
Bull. Aust. Math. Soc. (First published online 2024), page 1 of 11∗

doi:10.1017/S0004972724000972
∗Provisional—final page numbers to be inserted when paper edition is published

HOW MANY TRIANGLES CAN A GRAPH HAVE?

TEERADEJ KITTIPASSORN � and KAMIL POPIELARZ

(Received 17 May 2024; accepted 14 September 2024)

Abstract

We investigate the set Tn of the possible number of triangles in a graph on n vertices. The first main result
says that every natural number less than

(
n
3

)
− (
√

2 + o(1))n3/2 belongs to Tn. On the other hand, we show

that there is a number m =
(

n
3

)
− (
√

2 + o(1))n3/2 that is not a member of Tn. In addition, we prove that

there are two interlacing sequences
(

n
3

)
− (
√

2 + o(1))n3/2 = c1 ≤ d1 ≤ c2 ≤ d2 ≤ · · · ≤ cs ≤ ds =
(

n
3

)
with

|ct − dt | = n − 2 −
(

s−t+1
2

)
such that (ct, dt) ∩ Tn = ∅ for all t. Moreover, we obtain a generalisation of these

results for the set of the possible number of copies of a connected graph H in a graph on n vertices.

2020 Mathematics subject classification: primary 05C35.

Keywords and phrases: the number of triangles in a graph, realisable numbers, complete graphs in a graph,
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1. Introduction

We ask the following natural question: given a graph H and a natural number n, what
are the possible values of m such that there exists a graph on n vertices with exactly m
copies of H? Surprisingly, very little is known about this problem.

A question of this flavour was considered by Kittipassorn and Mészáros [9] who
studied the set Fn of the possible number of frustrated triangles, that is, triples of
vertices inducing an odd number of edges. They proved that about two thirds of
the numbers in [0, n3/2] do not appear in Fn and that every even number between
(1 + o(1))n3/2 and

(
n
3

)
− (1 + o(1))n3/2 is a member of Fn for sufficiently large even n.

Much more attention has been given to the problem of maximising or minimising
the number of subgraphs of certain types of graphs with a given number of vertices
and edges. For example, Rademacher proved that every graph with �n2/4� + 1 edges
contains at least �n/2� triangles. Erdős [5] posed a conjecture, which was later proved
by Lovász and Simonovits [11], that a graph of size �n2/4� + k contains at least k�n/2�
triangles if k < n/2. On the other hand, Alon [1] investigated the maximum number
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of subgraphs isomorphic to some given graph, where the maximum is taken over all
graphs of a certain size. We refer to [3, 4, 6–8, 10, 12, 13] for related results.

We consider a fixed connected graph H. For a graph G, we define kH(G) to be the
number of copies of H in G. The main object of interest of this paper is

S(n)
H = {kH(G) : |G| = n},

the set of the possible number of copies of H in a graph on n vertices. Our first result
says that almost every number (in the appropriate range) is realisable as a number of
copies of H in some graph of order n.

THEOREM 1.1. [0, (1 − o(1))kH(Kn)] ⊂ S(n)
H as n→ ∞.

It is not unreasonable to expect that o(1) above could be replaced by 0. As it
happens, this is not the case. Before we state the second result, we introduce some
notation that plays a major role in the rest of the paper. For a graph G = (V , E) of
order n, let fH(G) be the number of subgraphs F of K(V) isomorphic to H such
that E(F) ∩ E � ∅, where K(V) denotes the complete graph on the vertex set V.
For example, fK3 (G) is the number of triples of vertices in G inducing at least one
edge. Observe that kH(G) = kH(Kn) − fH(G), and therefore we work instead with the
complement of G which is easier to draw when G is dense. We write a(n)

H (t) = fH(S(n)
t )

and b(n)
H (t) = fH(M(n)

t ), where S(n)
t is a graph on n vertices with t edges forming a star

with t ≤ n − 1 and M(n)
t is a graph on n vertices with t edges forming a matching with

t ≤ �n/2�. We prove the existence of some gaps in S(n)
H .

THEOREM 1.2. For all sufficiently large n and all t ≥ 0,

|(kH(Kn) − a(n)
H (t + 1), kH(Kn) − b(n)

H (t)) ∩ S(n)
H | = o(nh−2).

In particular, there exists a number m = kH(Kn) − (cH + o(1))nh−3/2 that is not a
member of S(n)

H for some constant cH.

In Section 4, we see that, when t < c
√

n, where c is some nonnegative constant
depending only on H, the length of the interval a(n)

H (t + 1) − b(n)
H (t) is of order nh−2.

When H is a triangle, we prove sharp analogues of Theorems 1.1 and 1.2.

THEOREM 1.3. We have:

(i) [0,
(

n
3

)
− (
√

2 + o(1))n3/2] ⊂ S(n)
K3

as n→ ∞; and

(ii) (
(

n
3

)
− a(n)

K3
(t + 1),

(
n
3

)
− b(n)

K3
(t)) ∩ S(n)

K3
= ∅ for all n, t ≥ 0.

We see that a(n)
K3

(t) = t(n − 2) −
(

t
2

)
and b(n)

K3
(t) = t(n − 2), so it is easy to check that

the interval in the second part of the theorem is not empty as long as t �
√

2n. Thus,
there exists a number m =

(
n
3

)
− (
√

2 + o(1))n3/2 that is not a member of Tn. Therefore,
the first part of Theorem 1.3 is sharp.

The same idea that we use in the case of triangles also works for cherries, that is,
paths with two edges, P2.
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THEOREM 1.4. We have:

(i) [0, 3
(

n
3

)
− (4 + o(1))n3/2] ⊂ S(n)

P2
as n→ ∞; and

(ii) (3
(

n
3

)
− a(n)

P2
(t + 1), 3

(
n
3

)
− b(n)

P2
(t)) ∩ S(n)

P2
= ∅ for all n, t ≥ 0.

As in the case of triangles, the first part of Theorem 1.4 is sharp.
The rest of this paper is organised as follows. In Section 2, we prove some

preliminary lemmas. We prove the sharp results for triangles (Theorem 1.3) in
Section 3. The proofs of Theorems 1.1 and 1.2 are presented in Section 4. We conclude
the paper in Section 5 with some open problems.

2. Complete graphs

In this section, we consider the case when H = Kr is a complete graph and prove
some lemmas that we use to prove our main theorems.

We start by showing that the first (�(n − r2)/r�)r natural numbers are realisable:
that is, for every k ≤ (�(n − r2)/r�)r, there exists an r-partite graph on n vertices with
exactly k copies of Kr.

LEMMA 2.1. For natural numbers n, r with n ≥ r ≥ 2, and any nonnegative integer
k ≤ (�(n − r2)/r�)r, there is an r-partite graph with k copies of Kr.

PROOF. Let Pn,r be the set of the possible number of copies of Kr in an r-partite graph
on n vertices. Clearly, Pn,r ⊆ S(n)

Kr
.

We use induction on r. The base case r = 2 is trivial. Suppose that the assertion
holds for some r ≥ 2. Let G = (V1 � V2 � V3, E), where |V1| = �r(n − r)/(r + 1)�,
|V2| = �(n − r)/(r + 1)�, every vertex in V1 is joined to every vertex in V2, and V3
induces a Kr. By the induction hypothesis, we can replace V1 by an r-partite graph
having k copies of Kr, and therefore we obtain an (r + 1)-partite graph having
�(n − r)/(r + 1)�k copies of Kr+1, for any

k ≤
(⌊ r(n−r)

r+1 − r2

r

⌋)r
=

(⌊n − r
r + 1

− r
⌋)r

.

Therefore, we get an increasing sequence in Pn,r+1, starting with 0 and ending with⌊n − r
r + 1

⌋(⌊n − r
r + 1

− r
⌋)r
≥

(⌊n − r
r + 1

− r
⌋)r+1

=

(⌊n − r(r + 2)
r + 1

⌋)r+1
≥

(⌊n − (r + 1)2

r + 1

⌋)r+1
,

such that the difference between consecutive terms is equal to |V2|. To obtain the
missing numbers between consecutive terms, notice that it is enough to join the needed
number of vertices in V2 to every vertex in V3. Clearly, all graphs in the sequence are
(r + 1)-partite. �

Recall that fH(G) is the number of subgraphs F of K(V) isomorphic to H such that
E(F) ∩ E � ∅, where K(V) denotes the complete graph on the vertex set V. Moreover,
a(n)

H (t) = fH(S(n)
t ) and b(n)

H (t) = fH(M(n)
t ), where S(n)

t is a graph on n vertices with t edges
forming a star and M(n)

t is a graph on n vertices with t edges forming a matching.
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4 T. Kittipassorn and K. Popielarz [4]

We fix n, r ≥ 2 and, for brevity, write f (G) = fKr (G), at = a(n)
Kr

(t), bt = b(n)
Kr

(t). Recall

that the number of copies of Kr in G is equal to
(

n
r

)
− f (G), where f (G) is the number

of r-sets of vertices in G that induce at least one edge. Therefore, we work instead
with the complement of G, which is easier to deal with when G is dense. Observe that
at =

∑t
i=1

(
n−1−i

r−2

)
and hence at+1 − at =

(
n−1−(t+1)

r−2

)
.

LEMMA 2.2. For a graph G on n vertices and e ≤ 1
2 (n − 1) edges, f (G) ∈ [ae, be].

PROOF. We show this by induction on the number of edges e. In the base case when
e ≤ 1, there is nothing to show. For e > 1, assume that f (G′) ∈ [ae−1, be−1] for any
graph G′ on n vertices and e − 1 edges.

First, we show that f (G) ≤ be. Take an edge xy ∈ G such that d(y) > 1 and an
isolated vertex w ∈ G. Let G′ be a graph obtained by removing xy from G and replacing
it by xw. Note that f (G′) ≥ f (G). By repeating this process for any nonindependent
edge, we eventually obtain a matching, since e ≤ 1

2 (n − 1), without decreasing the
value of f.

To show that f (G) ≥ ae, pick an edge xy ∈ G and let G′ be a graph obtained by
removing xy from G. We show that f (G) − f (G′) ≥

(
n−1−e

r−2

)
= ae − ae−1, which com-

pletes the proof, as then f (G) ≥ f (G′) + ae − ae−1 ≥ ae, by the induction hypothesis
applied to G′. Let A = V(G)\(NG(x) ∪ NG(y)) (observe that x, y � A). Write M for a
largest independent set contained in A and write eA for the number of edges induced
by A. By deleting an endpoint of each edge in A, we see that |M| ≥ |A| − eA. Therefore,

f (G) − f (G′) ≥
(
|M|

r − 2

)
≥

(
n − |N(x) ∪ N(y)| − eA

r − 2

)
≥

(
n − e − 1

r − 2

)
. �

We remark that Lemma 2.2 does not imply that f (G) � (bt, at+1) for any t. However,
the result follows immediately from the monotonicity of f.

LEMMA 2.3. For any graph G on n vertices and any t ≥ 0, f (G) � (bt, at+1).

PROOF. Write tmax = max{t : bt−1 + 1 < at} for the last t where there is a gap between
the intervals [at−1, bt−1] and [at, bt]. It is enough to show that f (G) ∈ [at, bt] for some
t ≤ tmax or f (G) ≥ atmax . This follows from Lemma 2.2 if e(G) ≤ tmax. So we can
assume that e(G) > tmax. Let G′ be a graph obtained from G by deleting some edges
until there are exactly tmax edges left. By the monotonicity of f and Lemma 2.2,
f (G) ≥ f (G′) ≥ atmax . �

We remark that tmax = Θ(
√

n).
We now turn our attention to the problem of determining which numbers can be

expressed as a restricted sum of binomials. More precisely, we are interested in the
set, Ak, of integers that can be expressed as

∑j
i=1

(
di
2

)
, where

∑j
i=1 di = k and each di

is a positive integer. Let sk be the largest integer such that any integer between 0 and
sk belongs to Ak. To the best of our knowledge, this sequence was first studied by
Dogan (see [2, Lemma 20]) who showed that sk ≥ 1

2 (k − 2
√

k)2. Here, we present a
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simpler proof of an asymptotically stronger result of this kind. We start with a simple
observation.

OBSERVATION 2.4. Let zk be an increasing sequence such that sk ≥ zk > 0 for every k.
For any positive integer k, we have sk ≥

(
k∗
2

)
, where k∗ is the smallest nonnegative

integer such that zk−k∗ < k∗.

PROOF. Take any � ≤
(

k∗
2

)
. We show that � can be written as a restricted sum of

binomials. When � =
(

k∗
2

)
, there is nothing to show, so we can assume that � <

(
k∗
2

)
.

Let k′ be the largest integer such that
(

k′
2

)
≤ �. Write �′ for � −

(
k′
2

)
and observe that

�′ = � −
(

k′
2

)
<

(
k′+1

2

)
−

(
k′
2

)
= k′ < k∗. By the definition of k∗, sk−k′ ≥ zk−k′ ≥ k′ > �′, and

the result follows from the definition of sk−k′ . �

We obtain a lower bound for sk by applying Observation 2.4 several times.

LEMMA 2.5. sk ≥ 1
2 (k −

√
2k)2 + O(k) as k → ∞.

PROOF. First, sk ≥ �k/2�, as we can write any � ≤ �k/2� as
∑�

i=1

(
2
2

)
+

∑k−2�
i=1

(
1
2

)
. For

every k′ ≤ �k/3�, we have �(k − k′)/2� ≥ k′; therefore, sk ≥
(
�k/3�

2

)
by Observation 2.4.

Applying Observation 2.4 again yields sk ≥
(

k−3
√

2k
2

)
, and by applying it one more time,

we arrive at the statement of the lemma. �

3. Triangles

We now consider the case when H = K3, that is, when H is a triangle. For brevity,
we write Tn = S(n)

K3
, f (G) = fK3 (G), at = a(n)

K3
(t) and bt = b(n)

K3
(t) in this section.

Before we improve Lemma 2.1 to Theorem 1.3(i), we consider Theorem 1.3(ii) and
look for nonmembers of Tn. Recall that the number of triangles in G is equal to

(
n
3

)
−

f (G), where f (G) is the number of triples of vertices in G that induce at least one
edge. Notice that we have a simple formula, f (G) = e(G)(n − 2) − nc + nt, where nc
is the number of cherries (that is, paths with two edges, P2) and nt is the number of
triangles in G. This comes from the fact that each edge is contained in exactly n − 2
triples, but we double or triple count the triples which contain more than one edge.
Using this formula, it is easy to see that at = t(n − 2) −

(
t
2

)
and bt = t(n − 2).

We showed in Lemma 2.3 that f (G) � (bt, at+1) for all t ≥ 0. On the other hand, we
now prove that every number bigger than (

√
2 + o(1))n3/2 is realisable.

Observe that if G is triangle-free, then

f (G) = e(G)(n − 2) − nc = e(G)(n − 2) −
∑
x∈G

(
d(x)

2

)
.

LEMMA 3.1. Let k be such that sk ≥ n − 2 and 2k ≤ n. For every m in the interval
[k(n − 2),

(
n−2k

3

)
+ k(n − 2)], there is a graph G on n vertices such that f (G) = m.
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PROOF. Take any m ∈ [k(n − 2),
(

n−2k
3

)
+ k(n − 2)]. We construct a graph G on

the vertex set U � V , where |U| = n − 2k, |V | = 2k, such that f (G) = m. Observe,
first, that since adding an edge to a graph increases the value of f by at most
n − 2, we can find a configuration of edges in U that contributes m′ to f, where
0 ≤ m′ + k(n − 2) − m < n − 2. We now find a configuration of edges in V that
contributes exactly m′ − m to f. By the definition of sk, we can find a sequence
of positive integers d1, d2, . . . , dj which sum up to k and such that

∑j
i=1

(
di
2

)
=

m′ + k(n − 2) − m. Let G[V] be the union of stars Sd1 , Sd2 , . . . , Sdj and an independent
set. Then f (G) = m′ + k(n − 2) − (m′ + k(n − 2) − m) = m. �

COROLLARY 3.2. For any sufficiently large n, if m ∈ [
√

2n3/2 + 4n5/4, (1 − o(1))
(

n
3

)
],

then there is a graph G on n vertices such that f (G) = m.

PROOF. It follows from Lemma 2.5 that sk ≥
(

k−
√

2k
2

)
, and hence, if k ≥

√
2n + 4n1/4,

then sk ≥ n − 2 for sufficiently large n. The rest follows from Lemma 3.1. �

We are now ready to deduce Theorem 1.3 from Lemmas 2.1, 2.3 and Corollary 3.2.

PROOF OF THEOREM 1.3. (i) Recall that the number of triangles in G is
(

n
3

)
− f (G).

Therefore, Corollary 3.2 implies that [o(
(

n
3

)
),
(

n
3

)
− (
√

2 + o(1))n3/2] ⊂ Tn. Together
with Lemma 2.1, which, for r = 3, says that [0, ((n − 9)/3)3] ⊂ Tn, we conclude that
[0,

(
n
3

)
− (
√

2 + o(1))n3/2] ⊆ Tn for sufficiently large n.

(ii) Since the number of triangles in G is equal to
(

n
3

)
− f (G), we obtain, using

Lemma 2.3, that (
(

n
3

)
− at+1,

(
n
3

)
− bt) ∩ Tn = ∅ for all n, t ≥ 0. �

4. General H

Now, we consider the case when H is an arbitrary connected graph on h ≥ 3
vertices. We start by showing that the first (1 − o(1))kH(Kn) numbers are realisable
when n goes to infinity.

Our strategy is to recursively partition the vertex set into two subsets and modify
the edges between vertices in each of the classes, but without adding edges between
the classes. Let gH = g(n)

H be the maximum number of new copies of H obtained by
adding an edge to a graph, over all graphs on n vertices. We claim that there is a
constant cH > 0 such that gH ≤ cHnh−2. Indeed, a new copy must contain both of the
end vertices of the newly added edge, there are

(
n−2
h−2

)
h-sets of vertices in G containing

two fixed vertices and each h-set may contain at most h! copies of H. Therefore,
gH ≤ h!

(
n−2
h−2

)
≤ cHnh−2.

The next two lemmas are needed in our construction.

LEMMA 4.1. If [0, cnα] ⊂ S(n)
H for all sufficiently large n, where α ≤ h − 2, then, for all

sufficiently large n and some new constant c1 > 0, we have [0, c1nαh/(h−2)] ⊂ S(n)
H .
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PROOF. Consider an empty graph G with vertex set V = V1 � V2, where n1 = |V1| =
c′nα/(h−2) and n2 = |V2| = n − |V1|, and where c′ > 0 will be chosen later. Let G0 = G
and let Gi+1 be a graph obtained by adding an edge between vertices of V1 in Gi. Since
H is connected,

kH(Gi+1) − kH(Gi) ≤ g(n1)
H ≤ cHnh−2

1 = cHc′h−2nα.

Therefore, we obtain an increasing sequence in S(n)
H , starting with 0 and ending with

kH(G(n1
2 )), such that the differences between consecutive terms are at most cHc′h−2nα.

We modify Gi[V2] to obtain the missing numbers between consecutive terms. By the
hypothesis, we can modify Gi[V2] to obtain G′i[V2] containing any number k of copies
of H, where k ∈ [0, cnα2 ]. Hence, it suffices to find c′ > 0 such that cHc′h−2nα < cnα2 .
We consider two cases depending on α.

(1) If α = h − 2, then cnα2 = c(n − c′n)α = c(1 − c′)αnα. Therefore, it suffices to
choose c′ > 0 such that cHc′h−2 < c(1 − c′). This gives g(n1)

H < cnα2 .
(2) If α < h − 2, then cnα2 = c(n − o(n))α ∼ cnα. If we choose c′ > 0 such that

c′ < (c/cH)1/(h−2), then, for sufficiently large n, we again have g(n1)
H < cnα2 .

Therefore, every number less than kH(G(n1
2 )) = kH(Kn1 ) > c′′nh

1 = c1nαh/(h−2) is
realisable. �

If we have the same hypothesis, but with α > h − 2 instead, from the next lemma we
see that, for sufficiently large n, we can construct a graph on n vertices with k copies
of H for any k ≤ (1 − o(1))kH(Kn).

LEMMA 4.2. If [0, cnα] ⊂ S(n)
H for sufficiently large n, where α > h − 2, then, for

sufficiently large n, [0, (1 − o(1))kH(Kn)] ⊂ S(n)
H .

PROOF. Proceeding as in Lemma 4.1, choose β ∈ ((h − 2)/α, 1) and let n2 = |V2| = nβ

and n1 = |V1| = n − |V2|. Note that g(n1)
H = O(nh−2). By the hypothesis, we can modify

G[V2] to obtain any number of copies of H up to cnα2 , where cnα2 = ω(nh−2). Therefore,
every number in the interval [0, kH(Kn1 )] is realisable. However, n1 = (1 − o(1))n, and
hence kH(Kn1 ) = (1 − o(1))kH(Kn). �

PROOF OF THEOREM 1.1. We start by showing that, trivially, [0, �n/h�] ⊂ S(n)
H . To

achieve that, note that, for any k ≤ �n/h�, we can simply construct a graph on n vertices
consisting of k disjoint copies of H.

Let kmax be the largest integer k such that (h/(h − 2))k ≤ h (note that (h/(h − 2))kmax ∈
(h − 2, h]). We claim that [0, ckn(h/(h−2))k

] ⊂ S(n)
H for every positive integer k ≤ kmax and

sufficiently large n. We prove the claim by induction on k. For k = 0, we already
have [0, c0n] ⊂ S(n)

H . Suppose that [0, ckn(h/(h−2))k
] ∈ S(n)

H and k < kmax. Observe, first,
that (h/(h − 2))k ≤ h − 2, as otherwise (h/(h − 2))kmax would be greater than h. Hence,
we can apply Lemma 4.1 and conclude that [0, ck+1n(h/(h−2))k+1

] ∈ S(n)
H for large enough

n. Note that we apply Lemma 4.1 only finitely many times and hence n remains finite.
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Therefore, for n large enough, we have [0, cnα] ⊂ S(n)
H with α = (h/(h − 2))kmax ∈

(h − 2, h], and hence we can apply Lemma 4.2 and conclude that, for n sufficiently
large, [0, (1 − o(1))kH(Kn)] ⊂ S(n)

H . �

We recall the major notation. For a graph G = (V , E) of order n, let fH(G) be the
number of subgraphs F of K(V) isomorphic to H such that E(F) ∩ E � ∅, where K(V)
denotes the complete graph on the vertex set V. Then the number of copies of H in G
is equal to kH(Kn) − fH(G). In the next lemma, we describe a formula for fH .

LEMMA 4.3. For any graphs H on h vertices and G on n vertices,

fH(G) = cHe(G)
(
n − 2
h − 2

)
−

e(H)∑
k=2

∑
e(F)=k
δ(F)>0

(−1)kcH(F)kF(G)
(
n − |F|
h − |F|

)
.

PROOF. Let E(G) = {e1, . . . , em}, where m = e(G). Denote the set of subgraphs of
the complete graph on V(G) isomorphic to H containing the edge ei by Ai, that is,
Ai = {F ⊂ K(V) : ei ∈ E(F), F � H}. Note that fH(G) = |⋃m

i=1 Ai|. Therefore, by the
inclusion–exclusion principle,

fH(G) =
m∑

k=1

∑
i1<···<ik

(−1)k+1|Ai1 ∩ · · · ∩ Aik |.

For a graph F on at most h vertices, let cH(F) be the number of copies of H in the
complete graph Kh containing a fixed subgraph of the complete graph Kh, isomorphic
to F. Let F = G[ei1 , . . . , eik ] be the graph induced by the edges ei1 , . . . , eik . Observe that
|Ai1 ∩ · · · ∩ Aik | = cH(F)

(
n−|F|
h−|F|

)
. Therefore,

fH(G) =
m∑

k=1

∑
i1<···<ik

(−1)k+1|Ai1 ∩ · · · ∩ Aik |

=

m∑
k=1

∑
F⊆H

e(F)=k
δ(F)>0

(−1)k+1kF(G)cH(F)
(
n − |F|
h − |F|

)

= cHm
(
n − 2
h − 2

)
−

e(H)∑
k=2

∑
e(F)=k
δF>0

(−1)kcH(F)kF(G)
(
n − |F|
h − |F|

)
. �

The following easy lemma gives us an upper bound for kF(G).

LEMMA 4.4. If F is a graph on f vertices with no isolated vertices, then, for every
graph G on e edges, the number of copies of F in G is at most e f−1.

PROOF. We proceed by induction. The base case f = 2 is trivial. Assume that f > 2
and consider two cases. If F is a matching on f = 2l vertices, then the result follows
easily: the number of copies of F in G is at most

(
e
l

)
≤ el ≤ e2l−1 = e f−1. In the other
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case, when F is not a matching, there exists a vertex v ∈ F such that F′ = F − v has
no isolated vertices. By the induction hypothesis, there are at most e f−2 copies of F′

in G. Each copy of F′ in G can be extended to at most e copies of F in G, since, by
assumption, v must be adjacent to some vertex of F′. Therefore, there are at most e f−1

copies of F in G. �

LEMMA 4.5. Let G be a graph on n vertices with e = O(n1/2) edges. Then

fH(G) = cHe(G)
(
n − 2
h − 2

)
− cH(P2)kP2 (G)

(
n − 3
h − 3

)
+ cH(K3)kK3 (G)

(
n − 3
h − 3

)
+ o(nh−2).

PROOF. We consider the term cH(F)kF(G)
(

n−|F|
h−|F|

)
, where F is a graph on at least four

vertices. From Lemma 4.4, kF(G) ≤ e|F|−1 and so kF(G)
(

n−|F|
h−|F|

)
≤ e|F|−1nh−|F|. Hence,

under the assumption that e = O(n1/2),

kF(G)
(
n − |F|
h − |F|

)
= O(n|F|/2−1/2nh−|F|) = O(nh−1/2−|F|/2) = O(nh−5/2) = o(nh−2).

As there are only three graphs on fewer than four vertices with no isolated vertices,
namely, K2, K3 and P2, and the number of terms in the summation in f (G) depends
only on H, we can write

fH(G) = cHe(G)
(
n − 2
h − 2

)
− cH(P2)kP2 (G)

(
n − 3
h − 3

)
+ cH(K3)kK3 (G)

(
n − 3
h − 3

)
+ o(nh−2). �

The next lemma, which we use to prove that there are gaps in S(n)
H , tells us that,

for sufficiently large n, stars and matchings are asymptotically extremal examples of
graphs for fH(G): that is, for a graph G on t edges,

a(n)
H (t) − o(nh−2) = fH(S(n)

t ) − o(nh−2) ≤ fH(G) ≤ fH(M(n)
t ) + o(nh−2) = b(n)

H (t) + o(nh−2).

LEMMA 4.6. Let G be a graph on n vertices with e = O(n1/2) edges. As n→ ∞:

(i) fH(G) ≥ a(n)
H (e) − o(nh−2) = cHe

(
n−2
h−2

)
− cH(P2)

(
e
2

)(
n−3
h−3

)
+ o(nh−2); and

(ii) fH(G) ≤ b(n)
H (e) + o(nh−2) = cHe

(
n−2
h−2

)
+ o(nh−2).

PROOF. This an immediate corollary of Lemma 4.5. Observe that kK3 (S(n)
e ) = 0, as

stars contain no triangles and kP2 (S(n)
e ) =

(
e
2

)
. Therefore, by Lemma 4.5,

a(n)
H (e) = cHe

(
n − 2
h − 2

)
− cH(P2)

(
e
2

)(
n − 3
h − 3

)
+ o(nh−2).

On the other hand, matchings contain no copies of K3 nor P2, and hence, again, by
Lemma 4.5,

b(n)
H (e) = cHe

(
n − 2
h − 2

)
+ o(nh−2).

https://doi.org/10.1017/S0004972724000972 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972724000972


10 T. Kittipassorn and K. Popielarz [10]

For any graph G on e edges, we have kP2 (G) ≤
(

e
2

)
, so it follows from the above estimate

on a(n)
H (e) and from Lemma 4.5 that

fH(G) ≥ cHe
(
n − 2
h − 2

)
− cH(P2)

(
e
2

)(
n − 3
h − 3

)
+ o(nh−2) = a(n)

H (e) − o(nh−2).

On the other hand, it is easy to see that, for any graph G, we have cH(P2)kP2 (G) ≥
cH(K3)kK3 (G). So, by Lemma 4.5,

fH(G) ≤ cHe
(
n − 2
h − 2

)
+ o(nh−2) = b(n)

H (e) + o(nh−2). �

PROOF OF THEOREM 1.2. Let tmax = max{t : b(n)
H (t) < a(n)

H (t + 1)}. First, we show that
tmax = Θ(

√
n). Indeed,

a(n)
H (t + 1) − b(n)

H (t) = cH

(
n − 2
h − 2

)
− cH(P2)

(
t + 1

2

)(
n − 3
h − 3

)
+ o(nh−2)

= c1nh−2 − c2t2nh−3 + o(nh−2),

for some constants c1, c2 > 0 depending only on H. It follows that there is a constant
C, depending only on H, such that, for all sufficiently large n, we have a(n)

H (t + 1) −
b(n)

H (t) ≥ 0 if t < C
√

n and a(n)
H (t + 1) − b(n)

H (t) ≤ 0 otherwise. From Lemma 4.6, for all
sufficiently large n,

fH(G) ∈ [a(n)
H (e) − o(nh−2), b(n)

H (e) + o(nh−2)]

for a graph G with e ≤ tmax edges. For a graph G with more than tmax edges, let G′

be a graph obtained from G by deleting some edges until there are exactly tmax edges
left. By monotonicity of f, we have fH(G) ≥ fH(G′) ≥ a(n)

H (tmax) − o(nh−2). Therefore,
for any t < tmax, the number of integers m in the interval (b(n)

H (t), a(n)
H (t + 1)) such that

there is a graph G on n vertices with fH(G) = m is at most o(nh−2). It follows that
|(kH(Kn) − a(n)

H (t + 1), kH(Kn) − b(n)
H (t)) ∩ S(n)

H | = o(nh−2) for every t. �

Note that, when t < 1
2 tmax, the gap between a(n)

H (t + 1) and b(n)
H (t) is of order nh−2.

Hence, as n goes to infinity,

|(kH(Kn) − a(n)
H (t + 1), kH(Kn) − b(n)

H (t)) ∩ S(n)
H |

a(n)
H (t + 1) − b(n)

H (t)
= o(1).

5. Open problems

We conclude our paper with some open problems that we feel would merit further
study. Let φ(n)

H = min{m ≥ 0 : m � S(n)
H } be the smallest nonmember of S(n)

H . Therefore,
we have proved that φ(n)

K3
=

(
n
3

)
− (
√

2 + o(1))n3/2 and φ(n)
P2
= 3

(
n
3

)
− (4 + o(1))n3/2.

The ultimate goal is to determine S(n)
H . In particular, we ask the following question.
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PROBLEM 5.1. What is the asymptotic behaviour of
(

n
r

)
− φ(n)

Kr
?

We showed, in Lemma 2.3, that if e(G) = t ≤ tmax, then fH(G) ∈ [a(n)
H (t), b(n)

H (t)].
Simple constructions readily show that, in general, not every number in the interval
[a(n)

H (t), b(n)
H (t)] is attained by fH(G). Therefore, we pose the following problem.

PROBLEM 5.2. Determine the set [a(n)
H (t), b(n)

H (t)] − { fH(G) : e(G) = t} for t ≤ tmax.
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