
J. Functional Programming 4 (1): 117-123, January 1994 © 1994 Cambridge University Press 117

FUNCTIONAL PEARL
On generating unique names

LENNART AUGUSTSSON, MIKAEL RITTRI AND DAN SYNEK
Department of Computing Science, Chalmers University of Technology and

University of Goteborg, S-412 96 Goteborg, Sweden
(E-mail: {augustss,rittri,synek}@cs.chalmers.se)

1 Introduction
And Joktan begat Almodad, and Sheleph, and Hazar-
maveth, and Jerah, and Hadoram, and Uzal, and Dik-
lah, and Obal, and Abimael, and Sheba, and Ophir,
and Havilah, and Jobab: all these were the sons of
Joktan.
— Genesis 10:26-29

In a lazy, purely functional language, it is awkward to generate new and unique
names. The gensym function (figure 1) is impure, since its result depends on a
hidden counter. We can instead pass the counter as an argument, and regard it
as representing the infinite supply of unused names. But the usual implementation
(figure 2) has drawbacks: the access to the names is sequential, and to evaluate the
nth name, you must first evaluate all previous names. This can cause

lost laziness: a large datastructure with unique names may have to be evaluated
only because the next unused name is needed, and

lost parallelism: one evaluation may have to wait for another one to return the next
unused name.

We will implement counter passing by hidden calls to gensym, so that the visible
effect is referentially transparent. The generation of names will then not destroy
laziness or parallelism.

The sequential access is still awkward, though. Peter Hancock (1987) has suggested
a more flexible interface: since a name supply is an infinite set, it can be split into
two disjoint and infinite subsets (figure 3). His implementation, which represents
names by lists of integers, is inefficient and seldom used. An implementation with
integers is possible (figure 4), but they overflow quickly unless you use integers of
arbitrary size, which are inefficient, too. Fortunately, our hidden calls to gensym will
make Hancock's interface as efficient as counter passing, or better.

Except figure 1, our examples will be in the Haskell language (Hudak et al., 1992).

2 Hiding gensym in a tree

In the Doubling module (Fig. 4), gen generated an infinite binary tree with distinct
names in each node. We replace this gen by one which places the expression

https://doi.org/10.1017/S0956796800000988 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000988


118 L. Augustsson et al.

(* gensym : 'a —» int *)
local val counter = ref 0
in fun gensym(.) = (counter := \counter + 1; \counter)
end

Fig. 1. A gensym function with a private counter, written in Standard ML. The function
ignores its argument, increments the counter and returns its new value.

module Counter Passing (
Name, NameSupply, initialNameSupply, getNameDeplete)

where

data Name = MkName Int deriving (Eq)

data NameSupply = MkNameSupply Int

initialNameSupply :: NameSupply
getNameDeplete :: NameSupply —> (Name, NameSupply)

initialNameSupply = MkNameSupply 0
getNameDeplete (MkNameSupply i) = (MkName i, MkNameSupply(i+1))

Fig. 2. A simple implementation of counter passing, written in Haskell. The counter i
represents the supply of integers > i. Overflow can occur after 232 steps.

interface Hancock
where

data Name
instance Eq Name
data NameSupply
initialNameSupply
getNameDeplete
splitNameSupply

: NameSupply
: NameSupply —• (Name, NameSupply)
: NameSupply —» (NameSupply, NameSupply)

(a) Every name supply represents an infinite set of names.
(b) getNameDeplete(s) returns an element n of s and an infinite subset of

s-{n}.
(c) splitNameSupply (s) returns two infinite disjoint subsets of s.

Fig. 3. Hancock's specification.

module Doubling (
Name, NameSupply, initialNameSupply, getNameDeplete, splitNameSupply)

where

data Name = MkName Integer deriving (Eq)

data NameSupply = MkNameSupply Name NameSupply NameSupply

initialNameSupply = gen 1

where gen i = MkNameSupply (MkName i) (gen(2*i)) (ge«(2»i + l))

getNameDeplete(MkNameSupply n si _) = (n, si)

splitNameSupply (MkNameSupply - si s2) = (si, s2)

Fig. 4. A simple implementation of Hancock's specification. The integer whose binary
notation is b represents the infinite supply of integers whose binary notations begin with b.

The integers become larger than 232 after 32 consecutive splits, hence we use the Haskell
type Integer (arbitrarily sized integers) rather than Int (machine integers).

https://doi.org/10.1017/S0956796800000988 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000988


Functional Pearl: On generating unique names 119

Fig. 5. The tree represented by initialNameSupply in Fig. 4.

MkName(gensymQ) in each node (Fig. 6). These expressions are evaluated only
when a name is used, each evaluates to MkName(i) where i is a distinct integer, and
as usual, the expressions are replaced by their values once they have been evaluated.
Since the only visible operation on names is equality, users cannot distinguish
between the Doubling and the HideGensym module. But with the Doubling module,
the integers would become larger than 232 after 32 consecutive splits, whereas with
gensym, they do not become that large until 232 names have been used. This is why
we dare to use short integers in HideGensym but not in Doubling.

The unevaluated gensym applications in the nodes are a simple variation of the
decisions or oracles which have been suggested for handling nondeterminism in
functional languages (Burton, 1988; Augustsson, 1989). The concrete names are
nondeterministic, since they depend on the evaluation order, hence only equality of
names is visible (but see section 3).

A word of warning: a too clever compiler might recognize the repeated subex-
pression gen x in Fig. 6, and implement gen by code which creates sharing (or even
cycles). This would not destroy the referential transparency of the interface, but the
binary tree would no longer appear to have distinct names in each node. If such
compiler optimizations cannot be turned off or fooled, one must generate code for
the gen function by hand.

If a compile-time analysis of a program can guarantee that every name supply
is used at most once, either to do getNameDeplete or splitNameSupply, the tree
becomes unnecessary and we can save some work (figure 7).

3 Making names visible

Often we need to print names, not just compare them for equality. It is possible
to assign unique strings to names without revealing their secret representation,
but it is awkward. It is much simpler not to hide names at all, that is, to make
Name a synonym for Int. Since the concrete integers in the nodes depend on the
evaluation order, initialNameSupply no longer denotes a fixed value. Rather, each

https://doi.org/10.1017/S0956796800000988 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000988


120 L. Augustsson et al.

module HideGensym(
Name, NameSupply, initialNameSupply, getNameDeplete, splitNameSupply)

where

gensym :: a —> Int — implemented in assembler

data Name = MkName Int deriving (Eq)

data NameSupply = MkNameSupply Name NameSupply NameSupply

initialNameSupply = gen Q

where gen x — MkNameSupply (MkName(gensym x)) (gen x) (gen x)

getNameDeplete (MkNameSupply n si _) = (n, si)

splitNameSupply (MkNameSupply - si s2) = (si, s2)

Fig. 6. An implementation of Hancock's specification, using an infinite binary tree with the
expression MkName(gensymQ) in each node. The gensym must be coded in assembler, and

possibly also the gen function.

module OneTimeSupplies(
Name, NameSupply, initialNameSupply, getNameDeplete, splitNameSupply)

where

gensym :: a —» Int — implemented in assembler

data Name = MkName Int deriving (Eq)

data NameSupply = MkNameSupply

initialNameSupply = MkNameSupply

getNameDeplete s = (MkName(gensym(s)), MkNameSupply)

splitNameSupply MkNameSupply = (MkNameSupply, MkNameSupply)

Fig. 7. An unsafe implementation of Hancock's specification. It is referentially transparent
only if each supply is used at most once.

time a program is run, it looks as if a new value is provided, and we know only that
it is a tree with distinct integers in the nodes. To fit this into Haskell, we can simply
add a new request GetlnitialNameSupply to the I/O system, alongside GetArgs,
GetEnv and the others (Hudak et al., 1992). The same solution was adopted by
Burton (1988) and Augustsson (1989).

4 Benchmarks

We have tested the various implementations using the Haskell B. compiler of
Chalmers. Our test programs renamed the bound variables of a large lambda
expression so that they got unique names. We also run two base tests, one which
renamed all variables to the same name, and one which used an unhidden gensym.
The results can be found in Table 1. The tests were made so that the implementations
which used Hancock's operations did not gain anything from increased laziness or
parallelism.

The implementation in Fig. 6 is now available in the Chalmers Haskell compiler
— just import a module called NameSupply.

https://doi.org/10.1017/S0956796800000988 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000988


Functional Pearl: On generating unique names 121

Table 1. The times to rename the variables of a large lambda expression, scaled to
make the first base time 1.

Base tests 1 renaming all bound variables to the same name

1.13 unhidden gensym

Counter passing 2.18 (Fig. 2)

Hancock's 6.34 lists of short integers (Hancock, 1987)
operations 4.89 doubling of long integers (Fig. 4)

1.57 hidden gensym (Fig. 6)
1.26 hidden gensym, one-time use of supplies (Fig. 7)

Related work

Wadler (1990) tidies up counter passing by wrapping up the "plumbing" into a
monad. His monad could be implemented by a hidden counter. One could also
access Hancock's split operation in a more monadic style. Paulson (1991) describes
other methods to hide assignments behind a referentially transparent interface.

Acknowledgements

We thank John Hughes, Thomas Johnsson, Mark Jones and Simon Jones for
valuable comments.

References

Augustsson, L. (1989) Functional non-deterministic programming, or How to make your own
oracle. PMG memo 66, Dept. of Comput. Sci., Chalmers Univ. of Tech., Goteborg, Sweden
(augustss@cs.chalmers.se).

Burton, F. W. (1988) Nondeterminism with referential transparency in functional programming
languages. Computer Journal, 31(3):243-247.

Hancock, P. (1987) A type-checker. Chapter 9 (pp. 163-182) of Peyton Jones, S. L , The
Implementation of Functional Programming Languages, Prentice-Hall.

Hudak, P. et al. (1992) Haskell special issue. ACM SIGPLAN Notices, 27(5).
Paulson, L. C. (1991) Imperative programming in ML. Chapter 8 (pp. 279-313) of ML for

the Working Programmer, Cambridge University Press.
Wadler, P. (1990) Comprehending monads. In ACM Conf. on LISP and Functional Program-

ming, Nice, pp. 61-78, ACM Press.

Appendix

Here are two of the test programs, and some auxiliary operations on name supplies
that can be useful. The test was to rename a large lambda expression, and then
comparing the result to itself to force full evaluation. The test was thus

r = = r where r = rename (expr(15)) initialNameSupply,

https://doi.org/10.1017/S0956796800000988 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000988


122 L. Augustsson et al.

data (Eq n) => Term n = Var n
| Lam n (Term n)
| App (Term n) (Term n)

deriving (Eq)

replace nNew nOld (Var n) | nOld==n = Var nNew
replace nNew nOld (Lam n t) \ nOld/=n = Lam n (replace nNew nOld t)
replace nNew nOld (App tl t2) = App (replace nNew nOld tl)

(replace nNew nOld t2)
replace nNew nOld t | otherwise = t

Fig. 8. The definition of lambda expressions, plus a nai've replacement of free occurrences of
nOld by nNew.

renamer :: Term Name —> NameSupply -» (Term Name, NameSupply)
renamer (Var n) s = (Var n, s)
renamer (Lam n t) s = (Lam n' (replace n' n t'), s")

where («', s') = getNameDeplete s
(t', s") = renamer t s'

renamer (App tl t2) s = (App tl' t2', s")
where (tl', s') = renamer tl s

(t2', s") = renamer t2 s'

rename :: Term Name —>• NameSupply —* Term Name
rename t s = fst (renamer t s)

Fig. 9. Renaming the bound variables in a lambda expression by counter passing. The
program in Fig. 2 was used, except that both Name and NameSupply were made synonyms

for Int.

rename :: Term Name —» NameSupply —» Term Name
rename (Var n) s = Var n
rename (Lam n t) s =

case getNameDeplete s of
(n',s') —> Lam n' (replace n' n t')

where t' = rename t s'
rename (App tl t2) s =

case splitNameSupply s of
(si, s2) -* App tl' tT

where tl' = rename tl si
t2' = rename t2 s2

Fig. 10. Renaming the bound variables in a lambda expression by splitting infinite name
supplies.

with

expr(0) = Lam 0 (Var 0)
expr(k) = App t t where t = expr(k—l)

and a datatype of lambda expressions as in Fig. 8.

Note: in an application rename t s, the expression t should not contain any names

that are in the name supply s — otherwise the names in the supply are not "new",

of course.

https://doi.org/10.1017/S0956796800000988 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000988


Functional Pearl: On generating unique names 123

HstName :: NameSupply —• [Name]
HstNameDeplete :: NameSupply —> ([Name], NameSupply)
listNameSupply :: NameSupply —> [NameSupply]

HstName (MkNameSupply n - s2) = n : HstName s2
HstNameDeplete s©(MkNameSupply - si -) = (HstName s, si)
listNameSupply (MkNameSupply ~ si s2) = si : listNameSupply s2

Fig. 11. Some auxiliary operations that can be added to the name supply module.

https://doi.org/10.1017/S0956796800000988 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796800000988

