 . . . Pn,

(b) given any prime ideal Q of R and any i ∈ {1, 2, . . . , n}, R/Q ∼= R/Pi as

rings implies P1P2 . . . Pn ⊆ Q.

If R is a local Dedekind domain, or equivalently, a valuation domain whose value
group equals the additive group of integers Z, then by the above theorem, R will have
a unique nonzero proper radical ideal and this coincides with the unique nonzero

prime ideal of R.

A logical sequel to the above investigation is the study of radical ideals in Prüfer

domains, for these are the natural generalization of Dedekind domains. We shall
limit our investigation to valuation domains, these being precisely the local Prüfer
domains.

Below is stated the main result of this paper.
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Main Theorem The following statements are equivalent for a proper ideal I of a valu-

ation domain R:

(i) I is a radical ideal of R;

(ii) I is a distinguished ideal of R;

(iii) I is a prime ideal of R and is distinguished in the set of all prime ideals of R.

The tools we shall use are varied, comprising a combination of radical theoretic
methods, localization in commutative rings, and a small measure of rudimentary

module theory.

2 Preliminaries

The symbol ⊆ denotes containment and ⊂ proper containment for sets.

2.1 Rings

All rings are associative but do not necessarily possess an identity element. By an
ideal of a ring R we always mean a two-sided ideal. We shall write I E R [resp., I ⊳ R]
to indicate that I is an ideal [resp., proper ideal] of R. We use Id R to denote the set

of all ideals of R.

2.2 Kurosh–Amitsur Radicals

A class R of rings is called a radical class (in the sense of Kurosh–Amitsur) if

(i) R is closed under homomorphic images;
(ii) every ring R contains a unique maximal ideal denoted R(R) which belongs to

R;

(iii) R(R/R(R)) = 0 for all rings R.

We refer the reader to [3, 6] for background information on radicals.

2.3 Linearly Ordered Abelian Groups

A linearly ordered abelian group is a structure 〈Γ; +;≤〉 where 〈Γ; +〉 is an abelian
group and 〈Γ;≤〉 a linearly ordered poset (i.e., a chain) satisfying:

g1 ≤ g2 and h1 ≤ h2 imply g1 + h1 ≤ g2 + h2 whenever g1, g2, h1, h2 ∈ Γ.

Let Γ be a linearly ordered abelian group (written additively). We call

Γ
+

= {g ∈ Γ | g ≥ 0Γ}

the positive cone of Γ. A subset C of Γ is said to be convex if g, h ∈ C and g ≤ x ≤ h

implies x ∈ C , and symmetric if for all g ∈ Γ, we have g ∈ C if and only if −g ∈ C .
We shall denote by Co Γ the set of all convex symmetric subsets of Γ. Observe that
the linear ordering on Γ makes Co Γ a chain with respect to the inclusion relation ⊆.
The empty set ∅ and Γ are the smallest and largest elements of Co Γ, respectively.
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If ∆ is a convex subgroup of Γ, then the factor group Γ/∆ is a linearly ordered
abelian group under the ordering inherited from Γ: if g1 + ∆, g2 + ∆ ∈ Γ/∆, then

g1 + ∆ < g2 + ∆ if and only if g2 − g1 ∈ Γ+\∆ (thus g1 + ∆ ≤ g2 + ∆ if and only
if g2 − g1 ∈ Γ+ ∪ ∆). We refer the reader to [4] for a more detailed exposition on
linearly ordered abelian groups.

A linearly ordered abelian group Γ is called Archimedean if Γ contains no proper
nonzero convex subgroups. A classical result due to Hölder (a proof may be found in
[4]) asserts that Γ is Archimedean if and only if Γ is order isomorphic to a subgroup
of the additive group of real numbers.

Let Λ be a well-ordered set and {Γi | i ∈ Λ} a family of linearly ordered abelian
groups indexed by Λ. Then

∏

i∈Λ
Γi is a linearly ordered abelian group under the

lexicographic ordering which is defined as follows:

{gi}i∈Λ < {hi}i∈Λ if and only if gi < hi , where i is the smallest element in Λ

for which gi 6= hi .

The lexicographic ordering defined above on a cartesian product with well-ordered
index set shall be adequate for our purposes. We point out, however, that a more gen-
eral type of linearly ordered abelian group called the Hahn product arises if the index

set is allowed to be linearly rather than well-ordered (see [5, p. 8]).

The following result shows that the convex subgroups in a lexicographic ordering
are easily identified.

Proposition 2.1 Let {Γi | i ∈ Λ} be a family of nonzero linearly ordered abelian

groups indexed by a well-ordered set Λ. The following statements are equivalent for a

nonzero subgroup ∆ of Γ =
∏

i∈Λ
Γi :

(i) ∆ is a convex subgroup;

(ii) there exists α ∈ Λ and a nonzero convex subgroup ∆α of Γα such that ∆ =

0 × 0 × · · · × ∆α × Γα+1 × · · · .

Proof (ii) ⇒ (i) is easily shown to hold.

(i) ⇒ (ii) For each g = {gi}i∈Λ ∈ Γ define supp g = {i ∈ Λ | gi 6= 0}.

Put X =
⋃

g∈∆
supp g. Note that X 6= ∅ because ∆ 6= 0. Let α be the smallest

element in X. If {gi}i∈Λ ∈ ∆, then gi = 0 for all i < α whence {gi}i∈Λ ∈ 0 × 0 ×
· · · × Γα × Γα+1 × · · · . Thus ∆ ⊆ 0 × 0 × · · · × Γα × Γα+1 × · · · .

Choose h = {gi}i∈Λ ∈ ∆ such that gα > 0. Since −h < g < h for all g ∈ 0 × 0 ×
· · ·×0×Γα+1×· · · and ∆ is convex, we must have 0×0×· · ·×0×Γα+1×· · · ⊆ ∆.
It is easily shown that if ∆α denotes the projection of ∆ onto Γα, then ∆α is a convex
subgroup of Γα. We thus obtain ∆ = 0 × 0 × · · · × ∆α × Γα+1 × · · · , as required.

2.4 Valuation Domains

Let Γ be a linearly ordered abelian group. Adjoin to Γ a symbol ∞ to be regarded as
larger than every element of Γ and set g + ∞ = ∞ + g = ∞ for all g ∈ Γ. Let F be a
field. A valuation on F is a map v : F → Γ ∪ {∞} such that for all a, b ∈ F:
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(V1) v(a) = ∞ if and only if a = 0;
(V2) v(ab) = v(a) + v(b);

(V3) v(a + b) ≥ min{v(a), v(b)}.

There is no loss of generality in assuming that v is onto since the image of F\{0} is
necessarily a subgroup of Γ. Henceforth when we speak of a valuation map v : F →
Γ ∪ {∞}, F shall be understood to be a field and Γ a linearly ordered abelian group
with adjoined symbol ∞.

We call the subring R = {q ∈ F | v(q) ≥ 0} of F the valuation domain associated

with v. The linearly ordered abelian group Γ is referred to as the value group of R.
Observe that F is the field of quotients of the subring R. If, on the other hand, R is an
arbitrary commutative domain with field of quotients F, and R admits a map v : R →
Γ+ ∪ {∞} which satisfies properties (V1)–(V3) above, then v extends uniquely to a
valuation map from F to Γ∪{∞} (if a

b
∈ F define v( a

b
) = v(a)− v(b)). Moreover, in

this situation, if aR ⊆ bR whenever v(a) ≥ v(b), then R coincides with the valuation
domain associated with v : F → Γ∪{∞}. Consequently, in defining a valuation map

v on a field F, it suffices to describe the action of v on any subring R of F for which F

is the field of quotients of R.
We refer the reader to [5, 11, 12] as sources of information on valuation domains.

Remark 2.2 A classical theorem due to Krull (see [5, Theorem 3.4, p. 12] for a
proof) shows that given an arbitrary linearly ordered abelian group Γ, it is possible

to construct a field F and a valuation map v : F → Γ ∪ {∞}. Thus every linearly
ordered abelian group is the value group of some valuation domain R.

As the following classical result shows, the valuation map v establishes a corre-
spondence between the convex symmetric subsets of the linearly ordered abelian
group Γ, and the ideals of the associated valuation domain R. A proof may be found
in [12, Theorem 15, p. 40].

Theorem 2.3 Let v : F → Γ∪{∞} be a valuation map and R the associated valuation

domain. The map from Id R to Co Γ defined by

I 7→ ΓI
def
=

{
g ∈ Γ

∣
∣ −v(r) < g < v(r)∀r ∈ I\{0}

}
(I ∈ Id R)

and the map from Co Γ to Id R defined by

C 7→ RC
def
= {r ∈ R | v(r) > c ∀c ∈ C} (C ∈ Co Γ),

are mutually inverse order reversing bijections. Moreover, the aforementioned maps re-

strict to bijections between the sets of prime ideals of R and convex subgroups of Γ.

Remark 2.4

(1) Inasmuch as Co Γ is linearly ordered, it follows from the above theorem that
Id R is linearly ordered. Thus every valuation domain is a commutative chain domain
(this is a commutative domain whose ideals are linearly ordered by inclusion). Con-
versely, if R is an arbitrary commutative chain domain with field of quotients F, then
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there exists a linearly ordered abelian group Γ and a valuation map v : F → Γ∪{∞}
such that R is the valuation domain associated with v. (The positive cone of this

linearly ordered abelian group Γ corresponds with the set of all principal ideals of R

under the binary operation of ideal multiplication and the inclusion relation – for
more details see [5, p. 11].) For this reason the valuation domains are precisely the
commutative chain domains.

(2) It follows from the above theorem that R will have a unique nonzero prime
ideal (and this must be the unique maximal proper ideal of R) if and only if the

value group Γ of R contains no proper nonzero convex subgroups, that is to say, Γ is
Archimedean.

Example 2.5 This example describes one of the classical prototypes of valuation
domain.

Let p be any positive prime integer and take Γ to be the additive group of integers
Z. The p-adic valuation vp : Q → Z ∪ {∞} is defined as follows: take 0 6= r ∈ Q and
write r = pk m

n
where k, m, n ∈ Z, n > 0 and (p, m) = 1 = (p, n). Then

vp(r)
def
= k.

The valuation domain associated with vp is

Z(p) =

{ m

n
∈ Q | m, n ∈ Z, (n, p) = 1

}

.

The ring Z(p) has a unique nonzero prime ideal

P = pZ(p) = {r ∈ Q | vp(r) ≥ 1},

and every proper nonzero ideal of Z(p) is of the form Pn for some n ∈ N. Observe that
the value group of Z(p) is Z. Valuation domains R with this property are Dedekind
domains, so by the theorem of Propes and McConnell (stated in the introduction),

the unique maximal proper ideal P of R is the unique proper nonzero radical ideal of
R. Note that P corresponds with the Jacobson Radical of R.

A proof of the following standard result may be found in [11, Ch. C, Proposition
2, p. 60] and [12, p. 43].

Proposition 2.6 Let v : F → Γ ∪ {∞} be a valuation map and R the associated

valuation domain. Let P be a prime ideal of R so that P = R∆ for some convex subgroup

∆ of Γ. Then the map v : R/P → ∆+ ∪ {∞} defined by

v(r + P) =

{

∞ if r ∈ P,

v(r) if r /∈ P,

is onto and satisfies (V1)–(V3). Hence R/P is a valuation domain with value group ∆.
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3 The Main Theorem

Following Puczyłowski [10] we call an ideal I of a ring R distinguished [resp., distin-

guished in the set of prime ideals of R] if R contains no ideals [resp. prime ideals] J

and K such that J ⊂ I ⊂ K and I/ J ∼= K/I.

Certainly, every radical ideal of an arbitrary ring is distinguished and this is impli-
cation (i) ⇒(ii) in the Main Theorem.

In [10, Proposition 3] Puczyłowski proves that in general a distinguished ideal

need not be a radical ideal but that the two notions do coincide in a ring all of whose
ideals are idempotent. (The latter is deduced from [10, Proposition 2].) The equiv-
alence (i) ⇔ (ii) in the Main Theorem tells us that the notions of radical ideal and
distinguished ideal also coincide in any valuation domain.

Our next objective is to prove the implication (ii) ⇒ (iii) in the Main Theorem. It

is obvious from the definition that if I is a distinguished ideal of a ring R, then I will
be distinguished in the set of prime ideals of R. Thus, to establish the implication
(ii) ⇒ (iii), it suffices to prove that every proper distinguished ideal of a valuation
domain is prime. This is achieved in Proposition 3.4. We shall require a number of

preparatory results.

If I is a nonzero ideal of a valuation domain R, we define

I#
= {r ∈ R | rI ⊂ I}.

A proof of the following simple lemma may be found in [5, Lemma 4.5, p. 15].

Lemma 3.1 Let I be a nonzero ideal of a valuation domain R. Then

(i) I# is a prime ideal containing I;

(ii) if J is any ideal of R such that I ∼= J as right R-modules, then I# = J#;

(iii) I# = I if I is prime.

Remark 3.2 If v : F → Γ ∪ {∞} is a valuation map with associated valuation
domain R and I is a nonzero ideal of R, then it can be shown that I# = R∆ where ∆

is the largest convex subgroup of Γ such that ∆ + v[I] = v[I].

We call a ring A (necessarily without an identity element) square-zero if A2 = 0.
Observe that the ideal structure of such a ring is determined entirely by its underlying
abelian group structure.

Lemma 3.3 Let I be a proper distinguished ideal of a valuation domain R. If b ∈ R

and b2I ⊇ I2, then bI = I.

Proof Suppose b ∈ R and b2I ⊇ I2. Note first that we cannot have b ∈ I for then
b−1I ⊇ R and so (b−1I)2 = b−2I2 ⊇ R. The hypothesis of the lemma yields I ⊇
b−2I2, whence I ⊇ R, a contradiction. Since b /∈ I, bR ⊇ I, i.e., b−1I ⊆ R. We thus
have bI, I, b−1I ideals of R with bI ⊆ I ⊆ b−1I. Since b2I ⊇ I2, I ⊇ b−2I2 = (b−1I)2,
so the factor ring b−1I/I is square-zero. Inasmuch as bI ⊇ I2, the factor ring I/bI is
also square-zero.
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Consider the map fb : b−1I/I → I/bI defined by

b−1a + I
fb7−→ a + bI, a ∈ I.

It is easily shown that fb is an isomorphism of right R-modules. Since b−1I/I and
I/bI are square-zero rings, fb is a ring isomorphism. But I is a distinguished ideal of
R, so we must have b−1I/I ∼= I/bI = 0, i.e., bI = I.

Proposition 3.4 Every proper distinguished ideal of a valuation domain is prime.

Proof Let I be a proper distinguished ideal of a valuation domain R. Observe that
I# is a prime ideal of R containing I by Lemma 3.1(i). We shall demonstrate that

(I#)2 ⊆ I. Suppose b ∈ I# and b2 /∈ I. Then b2R ⊃ I, whence b2I ⊇ I2. This
implies, by the previous lemma that bI = I, i.e., b /∈ I#, a contradiction. This shows
that (I#)2 ⊆ I. Suppose, contrary to the statement of the proposition, that I is not
prime so that I ⊂ I# and pick b ∈ I#\I. It is easily checked that left multiplication

by b constitutes a right R-module isomorphism from b−1I onto I and so by Lemma
3.1(ii), we must have (b−1I)# = I#. Hence b−1I ⊆ (b−1I)# = I# and so (b−1I)2 =

b−2I2 ⊆ (I#)2 ⊆ I, i.e., I2 ⊆ b2I. By the previous lemma, bI = I, i.e., b /∈ I#, a
contradiction. We conclude that I = I# and so I is a prime ideal of R.

Remark 3.5 It is shown in Example 4.1 that the converse of Proposition 3.4 is not
true.

It remains to prove the implication (iii) ⇒ (i) in the Main Theorem. We again
require several preparatory results. The proof of the following result owes much to

[2, Proposition 3.3] for inspiration.

Proposition 3.6 Let A be an ideal of a ring B (necessarily without identity) such that

B/A is a nil ring. Let R be any valuation domain and let f : A → R be a ring homomor-

phism. Then there exists a unique ring homomorphism f : B → R which extends f .

A //

f

��

B

f���
�
�
�
�
�
�

R

Proof Let F be the field of quotients of R. If f = 0, there is nothing to prove.
Suppose f 6= 0 and take a ∈ A such that f (a) 6= 0. Define a map f : B → F by

f (r) =
f (ar)

f (a)
∈ F for all r ∈ B. The map f is clearly additive. Moreover, if r, s ∈ B,

then

f (rs) =
f (ars)

f (a)
=

f (ars) f (a)

f (a) f (a)
=

f (ar) f (sa)

f (a) f (a)
.

We claim that f (sa) = f (as). Indeed, f (a) f (sa) = f (as) f (a) = f (a) f (as), and
so f (a)[ f (as) − f (sa)] = 0, whence f (as) − f (sa) = 0, i.e., f (sa) = f (as), as
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claimed. It follows that f (rs) =
f (ar) f (as)
f (a) f (a)

= f (r) f (s). We conclude that f is a ring

homomorphism. It is clear that f extends f for if b ∈ A then f (b) =
f (ab)

f (a)
=

f (a) f (b)

f (a)
= f (b).

We now show that f [B] ⊆ R. Take b ∈ B and suppose f (b) /∈ R. Let v : F →
Γ ∪ {∞} be the valuation map which gives rise to R. Since f (b) /∈ R, we must have

v( f (b)) < 0. Since B/A is nil, bn ∈ A for some n ∈ N. Then f (bn) = f (b)n ∈
f [A] = f [A] ⊆ R, so v( f (b)n) = nv( f (b)) ≥ 0. But this contradicts the fact that
v( f (b)) < 0. We conclude that f [B] ⊆ R, as required.

It remains to establish uniqueness. Suppose g : B → R also extends f . If r ∈ B

then g(r) =
g(r)g(a)

g(a)
=

g(ra)

g(a)
=

f (ra)

f (a)
= f (r) (because g extends f and a, ra ∈ A). We

conclude that g = f .

If I is a proper ideal of an arbitrary ring R, we define the ideal
√

I by
√

I/I =

⋂

{P ∈ Id R | P is prime and P ⊇ I}.

Observe that
√

I/I is precisely the prime radical of the factor ring R/I and that
√

I,
being an intersection of prime ideals of R, is a semiprime ideal of R. If the ring R is
commutative, then

√
I/I coincides with the set of all nilpotent elements of the ring

R/I [7, Theorem VIII.2.6, p. 379]. If R is a valuation domain, then
√

I/I is always a

prime ideal of R, for every semiprime ideal of a valuation domain is prime.
Andrunakievic̆’s Lemma [1, Lemma 4] asserts that if R is an arbitrary ring, K E

A E R and 〈K〉 denotes the ideal of R generated by K, then 〈K〉3 ⊆ K. We shall need
to generalize this lemma.

Recall that a subring K of a ring R is called an accessible subring if there exists a
chain

K = A0 E A1 E A2 E · · · E An = R.

We associate with the above chain, a chain of subrings of R,

K[1] ⊆ K[2] ⊆ · · · ⊆ K[n]

where, for each i ∈ {1, 2, . . . , n}, K[i] is the ideal of Ai generated by K. Observe

that K[1] = K and K[i] ⊆ K[i+1] because Ai ⊆ Ai+1 for each i ∈ {1, 2, . . . , n − 1}.
Since K ⊆ Ai−1 E Ai and K[i] is the smallest ideal of Ai containing K, we must have
K[i] ⊆ Ai−1 for each i ∈ {1, 2, . . . , n}. Inasmuch as K[i] ⊆ K[i+1] ⊆ Ai and K[i] EAi ,
we must have that K[i] E K[i+1] for each i ∈ {1, 2, . . . , n− 1}. It is also clear from the

definition of the subrings K[i] that K[i+1] is the smallest ideal of Ai+1 containing K[i]

for each i ∈ {1, 2, . . . , n− 1}. Since K[i] E Ai E Ai+1 it follows from Andrunakievic̆’s
Lemma that (K[i+1])3 ⊆ K[i] for all i ∈ {1, 2, . . . , n − 1}. We have thus proved the
following extension of Andrunakievic̆’s Lemma.

Proposition 3.7 Let R be an arbitrary ring. If K is an accessible subring of R and 〈K〉
denotes the ideal of R generated by K, then there exists a chain of subrings

K = B1 E B2 E · · · E Bn = 〈K〉
of R such that B3

i+1 ⊆ Bi for all i ∈ {1, 2, . . . , n − 1}.
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Corollary 3.8 Let A be an arbitrary ring and K an accessible subring of A. Let 〈K〉
denote the ideal of A generated by K and let I be an ideal of A such that I ⊇ K and

I/〈K〉 is nil. If R is any valuation domain and f : K → R a ring homomorphism, then

f extends uniquely to a ring homomorphism f : I → R.

Proof By the previous proposition there exists a chain of subrings,

K = B1 E B2 E · · · E Bn = 〈K〉 E I

of A such that Bi+1/Bi is a nil ring for all i ∈ {1, 2, . . . , n − 1}. The map f extends
uniquely to a ring homomorphism f : I → R by a repeated application of Proposi-
tion 3.6.

Corollary 3.9 Let R and T be valuation domains with Q a prime ideal of R and K an

accessible subring of T. If Q ∼= K as rings, then K is a prime ideal of T.

Proof Let f : K → Q be a ring isomorphism. Let 〈K〉 denote the ideal of T gen-
erated by K. Since T is a commutative ring,

√

〈K〉/〈K〉 is nil. By Corollary 3.8, f

extends uniquely to a ring homomorphism f :
√

〈K〉 → R. Inasmuch as
√

〈K〉 is nil

over 〈K〉 and 〈K〉 nil over K (by Proposition 3.7), we must have
√

〈K〉 nil over K. It

follows that f [
√

〈K〉] is nil over f [K] = f [K] = Q. But Q is a prime ideal of R, so

this entails f [
√

〈K〉] = Q.

Consider the ring homomorphism f −1◦ f :
√

〈K〉 →
√

〈K〉. Observe that f −1◦ f

extends the identity map on K. Inasmuch as the identity map on
√

〈K〉 also extends

the identity map on K, it follows from the uniqueness of f −1 ◦ f (established in
Proposition 3.6) that f −1 ◦ f coincides with the identity map on

√

〈K〉. Hence

K =
√

〈K〉. Since T is a valuation domain, K =
√

〈K〉 is prime.

We require one further preparatory result. The following proposition is due to
Puczyłowski [10, Proposition 1].

Proposition 3.10 The following statements are equivalent for an ideal I of an arbi-

trary ring R.

(i) I is a radical ideal of R;

(ii) if J E I E K, K is an accessible subring of R and I/ J ∼= K/I as rings, then J =

I = K.

Recall that a nonempty class M of prime rings is said to be a special class if (i) M

is hereditary (meaning, if R ∈ M and I E R, then I ∈ M), and (ii) whenever J is a
large ideal of a ring R (meaning, J ∩ I 6= 0 whenever 0 6= I E R) and J ∈ M, we have
R ∈ M. In the proof below we make use of the fact that the class of all prime rings is
special. (A proof may be found in [3, pp. 140–155].)

We are finally in a position to prove implication (iii) ⇒ (i) in the Main Theorem.
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Proof of Main Theorem (iii) ⇒ (i). Suppose R is a valuation domain and I an ideal
of R which satisfies (iii). We shall use the previous proposition to prove that I is a

radical ideal. Suppose J E I E K where K is an accessible subring of R and I/ J ∼= K/I

as rings. We need to show that J = I = K.
Since I is, by hypothesis, a prime ideal of R, R/I is a prime ring. Since the class

of all prime rings is hereditary and K/I is an accessible subring of R/I, we must have

that K/I and hence I/ J, is a prime ring. Let 〈 J〉 denote the ideal of R generated by
J. Note that J ⊆ 〈 J〉 ⊆ I. By Andrunakievic̆’s Lemma, 〈 J〉3 ⊆ J. But I/ J is a prime
ring and so we must have 〈 J〉 = J. Thus J E R.

Since the ideals of the ring R/ J are linearly ordered, every nonzero ideal of R/ J is

large. In particular, I/ J is large. Since I/ J is a prime ring and, as noted above, the
class of all prime rings is special, we must have that R/ J is a prime ring. We conclude
that J is a prime ideal of R.

Observe that I/ J is a prime ideal of the valuation domain R/ J and I/ J is isomor-

phic, as a ring, to the accessible subring K/I of the valuation domain R/I. It follows
from Corollary 3.9 that K/I is a prime ideal of R/I and so K is a prime ideal of R.
We thus have that J, I, K are prime ideals of R with I/ J ∼= K/I. By hypothesis, I

is distinguished in the set of all prime ideals of R, so we must have J = I = K, as

required.

4 Distinguished Ideals

In the light of the Main Theorem, the problem of determining the radical ideals of a
valuation domain R reduces to locating the distinguished ideals of R. This task is by
no means straightforward. Every proper distinguished ideal of a valuation domain
is prime. But, whereas prime ideals are characterizable in terms of a property of the

value group of the valuation domain, the same is not true of distinguished ideals.
This fact is made evident in Example 4.4 and Proposition 4.6. The former exhibits a
valuation domain R with value group Z × Z and prime ideals 0 ⊂ Q ⊂ P such that
Q ∼= P/Q, which implies that Q is not distinguished. Proposition 4.6, on the other

hand, establishes the existence of a valuation domain R with the same value group
Z × Z and prime ideals 0 ⊂ Q ⊂ P such that Q ≇ P/Q, and this implies that Q is
distinguished.

Our first task shall be to construct a valuation domain which contains a prime

ideal which is not distinguished thus providing a counterexample to the converse of
Proposition 3.4.

Let F be an arbitrary field and Γ a linearly ordered (additively written) abelian
group. Let F[Γ] denote the group ring over F, i.e.,

F[Γ] =
{

a0xg0 + a1xg1 + · · · + anxgn | x is an indeterminate,

a0, a1, . . . , an ∈ F and g0 < g1 < · · · < gn ∈ Γ
}

.

We define F[Γ+] to be the subring of F[Γ] consisting of all those elements a0xg0 +
a1xg1 + · · · + anxgn ∈ F[Γ] for which all the gi belong to Γ+. Observe that every
nonzero element in the field of quotients F(Γ) of F[Γ], is uniquely expressible in the
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form

(1) xg
( a0 + a1xg1 + · · · + anxgn

b0 + b1xh1 + · · · + bmxhm

)

,

where 0 6= a0, a1, . . . , an ∈ F, 0 6= b0, b1, . . . , bm ∈ F, g1, g2, . . . , gn, h1, h2, . . . , hm ∈
Γ+ and g ∈ Γ. It follows that F[Γ+] and F[Γ] both have F(Γ) as their field of quo-
tients.

We define a valuation map v : F(Γ) → Γ ∪ {∞}, which we shall henceforth call
the canonical valuation, as follows:

if r = xg
( a0 + a1xg1 + · · · + anxgn

b0 + b1xh1 + · · · + bmxhm

)

, then v(r) = g.

It is easily checked that v is indeed a valuation map on F(Γ). Note that the valuation
domain associated with v is the collection of all elements of the form (1) with g ∈ Γ+.

Let ∆ be a convex subgroup of Γ. Observe that v restricts to a valuation from the
subfield F(∆) of F(Γ) onto ∆. For notational convenience we shall identify v with its
restriction to F(∆). Let R and R ′ denote the valuation domains associated with v in
F(Γ) and F(∆), respectively. Note that F[Γ+] ⊆ R ⊆ F(Γ) and F[∆+] ⊆ R ′ ⊆ F(∆).

Let f : F[Γ+] → F[∆+] be the canonical ring epimorphism induced by the mapping
which sends all terms of the form xg with g ∈ Γ+\∆ to zero. The epimorphism f

extends naturally to an epimorphism

(2) f̂ : R → R ′

with

(3) ker f̂ = {r ∈ R | v(r) ∈ Γ
+ ∪ {∞}\∆} = R∆.

Furthermore, note that if C is any convex symmetric subset of Γ contained in ∆, then

(4) f̂ [RC ] = R ′

C .

Example 4.1 Let Γ =
∏

ω Z (ordered lexicographically) with convex subgroup

∆ = 0 × Z × Z × · · · . The “shift” map σ : ∆ → Γ defined by (0, n1, n2, . . . )
σ7→

(n1, n2, . . . ) is an isomorphism of linearly ordered abelian groups. Let F be a field,
v : F(Γ) → Γ ∪ {∞} the canonical valuation and let R and R ′ denote the valua-
tion domains associated with v in F(Γ) and F(∆), respectively. The isomorphism σ
induces a ring isomorphism σ̂ : F(∆) → F(Γ) defined by

(5) xg
( a0 + a1xg1 + · · · + anxgn

b0 + b1xh1 + · · · + bmxhm

)
σ̂7−→ xσ(g)

( a0 + a1xσ(g1) + · · · + anxσ(gn)

b0 + b1xσ(h1) + · · · + bmxσ(hm)

)

where g1, g2, . . . , gn, h1, h2, . . . , hm ∈ ∆+ and g ∈ ∆.
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If C is any convex symmetric subset of ∆, then

0 6= r ∈ R ′

C ⇔ v(r) ∈ ∆
+\C ;

⇔ σ(v(r)) ∈ σ[∆+]\σ[C] = Γ
+\σ[C];

⇔ v(σ̂(r)) ∈ Γ
+\σ[C] [because σ(v(r)) = v(σ̂(r))];

⇔ 0 6= σ̂(r) ∈ Rσ[C].

Therefore

(6) σ̂[R ′

C ] = Rσ[C].

Taking C = ∅ in (6), we get that the restriction of σ̂ to R ′ (and for convenience
we shall identify this restriction map with σ̂) yields a ring isomorphism

(7) σ̂ : R ′ → R.

Composing the maps in (2) and (7), we obtain the ring epimorphism

(8) σ̂ f̂ : R → R

with

(9) ker σ̂ f̂ = R∆

by (3).

Now let ∆ ′ be the convex subgroup of Γ defined by ∆ ′ = 0×0×Z×Z×· · · ⊂ ∆.
By (4) and (6), σ̂ f̂ [R∆ ′] = σ̂[R ′

∆ ′] = Rσ[∆ ′]. Observe, moreover, that σ[∆ ′] = ∆,
so

(10) σ̂ f̂ [R∆ ′] = R∆.

Put Q = R∆ and P = R∆ ′ . Inasmuch as ∆ and ∆ ′ are convex subgroups, Q and P

are prime ideals of R. By (8) and (9) there exists an isomorphism R/Q ∼= R which
restricts by (10) to an isomorphism P/Q ∼= Q. This clearly implies that Q is not
distinguished.

The valuation domain R in the above example has value group
∏

ω Z. Our next
objective is to refine the method of construction used in the above example and show
that the ring R can be chosen to be a valuation domain with the much smaller value

group Z × Z. Our method involves localizing the ring R at the prime ideal P. We
require two preparatory results.

If R is a commutative ring with multiplicatively closed subset S, we shall denote by
RS−1 the ring of quotients of R with respect to S. If, in particular, S = R\P for some
prime ideal P of R, we write RP in place of RS−1.
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Lemma 4.2 Let R be a valuation domain with prime ideal P and let S = R\P. If Q is

any prime ideal of R such that Q ∩ S = ∅, i.e., Q ⊆ P, then QS−1 = Q.

Proof It clearly suffices to show that Q ⊆ Qs for each s ∈ S. Take q ∈ Q and s ∈ S.
Since R is a valuation domain and s /∈ Q, we must have Q ⊂ Rs, so q = rs for some

r ∈ R. Inasmuch as Q is prime, r ∈ Q. Thus q ∈ Qs, as required.

A proof of the following proposition may be found in [11, Ch. C, Theorem 1, p.
56] and [12, p. 43].

Proposition 4.3 Let v : F → Γ ∪ {∞} be a valuation map and R the associated

valuation domain. Let ∆ ′ be a proper convex subgroup of Γ and π : Γ ∪ {∞} →
(Γ/∆ ′) ∪ {∞} the canonical projection. Then

(i) the composition πv : F → (Γ/∆ ′) ∪ {∞} is a valuation map on F;

(ii) if P = R∆ ′ , then RP is the valuation domain associated with πv. Hence RP has

value group Γ/∆ ′.

Example 4.4 Let R, P and Q be as in Example 4.1. In that example it was shown
that P/Q ∼= Q as rings. Consider the localization RP. By Lemma 4.2, P and Q are

ideals of RP. Thus Q is a prime, but not distinguished, ideal of the valuation domain
RP. Since P = R∆ ′ , it follows from Proposition 4.3(ii) that RP has value group Γ/∆ ′.
Inasmuch as Γ =

∏

ω Z and ∆ ′ = 0 × 0 × Z × Z × · · · , Γ/∆ ′ ∼= Z × Z.

The following result, which has been extracted from [2, Corollary 3.2 and Propo-
sition 3.3], is needed to prove Proposition 4.6.

Proposition 4.5 The following statements are equivalent for a commutative noethe-

rian domain R.

(i) R is integrally closed.

(ii) Every ring monomorphism f : A → R where A is a nonzero accessible subring of a

commutative domain T, extends uniquely to a monomorphism f : T → R defined

by f (r) =
f (ar)

f (a)
where a is any fixed element of A for which 0 6= f (a) ∈ R.

If R is a valuation domain with unique maximal proper ideal P, we call the factor
ring R/P the residue field of R.

Proposition 4.6 Let R be a valuation domain with value group Z×Z and with a finite

residue field. Then the following statements are equivalent for a proper ideal Q of R:

(i) Q is a prime ideal of R;

(ii) Q is a distinguished ideal of R.

Proof (ii) ⇒ (i) is a consequence of the Main Theorem (ii) ⇒ (iii).

(i) ⇒ (ii) By Proposition 2.1, 0 and 0 × Z are the only proper convex subgroups
of Z × Z, so by Theorem 2.3, the prime ideals associated with 0 and 0 × Z, say P and
Q, are the only nonzero prime ideals of R. Note that P is the maximal proper ideal of
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R and thus the Jacobson Radical of R and this is distinguished by the Main Theorem
(i) ⇒ (ii). It remains to show that Q is distinguished.

By the Main Theorem (iii) ⇒ (ii), it suffices to show that Q is distinguished in the
set of all prime ideals of R. This entails showing that Q ≇ P/Q as rings. Suppose, on
the contrary, that f : Q → P/Q is a ring isomorphism. Consider the factor ring R/Q.
It follows from Proposition 2.6 that R/Q is a valuation domain with value group

0 × Z ∼= Z. This implies that R/Q is a Dedekind domain and so R/Q is integrally
closed (see [7, Theorem VIII.6.10, p. 405]). By Proposition 4.5, the isomorphism
f : Q → P/Q extends uniquely to a ring monomorphism f : R → R/Q. Let A/Q

denote the image of R in R/Q. Then

R/Q ∼= f [R]/ f [Q] = (A/Q)/(P/Q) ∼= A/P ⊆ R/P.

Thus R/Q embeds in the finite ring R/P, an impossibility.

Remark 4.7 Proposition 4.6 shows that there exist valuation domains which have
value group Z × Z and which are such that all their prime ideals are distinguished.
This result, in conjunction with Example 4.4, shows that the distinguished ideals of
a valuation domain are not characterizable in terms of a property of the associated

value group.

Notwithstanding the above remark, the value group of a valuation domain does
encode important information about the possible location of distinguished ideals.

This is shown in Theorem 4.10 which is our next main result.
The proof method used in Proposition 4.8 below has been borrowed from Propo-

sition 3.6.

Proposition 4.8 Let R and R ′ be valuation domains with unique maximal proper

ideals P and P ′, respectively. If P ∼= P ′ as rings, then R ∼= R ′ as rings.

Proof Let f : P → P ′ be a ring isomorphism and let F be the field of quotients of

R ′. Choose 0 6= a ∈ P and define a map f : R → F by f (r) =
f (ar)

f (a)
∈ F for all r ∈ R.

An argument identical to that used in the proof of Proposition 3.6 shows that f is
a well-defined ring homomorphism which extends f and that f is unique with this

property. Moreover, f is monic since f is monic. It remains to show that f [R] = R ′.
Take r ∈ R\P. Note that r is a unit of R because P is the unique maximal

proper ideal of R. Suppose f (r) /∈ R ′. Let v : F → Γ ∪ {∞} be the valuation
map which gives rise to R ′. Since f (r) /∈ R ′, we must have v( f (r)) < 0. Inasmuch

as v( f (r)) + v( f (r−1)) = v( f (1)) = v(1) = 0, we must have v( f (r−1)) > 0, so
f (r−1) ∈ P ′, i.e., r−1 ∈ P, a contradiction. This shows that f [R] ⊆ R ′. A symmet-
rical argument shows that the isomorphism f −1 : P ′ → P extends uniquely to a ring
monomorphism f −1 from R ′ into R. It follows from uniqueness that f and f −1 are

mutually inverse ring isomorphisms between R and R ′.

Theorem 4.9 Let v : F → Γ∪{∞} and v ′ : F ′ → Γ ′∪{∞} be valuation maps with

respective associated valuation domains R and R ′. Let ∆ and ∆ ′ be convex subgroups
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of Γ and Γ ′, respectively. Put Q = R∆ and Q ′ = R ′

∆ ′ . If Q ∼= Q ′ as rings, then

Γ/∆ ∼= Γ ′/∆ ′ as linearly ordered abelian groups.

Proof Let RQ and R ′

Q ′ be the localizations of R at Q and R ′ at Q ′. By Lemma 4.2,
Q and Q ′ are the unique maximal proper ideals of RQ and R ′

Q ′ , respectively. Since
Q ∼= Q ′, it follows from Proposition 4.8 that RQ

∼= R ′

Q ′ . This implies that the value

groups of RQ and R ′

Q ′ are isomorphic. Hence, by Proposition 4.3(ii), Γ/∆ ∼= Γ ′/∆ ′.

We call a convex subgroup ∆ of a linearly ordered abelian group Γ distinguished if

Γ contains no convex subgroups ∆ ′ and ∆ ′ ′ such that ∆ ′ ⊂ ∆ ⊂ ∆ ′ ′ and ∆/∆ ′ ∼=
∆ ′ ′/∆.

Theorem 4.10 Let R be a valuation domain with value group Γ. If ∆ is a distin-

guished convex subgroup of Γ, then R∆ is a distinguished and hence radical ideal of R.

Proof Put Q = R∆. By the Main Theorem, it suffices to show that Q is distinguished
in the set of prime ideals of R. Suppose then I and I ′ are prime ideals of R such that

I ⊆ Q ⊆ I ′ and Q/I ∼= I ′/Q. Let I = RΘ and I ′ = RΘ ′ with Θ and Θ ′ convex
subgroups of Γ satisfying Θ ′ ⊆ ∆ ⊆ Θ. Consider the valuation domain R/I. By
Proposition 2.6, the valuation map v induces a valuation map v : R/I → Θ+ ∪ {∞}
defined by:

v(r + I) =

{

∞ if r ∈ I,

v(r) if r /∈ I.

Note that

(11) (R/I)∆ = Q/I.

Similarly, there exists a valuation map v : R/Q → ∆+ ∪ {∞} and

(12) (R/Q)Θ ′ = I ′/Q.

Since Q/I ∼= I ′/Q, it follows from (11), (12) and Theorem 4.9 that Θ/∆ ∼= ∆/Θ ′.

Since ∆ is distinguished, this entails Θ = ∆ = Θ ′ whence I = Q = I ′. This shows
that Q is distinguished in the set of prime ideals of R, as required. That Q is a radical
ideal of R is a consequence of the Main Theorem.

Remark 4.11 The converse of Theorem 4.10 is, of course, not valid. If R is a val-
uation domain satisfying the conditions of Proposition 4.6, then every prime ideal
of R is distinguished yet Z × Z, which is the value group of R, contains the convex
subgroup 0 × Z, which is not distinguished.

In the light of Theorem 4.10 our focus shifts to the determination of distinguished
convex subgroups in linearly ordered abelian groups. We shall attempt this only
in the case of a countable direct product of Archimedean linearly ordered abelian
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groups. This problem would appear to be both tractable and interesting with strong
combinatorial overtones.

Let {Γn | n ∈ N} be a (countable) family of nonzero Archimedean linearly or-
dered abelian groups. Define

Γ =

∏

n∈N

Γn

ordered lexicographically. By Proposition 2.1, the nonzero convex subgroups of Γ are
precisely those of the form

∆n =

n−1
︷ ︸︸ ︷

0 × 0 × · · · × 0×Γn × Γn+1 × · · ·
for each n ∈ N. Every nonzero convex subgroup of Γ is thus a member of the de-
scending chain

Γ = ∆1 ⊃ ∆2 ⊃ · · · .

Suppose that for some n ∈ N, ∆n is not a distinguished convex subgroup of Γ. Then

∆i/∆n
∼= Γi × Γi+1 × · · · × Γn−1

∼= ∆n/∆ j
∼= Γn × Γn+1 × · · · × Γ j−1

for some i, j ∈ N, i < n < j. Since each Γk is Archimedean, the number of factors
appearing in the direct products Γi ×Γi+1 × · · · ×Γn−1 and Γn ×Γn+1 × · · · ×Γ j−1

must be equal. Thus n − i = j − n. We have thus proved the following result.

Proposition 4.12 Let {Γn | n ∈ N} be a (countable) family of nonzero Archimedean

linearly ordered abelian groups. The following statements are equivalent for the convex

subgroup

∆n =

n−1
︷ ︸︸ ︷

0 × 0 × · · · × 0×Γn × Γn+1 × · · · of Γ =

∏

n∈N

Γn :

(i) ∆n is distinguished;

(ii) Γi×Γi+1×· · ·×Γn−1 ≇ Γn×Γn+1×· · ·×Γ2n−i−1 for each i ∈ {1, 2, . . . , n−1}.

Remark 4.13 If, in Proposition 4.12, the Γi are all distinct (up to isomorphism),
then clearly ∆n will be distinguished for all n ∈ N.

We conclude with two examples.

Example 4.14 Take two non-isomorphic nonzero Archimedean linearly ordered
abelian groups, say Z and Q .

(i) Define Γ = Z × Q × Z × Q × · · · ordered lexicographically. It is not difficult

to see, using Proposition 4.12, that ∆2 = 0 × Q × Z × Q × · · · is the only proper
nonzero distinguished convex subgroup of Γ.

As the following shows, a rearrangement of the factors Z and Q in Γ can have a
marked effect on the distribution of distinguished subgroups.

(ii) Define Γ = Z×Q×Z×Z×Q×Q×Z×Z×Z×· · · ordered lexicographically.
Here, Proposition 4.12 tells us that ∆2, ∆3, ∆5, ∆7, ∆10, ∆13, etc., are all proper
nonzero distinguished convex subgroups of Γ.
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