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Turbulent boundary layers on immersed objects can be significantly altered by the pressure
gradients imposed by the flow outside the boundary layer. The interaction of turbulence
and pressure gradients can lead to complex phenomena such as relaminarization, history
effects and flow separation. The angular momentum integral (AMI) equation (Elnahhas
& Johnson, J. Fluid Mech., vol. 940, 2022, A36) is extended and applied to high-fidelity
simulation datasets of non-zero pressure gradient turbulent boundary layers. The AMI
equation provides an exact mathematical equation for quantifying how turbulence,
free-stream pressure gradients and other effects alter the skin friction coefficient relative
to a baseline laminar boundary layer solution. The datasets explored include flat-plate
boundary layers with nearly constant adverse pressure gradients, a boundary layer
over the suction surface of a two-dimensional NACA 4412 airfoil and flow over a
two-dimensional Gaussian bump. Application of the AMI equation to these datasets maps
out the similarities and differences in how boundary layers interact with favourable and
adverse pressure gradients in various scenarios. Further, the fractional contribution of
the pressure gradient to skin friction attenuation in adverse-pressure-gradient boundary
layers appears in the AMI equation as a new Clauser-like parameter with some advantages
for understanding similarities and differences related to upstream history effects. The
results highlight the applicability of the integral-based analysis to provide quantitative,
interpretable assessments of complex boundary layer physics.

Key words: turbulent boundary layers

1. Introduction

Turbulent boundary layers (BLs) experiencing streamwise pressure gradients are
widespread in various engineering applications. Despite their significance, it remains
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difficult to model the impact of pressure gradients on the characteristics of wall-bounded
turbulence. Given that the effect of pressure gradients on turbulent BLs closely
relates to their streamwise development, it is crucial to examine the concept of
equilibrium. According to Townsend’s idealized definition (Townsend 1956), equilibrium
is attained when all flow properties achieve self-similarity based on a consistent set of
scaling variables, rendering the normalized flow independent of streamwise position.
Self-similarity implies that profiles of a specific flow parameter measured at different
locations exhibit identical shapes and can be collapsed onto a single form through
appropriate normalization. The requirement for absolute equilibrium can be relaxed by
semi-equilibrium (or approximate equilibrium) (Devenport & Lowe 2022), which denotes
a condition where the normalized flow changes gradually with streamwise position over
distances much greater than the BL thickness, often due to Reynolds number dependence.

In the context of a statistically two-dimensional turbulent BL with a non-zero pressure
gradient, the relative state of equilibrium can be quantified using the non-equilibrium
Clauser parameter (Clauser 1954), β. The constraint of constant β is assumed to be
necessary to approach (approximate) equilibrium in BL flows (Devenport & Lowe 2022).
Using the von Kármán momentum integral equation (von Kármán 1921), β may be
interpreted as the ratio between the excess streamwise pressure force applied on the BL
(relative to potential flow solution) and the wall shear stress (τw). It is important to note
that while a constant β is a prerequisite for equilibrium behaviour, turbulent BLs, even
in zero-pressure-gradient (ZPG) scenarios, are not completely similar due to the inherent
independence of the inner and outer flow scales. The potential for an equilibrium state
in turbulent BLs under pressure gradients can be illustrated through similarity analyses
(Castillo & George 2001; Devenport & Lowe 2022).

The presence of pressure gradients, whether adverse or favourable, serves as a source
of non-equilibrium, thereby influencing the dynamics and behaviour of turbulent BLs.
The large-scale motions in the outer region have been observed to be sensitive to
pressure-gradient effects. For instance, Harun et al. (2013) used spectral and scale
decomposition analysis to observe that the turbulent large structures are more energetic
under the adverse-pressure-gradient (APG) effects. Despite being more energized, they
observed a similar spectral distribution of energy within the wake region of the flow,
indicating that the geometrical structure of the outer layer remains universal.

In BLs subjected to imposed APGs, deviations of the mean velocity profile within
the logarithmic region were observed for both approximate equilibrium (constant β) and
non-equilibrium (Monty, Harun & Marusic 2011; Bobke et al. 2017) flows. Additionally,
the impact of APG on the stronger wake region has been documented (Durbin &
Belcher 1992). Bobke et al. (2017) further analysed the effect of APG on Reynolds stress
components through a series of high-fidelity numerical experiments on flat plates and the
suction side of an airfoil. They observed that inner-scaled Reynolds stress components
increase with higher levels of β. Specifically, the streamwise normal Reynolds stress
develops a secondary peak within the outer layer, a peak that amplifies at higher β. On the
other hand, the strength and location of the inner peak remain unchanged. Moreover, an
APG leads to a significant enhancement of the Reynolds shear stress within the outer layer,
resulting in an increase in correlation between streamwise and wall-normal velocities and
indicating a shift in the location and mechanism of turbulent production of kinetic energy
(Skaare & Krogstad 1994). Adverse pressure gradients have been observed to reduce the
number of low-speed streaks within the viscous sublayer while increasing the distance
(Lee & Sung 2009). In addition, the frequency of bursts in the inner region is reduced
compared to ZPG BLs, whereas the frequency of sweep events is increased (Krogstad &
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Integral analysis of turbulent BLs with pressure gradient

Skåre 1995). As discussed above, the impact of APG on the outer region of the BL is more
substantial. Within the outer region, the presence of trains of hairpin vortical structures
and elongated low-momentum regions becomes more prominent compared with ZPG BLs
(Lee & Sung 2009).

While APGs have received considerable attention in research, there is comparably
fewer studies focusing on favourable pressure gradients (FPG). Such FPGs entail flow
acceleration in the flow’s principal direction, resulting in a thinning of the BL thickness.
If a strong FPG is imposed on turbulent BLs at sufficiently low Reynolds number,
a reversion of the BL to a laminar state can result, as described by Narasimha
& Sreenivasan (1973). Early experimental evidence of flow relaminarization under
free-stream acceleration was shown by Sternberg (1955) on flow past a cone. However,
in this work, the focus is limited to low-speed BLs, i.e. the incompressible regime.
As elucidated by Narasimha & Sreenivasan (1973), the relaminarization process entails
the suppression of turbulence to such an extent that the influence of Reynolds shear
stresses on the mean flow significantly decreases. Consequently, the mean velocity profile
deviates from the law of the wall and the skin friction coefficient may even decrease
despite the free-stream acceleration. Patel (1965) observed deviations in the streamwise
velocity profile beyond the logarithmic region, a finding subsequently corroborated by
other studies (Wu & Squires 1998; Matai & Durbin 2019). During the relaminarization
process, turbulent intensity may not necessarily decrease; the production rate of turbulent
kinetic energy can remain higher than its dissipation. However, the dominance of pressure
forces due to flow acceleration leads the Reynolds stress components to become frozen,
rendering them irrelevant to the flow dynamics. Hence, the term ‘quasi-laminar’ is used
by Narasimha & Sreenivasan (1973) to characterize this flow state.

Several parameters have been proposed to quantify and predict relaminarization under
FPGs. Patel (1965) introduced a parameter to define the relaminarization threshold using
the FPG normalized by friction (inner) scaling for the breakdown of the logarithmic law.
The threshold value was later revised by Patel & Head (1968), and it was suggested that
the non-dimensional shear stress gradient can offer a more universal criterion. Bradshaw
(1969) later revised the proposed value of the dimensionless shear stress gradient and
suggested that it signifies the beginning of the logarithmic law overshoot rather than the
initiation of the relaminarization process.

In aerodynamics and hydrodynamics applications, it is common for a BL to experience
a FPG region followed by an APG region. The effects of an upstream FPG region
on APG turbulent BLs were experimentally investigated in flows over bumps and hills
both experimentally (Tsuji & Morikawa 1976; Baskaran, Smits & Joubert 1987, 1991;
Webster, DeGraaff & Eaton 1996) and numerically (Wu & Squires 1998; Matai & Durbin
2019). Uzun & Malik (2018) simulated turbulent BL flow over a wall-mounted hump
using a wall-resolved large-eddy simulation (WRLES) and compared the trend in the
skin friction with the experimental results of Greenblatt et al. (2006). Additionally, they
examined relaminarization under FPGs using a relaminarization parameter and concluded
this process was incomplete at the Reynolds number they investigated. In a similar
investigation, Balin & Jansen (2021) conducted a direct numerical simulation (DNS)
of low-speed flow over a two-dimensional Gaussian bump to examine the effects of
alternating APG and FPG. Consistent with prior studies, they observed deviations from the
logarithmic law due to FPG effects and reported their own threshold values to characterize
the relaminarization process. Additionally, they observed the emergence of two internal
layers resulting from the curvature changes on the bump surface, similar to the observation
of Baskaran et al. (1987). The formation of distinct internal layers within the BL suggests
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a decoupling between the inner and outer regions of the flow in non-equilibrium turbulent
BLs. This phenomenon was further evidenced by recent numerical simulations conducted
by Uzun & Malik (2022) and Prakash et al. (2024) on a Gaussian bump at a larger
Reynolds number, where they observed an internal layer created in the FPG region
behaving similarly to a free shear layer. The internal layer near the wall behaves as a
regular BL and is responsible for generating wall shear stress. Yet, far from the wall, flow
behaves similarly to a free-shear flow, as described by Baskaran et al. (1987), influenced
by local pressure gradients and surface curvature (Balin & Jansen 2021).

The generation of internal layers due to alternating FPG and APG pertains to
the flow history effects, which describe how upstream pressure gradients alter the
turbulent statistics downstream. These history effects are known to prevent similarity in
inner-scaled statistics, representing a challenge in developing robust turbulent models for
non-equilibrium BLs (Prakash et al. 2024). Bobke et al. (2017) examined the history
effects for APG BLs by comparing the inner-scaled mean velocity and Reynolds stress
components of two distinct BLs with matching β and Reynolds number based on the
friction velocity. They found that large structures within the outer layer are less energetic
under APG if the upstream pressure gradients throughout their streamwise development
are weaker. Additionally, their study suggested that the friction Reynolds number appears
to inadequately capture the non-equilibrium effects. However, the choice of a Reynolds
number based on displacement thickness and edge velocity yields more robust similarity
for two distinct BLs.

Given the role of the momentum integral equation in establishing the physical meaning
of the Clauser parameter, β, it is worthwhile to investigate how integral equations can
be utilized to further our understanding of pressure-gradient effects on turbulent BLs.
For instance, turbulence is not explicitly represented in the momentum integral equation,
even though it plays a significant role in the response of BLs to APGs, to the point
of significantly altering incipient separation. Elnahhas & Johnson (2022) introduced the
angular momentum integral (AMI) equation as an exact relationship between the Reynolds
shear stress and the enhancement of BL skin friction relative to a baseline laminar
BL. Thus, the AMI equation effectively accomplishes for BLs what the FIK equation
(Fukagata, Iwamoto & Kasagi 2002) provides for internal turbulent flows such as pipe
flow and channel flow. The analysis of Elnahhas & Johnson (2022), as well as subsequent
work related to the AMI equation, focused on flat-plate ZPG BLs to elucidate skin friction
and heat transfer during transition to turbulence (Kianfar, Elnahhas & Johnson 2023b)
and in supersonic BLs (Kianfar et al. 2023a). The natural capability of the AMI equation
to include pressure-gradient effects in turbulent BL analysis has yet to be investigated in
detail.

In this paper, the AMI equation is explored in the context of FPG and APG turbulent
BLs and applied to simulation datasets to illuminate the interaction between BL turbulence
and imposed pressure gradients. The outline of the paper is as follows. Section 2
surveys the theoretical background for the AMI equation, with particular attention to
the treatment of terms related to the pressure gradient. In particular, the AMI equation
is shown to define a modified Clauser-like parameter with a clear interpretation in
terms of skin friction modification by pressure gradients in competition with turbulent
stresses. Section 3 introduces the numerical simulation datasets that are explored in
detail in § 4. The simulations include flow past a NACA 4211 airfoil at 5◦ angle of
attack (Vinuesa et al. 2018) and flow over a Gaussian bump (Balin & Jansen 2021).
These datasets are explored individually using the AMI equation before investigating
FPG and APG effects separately, including history effects. Conclusions are drawn
in § 5.
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Integral analysis of turbulent BLs with pressure gradient

2. Derivation and interpretation of the AMI equation

In this section, the derivation of the AMI equation is reviewed and adapted into a
form most suitable for investigating how fully turbulent BLs react to non-zero pressure
gradients. The derivation of the AMI equation is based on wall-normal integration of the
transport equation for mean streamwise velocity defect, U − ū. In the present notation,
uppercase symbols are used to denote the free-stream flow solution in the absence of the
BL and lowercase symbols are used for the physical flow solution. Allowing for turbulence
within the BL, the overbar denotes a Reynolds average. The velocity defect represents the
local deficit of momentum (or mass flux) within the BL. It decays rapidly to zero outside
the BL and thus provides an integrable quantity in infinite and semi-infinite domains.

The scope of this paper is focused on (statistically) two-dimensional flows, although the
concepts and procedures may be readily extended to general three-dimensional flows. The
free-stream flow is described by the incompressible Euler equations:

∂U
∂x

+ ∂V
∂y

= 0, (2.1)

∂U
∂t

+ U
∂U
∂x

+ V
∂U
∂y

= −dP
dx

. (2.2)

In this study, x and y denote the streamwise (wall-tangential) and wall-normal
directions, respectively. For simplicity, the geometrical curvature effects (due to coordinate
transformation) are not included in this derivation, and are generally negligible in the
analysis performed in this paper (see Appendix A). The variables U(x, y) and V(x, y)
denote the streamwise and wall-normal velocity in the absence of the BL, with (kinematic)
pressure P(x, y). In the presence of free-stream pressure gradients, the free-stream velocity
may vary with wall-normal distance, though the variation across the thickness of an
(attached) BL is typically small.

The flow given by U does not satisfy the no-slip boundary condition (BC). Instead, it
may be considered either that the flow is inviscid (such that one fewer BC is needed),
or that the no-slip BC is replaced by a different BC which does not introduce non-zero
vorticity, so that Ω = ∂V/∂x − ∂U/∂y = 0 everywhere in the domain. This irrotational
assumption may be relaxed if desired. Additionally, it is assumed that there is no turbulence
(zero Reynolds stress) in the absence of the BL.

Within the BL, the Reynolds-averaged Navier–Stokes (RANS) equations describe the
flow:

∂ ū
∂x

+ ∂v̄

∂y
= 0, (2.3)

∂ ū
∂t

+ ū
∂ ū
∂x

+ v̄
∂ ū
∂y

= −∂ p̄
∂x

+ ν

(
∂2ū
∂x2 + ∂2ū

∂y2

)
− ∂u′u′

∂x
− ∂u′v′

∂y
. (2.4)

In these equations, ν denotes the fluid kinematic viscosity, ū(x, y) and v̄(x, y) represent
the mean streamwise and wall-normal velocities, respectively, and p̄ is the mean pressure
(divided by density).

Subtracting the RANS x-momentum equation, (2.4), from that of the free-stream flow,
(2.2), and adding (U − ū) times (2.3), a general transport equation is derived for the
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streamwise velocity defect:

∂[(U − ū)ū]
∂x

+ ∂[(U − ū)v̄]
∂y

+ (U − ū)
∂U
∂x

+ ν
∂2ū
∂y2 − ∂u′v′

∂y
+ IM = 0, (2.5)

where the terms neglected by the (steady) BL approximation are collected in as single
term:

IM = ∂(U − ū)

∂t
+ (V − v̄)

∂U
∂y

+ ∂(P − p̄)

∂x
+ ν

∂2ū
∂x2 − ∂u′u′

∂x
. (2.6)

The unsteady term is neglected for the statistically stationary flows considered in
this paper, but its inclusion in (2.5) would straightforwardly extend this formulation
to non-stationary flows provided that a suitable time-dependent Reynolds-averaging
procedure can be defined. Integration of (2.5) in the wall-normal direction,

∫∞
0 (·) dy,

yields the well-known von Kármán momentum integral equation (von Kármán 1921).
An interesting implication of (2.5) is that the free-stream pressure gradient, which
manifests as the free-stream acceleration ∂U/∂x, provides a source or sink of defect
velocity linearly proportional to the defect velocity itself. This means that the influence of
the free-stream pressure gradient on the BL is sensitive to the shape of the mean velocity
profile (which can be dramatically influenced by its upstream history).

The AMI equation is formed by multiplying (2.5) by ( y − �) before integration,∫∞
0 (·) dy. The AMI equation thus represents an integral budget for the moment of

momentum deficit about the wall-normal location y = �(x). Normalizing the result by
�U2

io, the AMI equation may be written as

Cf

2
= 1

Re�

+ 1
�

∫ ∞

0

−u′v′

U2
io

dy + δ�
1

Uio

dUio

dx
+
(

1
U2

io

d(U2
ioδ

�
2)

dx
+ δ�

2 − δ2

�

d�

dx
+ δ2,v

�

)
+ I�.

(2.7)
On the left-hand side of the AMI equation, (2.7), the skin friction coefficient is defined

as

Cf ≡ τw

1
2
ρU2

io

, (2.8)

where τw is the wall shear stress and ρ is the fluid’s density. The normalizing velocity,
Uio(x) = U(x, 0), is the irrotational velocity solution, evaluated at the wall (y = 0). This
choice offers robustness in calculating the AMI equation’s budget compared with using
the edge velocity, which relies on determining the BL edge in flows with non-zero
pressure gradient. Generally, the inviscid velocity may be determined using a potential
flow solution. However, in our work, we employ the local reconstruction method proposed
by Griffin, Fu & Moin (2021) to estimate Uio from our numerical datasets described in
§ 3. This technique enables us to approximate an irrotational velocity profile U( y) at each
streamwise location from the simulation data under the assumption that the BL’s mean
wall-normal velocity and pressure are equivalent to the irrotational solution.

On the right-hand side of (2.7), the Reynolds number is defined as Re� = Uio�/ν. The
angular displacement and momentum thicknesses are defined, respectively, as

δ�
1 ≡

∫ ∞

0

(
1 − y

�

)(U − ū
Uio

)
dy and δ�

2 ≡
∫ ∞

0

(
1 − y

�

) ū
Uio

(
U − ū

Uio

)
dy,

(2.9a,b)
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x

�(x)�(x)

y
(a) (b)

Figure 1. Applying torque with respect to axis �(x) (black solid line) to the base blue velocity profile: (a) an
anticlockwise torque (e.g. turbulent enhancement or FPG) and (b) a clockwise torque (e.g. APG).

using the irrotational wall velocity which is slightly different from their definition by
Elnahhas & Johnson (2022). Similarly, we define the wall-normal momentum thickness
as

δ2,v ≡
∫ ∞

0

v̄

Uio

(
U − ū

Uio

)
dy, (2.10)

which represents the net wall-normal transport of the streamwise momentum deficit.
As argued by Elnahhas & Johnson (2022), the notion of the first moment of momentum

can be envisioned as the angular momentum of a flow, where the streamwise coordinate x is
treated as a time-like variable. The reference length scale for the moment generally grows
with the BL downstream, i.e. � = �(x). Therefore, (2.7) acts as the integral conservation
equation for the angular momentum of the BL’s mean velocity profile, wherein the
individual terms in the equation may be interpreted as torques redistributing momentum
in the wall-normal direction and causing a change in the BL’s angular momentum
(represented by the d/dx terms). In the following two paragraphs, the meaning of each
term is summarized. A more detailed discussion of each term in (2.7) is provided by
Elnahhas & Johnson (2022) and Kianfar et al. (2023a).

The skin friction coefficient and the first term on the right-hand side of (2.7) stem from
the first-moment integral of the viscous force, ν∂2ū/∂y2. Typically, � is chosen as the
centre of action of viscous force in a reference laminar BL flow that has the same Reynolds
number, Re�. Consequently, 1/Re� precisely represents the laminar friction experienced
by a BL at the reference Reynolds number. The rationale behind this choice is to allow
for a straightforward observation of how turbulence and free-stream pressure gradients
increase (or decrease) the skin friction relative to the reference laminar flow, as illustrated
in figure 1.

The other terms on the right-hand side of the AMI equation, (2.7), thus represent
augmentation or attenuation of the skin friction coefficient relative to the baseline laminar
BL and may be summarized as follows. The second term on the right-hand side of
(2.7) is the turbulent torque. It represents how the turbulence (the Reynolds shear stress)
redistributes mean momentum in the BL as an anticlockwise torque and reshapes the
velocity profile so as to increase the skin friction, as illustrated in figure 1(a). The third
term on the right-hand side of (2.7) encapsulates the effect of free-stream pressure gradient
on the skin friction. In the case of an APG, this flow phenomenon acts as a clockwise
torque with respect to �, thereby reducing Cf (figure 1b). The AMI equation thus quantifies
the competition between turbulence and an APG in terms of how they alter the skin
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friction of an otherwise laminar ZPG BL. Alternatively, a FPG would be represented as an
anticlockwise torque (figure 1a).

The fourth term on the right-hand side of the AMI equation (grouped by parentheses)
arises from the integration of the first moment of the collective streamwise and mean
wall-normal fluxes. This term, known as the mean flux (or total mean flux), encompasses
two distinct mechanisms: (1) the streamwise growth rate of the angular momentum
(relative to the laminar BL solution) and (2) the redistribution of angular momentum via
the mean wall-normal velocity. The final term, I�, arises from the terms neglected in
applying the BL approximation (2.6), as is typically very small for attached BLs.

The baseline laminar flow could be chosen as a Blasius or Falkner–Skan solution. Given
the desired interpretation of the AMI equation, it is advantageous to use the Blasius ZPG
laminar BL as the reference with which to define �. This provides a clearer interpretation
of the explicit pressure-gradient term in the AMI equation by allowing it to encapsulate
all pressure-gradient effects. A further choice is needed, because a particular Reynolds
number definition must be chosen to match a turbulent BL to a reference laminar BL.
For example, one may choose to analyse a turbulent BL relative to a Blasius BL at the
same Reδ1 (or alternatively Reδ2). Such a choice results in � ∼ δ1 (or � ∼ δ2), where the
coefficient of proportionality is determined using the self-similar laminar solution:

Cf

2
= 1

Re�

= 0.571
Reδ1

= 0.221
Reδ2

, (2.11)

which leads to � = 1.75δ1 (or � = 4.54δ2). Note that the choice of � ∼ δ1 or � ∼ δ2
controls the interpretation of the AMI equation by defining the similarity Reynolds number
for comparing the BL with its baseline laminar case. More discussion of this choice
is given in Elnahhas & Johnson (2022). The availability of a suitable baseline laminar
solution is important to enable the analysis, but may not be a significant limitation in
practice. For example, self-similar or locally self-similar solutions may be found for
high-speed BLs (Williams et al. 2021; Kianfar et al. 2023a).

Taking the limit � → ∞ in the AMI equation, (2.7), the standard momentum integral
equation is obtained:

Cf

2
= δ1

Uio

dUio

dx
+ 1

U2
io

d(U2
ioδ2)

dx
, (2.12)

where the displacement and momentum thicknesses are defined, respectively, as

δ1 ≡
∫ ∞

0

(
U − ū

Uio

)
dy and δ2 ≡

∫ ∞

0

ū
Uio

(
U − ū

Uio

)
dy. (2.13a,b)

The non-equilibrium Clauser parameter,

β =
− δ1

Uio

dUio

dx
1
2 Cf

= δ1

τw

dP
dx

, (2.14)

is the ratio of the pressure gradient and skin friction terms in the momentum integral
equation, which does not explicitly include the turbulent stress. The AMI equation, by
contrast, contains an explicit term that quantifies the impact of the Reynolds shear stress
on the skin friction. In doing so, the AMI equation incorporates the pressure gradient
as a torque, capturing how it alters the distribution of velocity defect within the BL in
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competition or cooperation with turbulence (figure 1). This line of thought gives rise to
an alternative dimensionless parameter for quantifying the relative strength of an APG,
defined (analogously to the Clauser parameter) as the ratio of the pressure gradient and
skin friction terms in the AMI equation:

β� =
− δ�

1
Uio

dUio

dx
1
2 Cf

= δ�
1

τw

dP
dx

, (2.15)

which differs from the definition of β in this work by employing δ�
1 instead of δ1. The

interpretation of β� may be given as the fractional contribution by the free-stream pressure
gradient to the change in skin friction coefficient relative to the baseline laminar ZPG BL
at matching Re�.

The physical difference between β and β� stems from the linear dependence of the
free-stream acceleration source/sink term with respect to the mean defect velocity in
(2.5). Mathematically, this leads to a difference between the zeroth- and first-moment
integrals of the pressure gradient source/sink which manifests as a difference between the
standard displacement thickness, δ1, and a moment of displacement thickness, δ�

1. Because
β� is based on the AMI equation, it inherits the interpretative benefits of capturing the
quantitative impact of the free-stream pressure gradient on the skin friction relative to
the laminar ZPG baseline. Therefore, it is of interest to investigate how this difference
impacts our understanding of upstream history effects through its use of the first moment
of the mean velocity profile. The results in this paper are used to compare β� with β as
a measurement of the strength of pressure gradient to study the pressure-gradient history
effects on turbulent statistics.

3. Datasets and numerical techniques

We consider several high-fidelity numerical simulations of incompressible turbulent BLs
with non-zero pressure gradients including BLs over flat plates, wing airfoils and a
two-dimensional Gaussian bump. Each simulation provides a numerical solution for the
incompressible Navier–Stokes equation:

∂ui

∂t
+ uj

∂ui

∂xj
= − ∂p

∂xi
+ ν∇2ui − ∂τij

∂xj
,

∂ui

∂xj
= 0, (3.1)

where a residual stress tensor model, τij, is used in the case of LES. The LES cases have
grid resolutions only slightly coarser than those of DNS, so the effect of the stress tensor
model is minimal. The flow configuration of each turbulent dataset is detailed in table 1.
As discussed in § 2, the AMI equation, (2.7), is used for these BL flows in
a tangential–normal coordination system, neglecting the explicit curvature effects
(Appendix A). Note that the smallness of explicit curvature terms in the AMI equation
does not necessarily imply that curvature plays no role in the BL physics (e.g. due to
implicit changes in the other terms in the AMI equation). Therefore, x and y denote
the wall-tangential and wall-normal directions, respectively, while ξ and η represent the
free-stream and normal-to-free-stream flow directions (x and y axes of the Cartesian
coordinate system).

3.1. Wing dataset
The datasets for the wing simulations correspond to the suction side of the NACA
4412 airfoil at an angle of attack of 5◦ (Vinuesa et al. 2018; Atzori et al. 2021, 2023).
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Label ID Colour Data type Reynolds number Re Clauser parameter β

Wing WRLES Rec = 400 000 0–40.78
Bump DNS ReL = 1 000 000 0–38.91
β1 WRLES Reδo

1
= 450 0–1.18

m13 WRLES Reδo
1

= 450 0–1.7
β2 WRLES Reδo

1
= 450 0–2.31

m16 WRLES Reδo
1

= 450 0–2.95
m18 WRLES Reδo

1
= 450 0–4.90

ZPG DNS Reδo
1

= 454 ∼0

Table 1. Turbulent BL datasets. Three types of BLs are examined: flow over an airfoil, a Gaussian bump and a
flat plate. For flat plates, including ZPG, the reference Reynolds number is computed based on the displacement
thickness at the inlet, δo

1 . The reported values of β are associated with the APG region Reδ1 ≤ 6500.

Referred to as the Wing, the Reynolds number based on the chord length, c, is Rec =
U∞c/ν = 400 000, where U∞ denotes the free-stream velocity. After the BL is tripped at
10 % chord, the turbulent BL experiences deceleration in the streamwise direction (APG)
over the domain of interest in this paper, resulting in Clauser parameter values in the
range 0 < β < 40 along the chord length up to 95 % chord. Apart from the reference
Wing case, two other BLs under the same flow configuration are studied, but with control
schemes employing surface suction (Wing-suction) and blowing (Wing-blowing). The
control surface extends from ξ/c = 0.25 to ξ/c = 0.855, with a constant control intensity
set at 0.1 % of U∞. The AMI analyses of the flow control studies are shown in Appendix B.

The wing simulations conducted in this study utilize WRLES on the open-source
Nek5000 solver, which uses the spectral-element method developed by Patera (1984). The
LES filtering technique follows the approximate deconvolution relaxation term (ADM-RT)
subgrid model developed by Schlatter, Stolz & Kleiser (2004). Boundary conditions at
the inlet, upper and lower sides are provided by a RANS simulation, while a local-stress
outflow condition is utilized for the rear side of the domain (Dong, Karniadakis &
Chryssostomidis 2014). The mesh is generated based on the wall-shear stress from RANS
simulations to ensure a resolution of approximately (�ξ+, �η+, �z+) < (18, 0.64, 11.9)

in the turbulent region of the domain, where superscript (+) denotes wall units
(normalized by δν = ν/uτ , where uτ = √

τw/ρ is the friction velocity) and z represents the
spanwise direction. While we refer to this as a WRLES due to the use of a subgrid-scale
stress model, the grid resolution is only slightly coarser than typical DNS resolutions.
Vinuesa et al. (2018) reported that averages were taken over approximately 10 eddy
turnover times in the original simulation. A detailed analysis of statistical convergence
is given in an appendix of Atzori et al. (2020). The data used in this paper include
additional averaging time, about twice a long as reported in the above references. For
further information regarding the numerical set-up, the reader is referred to Vinuesa et al.
(2018) and Atzori et al. (2020, 2021, 2023).

3.2. Bump dataset
The Bump dataset analysed in this paper comes from a DNS of a turbulent BL
over a two-dimensional Gaussian bump performed by Balin & Jansen (2021). The
surface of the bump is defined by the equation η(ξ) = h exp(−(ξ/ξ0)

2) in the Cartesian
coordinate system. This geometry, illustrated in figure 4(a), is designed to replicate

1002 A29-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
54

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1154


Integral analysis of turbulent BLs with pressure gradient

the three-dimensional bump flow (Slotnick 2019) experimentally studied by Williams
et al. (2020). In the bump’s surface relation, h = 0.085L and ξ0 = 0.195L are length
parameters describing the bump’s dimensions, with L = 0.9144 m representing the length
of the square cross-section of the wind tunnel used in the experimental set-up. The
flow is characterized by a reference Reynolds number ReL = U∞L/ν = 1 000 000, where
the dimensional free-stream velocity U∞ = 16.4 m s−1, matching standard sea level
conditions, resulting in an incompressible flow with Mach number M = 0.045. This
flow experiences an alternating pressure gradient due to surface curvature, resulting in
a weak APG region upstream, followed by a strong FPG upstream of the bump’s peak at
ξ/L = 0. Downstream of the bump’s peak, a severe APG induces incipient flow separation
(β → ∞).

The DNS was performed using the stabilized finite-element method by applying trilinear
hexahedral elements and second-order-accurate, implicit time integration following
Whiting (1999) and Jansen, Whiting & Hulbert (2000). A no-slip, no-penetration BC
is imposed at the bump’s surface, while the top BC (at η/L = 0.5) was modelled as an
inviscid wall offset by the RANS-predicted displacement thickness described above with
zero transpiration (zero velocity component normal to the surface) and zero traction. The
inflow is generated by a synthetic turbulence generator (Shur et al. 2014). Finally, for the
outflow weak enforcement of zero pressure was applied along with zero traction. The
computational grid used for DNS has a typical spacing of (�ξ+, �η+, �z+) < (15, 10, 8)

with the minimum �η+ = 0.1 near the surface, in wall units. The reader is referred to
Balin & Jansen (2021) for more information about the numerical set-up. The primary
concern of the simulation was of the BL flow prior to incipient separation, so the present
analysis of the resulting dataset is restricted to this region of the flow. As was the case
for the discussion in Balin & Jansen (2021), no analysis is made in this paper of incipient
separation or other downstream aspects of the flow.

3.3. Flat-plate dataset
For comparison purposes, we also investigate a series of turbulent BLs developing over
a flat plate. These simulations were conducted using WRLES, employing the ADM-RT
subgrid model, similar to the approach used for the airfoil simulations. The simulations
were executed using the SIMSON code, a pseudo-spectral-based solver developed by
Chevalier et al. (2007). Specifically, we examine data from the ZPG case simulated by
Eitel-Amor, Örlü & Schlatter (2014), as well as APG cases simulated by Bobke, Örlü &
Schlatter (2016) and Bobke et al. (2017), both with similar numerical set-up that results in
spatial resolution (�x+, �y+, �z+) = (20, 0.2 − 30, 10) in wall units. For the flat plates
with APG, the pressure gradient was imposed through the variation of the free-stream
velocity at the top of the numerical domain, following the near-equilibrium definition by
Townsend (1976). The wall-tangential and wall-normal coordinates are aligned with the
Cartesian coordinate system in these simulations, so no mapping is required.

3.4. Numerical techniques for AMI analysis
Because the AMI analysis is applied in a curvilinear coordinate system following the
surface in both the Wing and Bump flows, an appropriate tensor rotation is employed to
map the flow statistics from the Cartesian frame of reference to local orthogonal directions.
Additionally, as detailed in § 2, we utilize the methodology developed by Griffin et al.
(2021) to locally reconstruct an inviscid velocity at the wall, Uio(x), for each streamwise
position and predict the location of the BL edge based on δ99. In the Bump case, which has
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Figure 2. Example calculations of the locally reconstructed inviscid velocity, U, along the wall-normal
direction for (a) Wing and (b) Bump datasets. The solid lines represent the mean streamwise velocity from the
simulation and the dashed lines show the inviscid velocity profiles reconstructed using the method of Griffin
et al. (2021). Both velocity profiles are normalized by the free-stream velocity, U∞. The solid black lines and
symbols denote the location of (normalized) δ99.

the strongest curvature of the cases considered, the surface-normal rays (in the y direction)
were examined at each streamwise location, confirming they intersect neither within nor
near the BL.

Figures 2(a) and 2(b) illustrate the reconstructed approximation to the irrotational
velocity, U, as dashed lines alongside the mean velocity profiles, ū normalized by U∞, at
three distinct streamwise locations for Wing and Bump, respectively. As expected, there is
a remarkable agreement between U and ū profiles within the outer flow, marked beyond the
black symbols that indicate the prediction of δ99. This confirms that there is significantly
non-uniform velocity in the region of the flow which satisfies the Bernoulli equation. For
example, the three streamwise locations in the Bump flow are associated with the region
under strong FPG ξ/L = −0.12, strong APG ξ/L = 0.15 and very close to the separation
point ξ/L = 0.22, and even near the separation point, the local reconstruction method of U
and δ99 is quite reasonable. It is important to note that the trends observed in the computed
Uio and predicted BL edge velocity (Ue) are similar. The reconstructed irrotational velocity
at the wall, Uio, is used throughout the rest of the paper because it was more effective at
minimizing the (normalized) residual error in the AMI equation,

ε(x) = |Cf − 2RHS|
Cf

, (3.2)

for both the Wing and Bump cases. Here, RHS represents the sum of all terms on the
right-hand side of (2.7). Appendix A contains more specific discussion of residual errors.
Note that the normalized residual error defined in (3.2) includes multiple sources of
error, including both statistical convergence errors and error related to neglecting surface
curvature. Errors due to neglecting terms via the standard BL assumptions, I� in (2.7), are
not included in the residual error.

To compute the streamwise derivatives of flow statistics required for closing the AMI
budget, we utilize the second-order central finite-difference scheme, excluding the end
grid points. However, it is worth noting that computing these derivatives can amplify
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natural turbulent noise, which tends to increase ε (Elnahhas & Johnson 2022; Kianfar
et al. 2023a). Furthermore, for the numerical wall-normal integration in the AMI analysis,
we employ the midpoint scheme.

4. Angular momentum integral analysis

This section includes the results and discussion pertaining to the AMI-based analysis of the
DNS and WRLES datasets. First, the Wing and Bump datasets are independently analysed
and discussed in §§ 4.1 and 4.2, respectively. Then, those datasets are compared with the
flat-plate BLs in § 4.4, with particular attention to the impact of upstream history on the
BL profiles and skin friction.

4.1. Flow over airfoil
In this section, we employ the AMI equation to analyse a turbulent BL over the suction
side of a NACA 4412 airfoil at an angle of attack of 5◦, referred to as the Wing case in
table 1. The objective is to quantitatively study the interaction of turbulence and the APG
in terms of ‘torques’ which compete to reshape the mean velocity profile and alter the skin
friction relative to a baseline laminar solution.

Figure 3 presents the non-negligible terms of the AMI equation, (2.7), for the Wing
case. The budget includes the four major terms in the AMI equation, namely laminar
friction, turbulent torque, pressure gradient and mean flux. Following previous work
(Elnahhas & Johnson 2022; Kianfar et al. 2023a,b), the momentum thickness is used to
define the similarity Reynolds number, Re�, where � = 4.54δ2, a value derived from the
Blasius solution. The laminar friction term thus represents the skin friction coefficient of
an equivalent Blasius BL with matching momentum thickness Reynolds number, Reδ2 .
The other three terms represent how each effect (turbulent mixing, free-stream pressure
gradient, changes in mean streamwise growth) enhances or diminishes the skin friction
coefficient relative to the Blasius BL. Figure 3(a) shows the absolute contributions of
each term and figure 3(b) exhibits the relative contributions (normalized by Cf /2). The
unsteady effects and terms neglected by the BL approximation, referred to as negligible
terms, are not included here. This omission is justified by their limited contribution
to the skin friction coefficient away from separation, as shown in Appendix A. The
streamwise-averaged residual error, ε, is less than 6 %. A similar level of residual error
in the AMI equations was observed in ZPG transitional and turbulent incompressible
BLs (≈2 %) (Elnahhas & Johnson 2022; Kianfar et al. 2023b), as well as in high-speed
ZPG turbulent BLs (≈5 %) (Kianfar et al. 2023a). In all these cases, the residual error
exhibits an oscillatory behaviour and the primary source of error was the computation of
streamwise derivatives, ∂(·)/∂x, which amplifies inherent statistical noise due to averaging
over a finite amount of data. That is, the residual error could be further reduced with
additional averaging in time. In addition, the small residual error validates our assumption
on neglecting the geometrical curvature effects.

Compared with ZPG turbulent BLs, APG turbulent BLs exhibit a faster reduction
of skin friction coefficient as the flow develops downstream, shown with a black line
in figure 3(a). The BL is fully turbulent and its skin friction coefficient significantly
exceeds that of the equivalent laminar BL. In fact the relative contribution of the laminar
friction to the AMI equation is small throughout the domain of interest. In contrast, the
turbulence-induced enhancement of surface friction by the turbulent torque in the AMI
equation is substantial. Consistent with previous ZPG results (Elnahhas & Johnson 2022),
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Figure 3. The AMI budget with respect to the chord length, ξ/c, for the Wing case (table 1): (a) the absolute
budget and (b) the relative budget normalized by Cf /2. In (b), for scaling purposes, the black line denotes
100 % contribution to Cf /2. In (a,b) the faded black dotted line represents the residual of the AMI equation.

its relative contribution to the skin friction is near 100 % within the range of 0.2 < ξ/c <

0.4, where β < 2 (weak-to-moderate pressure gradient). Interestingly, the streamwise
variation of the turbulent torque is relatively small, varying by approximately 13 % from
ξ/c = 0.2 to ξ/c = 0.9, even under strong downstream APG.

As expected, the pressure-gradient torque is negative, acting to decrease the skin
friction, and strengthens rapidly as the flow approaches the trailing edge. The normalized
contribution of the pressure gradient shown in figure 3(b) exhibits a range from
approximately 0 % upstream to more than −600 % (β� = 6), highlighting the profound
impact of pressure gradient on the transport of momentum deficit and, consequently,
wall-shear stress. Note that the relative contribution of the pressure gradient to the
attenuation of the skin friction coefficient is equal to the AMI-based modified Clauser
parameter, β� in (2.15). As the non-equilibrium caused by pressure gradient ramps up
downstream, the mean flux term in the AMI equation opposes the pressure-gradient
effects. The friction enhancement by the mean flux becomes significant for β > 2, where
the impact of pressure gradient is two times greater than that of wall shear stress. While
the mean flux negatively contributes to Cf /2 with little downstream variation in turbulent
ZPG BLs (Elnahhas & Johnson 2022; Kianfar et al. 2023b), here in APG BLs, it increases
and partially offsets the growing negative contribution of pressure gradient.

In addition to the baseline Wing case studied in detail here, two flow control cases are
studied in Appendix B applying blowing and suction at the airfoil surface. The further
application of the AMI equation to analyse the effectiveness of flow control schemes is
deferred to future studies.
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4.2. Flow over Gaussian bump
This section examines an incompressible fully turbulent BL over a two-dimensional
Gaussian bump, referred to as Bump flow in table 1 (Balin & Jansen 2021). This presents a
more complex scenario due to the alternate APG and FPG induced by the bump’s surface
curvature. Specifically, the BL experiences a significant FPG from ξ/L = −0.29 to the
peak of the bump at ξ/L = 0, followed by an extreme APG downstream, leading to BL
separation where τw ≤ 0. The Bump flow thus provides an interesting comparison with
and contrast to the Wing flow analysed in § 4.1.

Within the streamwise range of interest in this paper, the averaged residual error (ε) is
maintained at ε < 10 % (equation (3.2)). Downstream of the bump’s peak, characterized
by an APG (ξ/L ≤ 0.18), the averaged ε further diminishes to approximately 6 %, followed
by a noticeable escalation approaching the incipient separation region (which is therefore
not analysed in this paper). There are multiple potential reasons for the observed trends in
residual error. In our experience, the level of residual error is most sensitive to averaging
time (statistical convergence). The residual error upstream of the incipient separation
is acceptable for the present analysis, but could possibly be reduced with longer time
averages, especially in this case due to the natural unsteadiness of the separation bubble.
A brief analysis of the full AMI budget and BL assumptions is reported in Appendix A.
Wei, Li & Wang (2024) investigated the role of terms neglected by the BL assumption for
the momentum integral equation, and future work can explore similar considerations for
the AMI equation for separated flows.

Figure 4 presents the main terms in the AMI equation (2.7) for the Bump flow. To aid
the interpretation of the AMI analysis, figure 4(a) illustrates the alternating APG and FPG
due to the geometry of the surface. The BL first encounters weak APG as it approaches
the bump, followed by relatively strong FPG on the upstream side of the bump. For 0 ≤
ξ/c ≤ 0.4, the BL experiences strong APG, leading to flow separation at ∼ ξ/c = 0.2
(where the black line in figure 4(b), Cf /2, becomes weakly negative). All four primary
terms in the AMI equation are shown in figure 4(b): laminar friction, turbulent torque,
pressure gradient and mean flux. As in the case of the Wing analysis, the AMI equation
is calculated relative to a laminar BL with matching Reδ2 , using � = 4.54δ2 (derived from
the Blasius solution). The contributions of unsteady effects and terms neglected by BL
approximations – referred to as negligible terms – are minimal upstream of the separation
point. Therefore, we do not exhibit these flow phenomena in the main paper, but they
are recorded in Appendix A. Figure 4(c) focuses on the turbulent torque and splits the
associated integral into contributions from different regions of the turbulent BL.

According to figure 4(b), within the FPG region on the upstream half of the bump
starting at ξ/L = −0.29, the skin friction coefficient initially increases, reaching a peak at
ξ/L = −0.14. According to the AMI budget, this enhancement is primarily attributed to
the simultaneous increase of the turbulent torque and the pressure gradient, only partially
offset by the mean flux. As the flow approaches the peak of the bump, the FPG term
decreases rapidly. Balin & Jansen (2021) presented compelling evidence that the BL
in this dataset undergoes relaminarization with onset near ξ/L = −0.15. The turbulent
torque increases through the early FPG region, reaches a maximum around ξ/L = −0.2
and decreases through the (incomplete) relaminarization region up to the top of the bump
at ξ/L = 0.

Figure 4(c) defines three partial contributions to the turbulent torque as integrals of the
Reynolds shear stress over (i) the inner layer defined as y∗ = y/δ99 < 0.1, (ii) the outer
layer defined as y+ > 50 based on local friction units and (iii) the log-law (overlap) layer

1002 A29-15

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
54

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1154


A. Kianfar and P.L. Johnson

0.2

–0.4 –0.2 0.2 0.4 0.60

–0.4 –0.2 0.2 0.4 0.60

–0.4 –0.2 0.2 0.4 0.60

0

6

4

2

0

6

Inner layer

Outer layer

Log-law region
4

2

0

–2

–4

–6

Laminar friction

Cf /2

Turbulent torque

Pressure gradient

Mean flux

Weak

APG

Strong

FPG

Strong

APG

Weak

FPG

� = 4.54δ2

ξ/L

η/L

A
M

I 
b
u
d
g
et

 (
×

1
0

3
)

T
u
rb

u
le

n
t 

to
rq

u
e 

(×
1
0

3
)

δ99

�

(a)

(b)

(c)

Figure 4. The AMI analysis for the BL over a Gaussian bump simulated by Balin & Jansen (2021): (a) the
geometry of the bump in the normalized (ξ–η) plane, (b) the AMI budget with respect to ξ/L and (c) the
contribution to turbulent torque confined within the inner layer (y/δ99 ≤ 0.1), log-law region (y/δν ≥ 30 and
y/δ99 ≤ 0.3) and outer layer (y/δν ≥ 50) with respect to ξ/L. In (a), the dotted and solid black lines represent
� and δ99, respectively. In (b), the faded black dotted line denotes the residual error in the AMI equation.
Moreover, asterisk symbols represent the three streamwise locations at which turbulent statistics are compared
in figure 5. In (c), the full turbulent torque is provided with faded colour for the sake of comparison.

defined as y+ > 30 and y∗ < 0.3 representing the region where the mean velocity profile
is approximately logarithmic with wall-normal distance for an equilibrium wall-bounded
flow. These definitions are based on Pope (2000). Note that the mean velocity profile
departs significantly from the standard logarithmic law over most of the bump’s surface
(Balin & Jansen 2021). As defined, these three layers overlap, so the sum of the turbulent
torques from each of the three is not equal to the total turbulent torque.

As is true for ZPG BLs, the outer layer is responsible for the overwhelming majority
of the turbulent skin friction enhancement. The primary reason for this is that the outer
layer encompasses the majority of the domain and the Reynolds shear stress integral in the
AMI equation is unweighted. From the AMI perspective (comparing turbulent BLs with
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equivalent laminar BLs), the fluctuations in the outer layer are more influential in the sense
that they transport momentum over larger distances in the wall-normal direction. Thus, it
is particularly noteworthy that the inner-layer contribution to the turbulent torque remains
relatively constant in the FPG region and becomes significant in the APG region upstream
of incipient separation. This corresponds to the initiation and growth of an internal layer in
the FPG region upstream of the apex as the turbulence in the outer layer decays. Then, the
retransition process initiates relatively close to the wall. These features may be seen in the
Reynolds stress profiles and visualizations in Balin & Jansen (2021). Figure 4(b) shows
that the significant decline in turbulent torque in the strong FPG region is accompanied by
a corresponding increase in the laminar friction from 10 % to about 17 % of the local skin
friction coefficient.

Just upstream of the bump’s peak, while the flow is still experiencing FPG and
relaminarization, pressure gradient and mean flux become smaller in magnitude and reach
a plateau. However, this equilibrium is disrupted immediately downstream of the peak
as the flow begins to encounter an APG. Following the upstream relaminarization, a sort
of retransition to turbulence occurs. As the strength of the APG increases, the turbulent
torque also increases leading to a short-lived rise in the skin friction coefficient. This
phenomenon is reminiscent of transition to turbulence. However, the AMI equation reveals
important differences between this APG phenomenon and the transition of a laminar BL
to a turbulent one. For example, in prior studies of transitional ZPG BLs (Elnahhas &
Johnson 2022; Kianfar et al. 2023b), the growth in the turbulent torque significantly
outpaced the growth in skin friction, with partial offset coming from the mean flux
term. Under the influence of APG, however, the mean flux does not resist the growth
in the turbulent torque. On the other hand, it significantly contributes to increasing Cf to
counteract the substantial APG.

Furthermore, examining figure 4(c), it is evident that the initial boost in turbulent
torque is not confined solely to the outer layer; the inner layer’s Reynolds shear stress
also experiences a significant increase. Notably, during the retransition, the increase in
turbulent torque of the outer layer lags the increase closer to the wall, reflecting the
growth of an internal layer in the APG region (Balin & Jansen 2021). As a result, the
outer layer does not contain the dominant share of the turbulent torque, confirming that
the skin friction enhancement through retransition is driven first by near-wall turbulence
and later by turbulence further from the surface once the internal layer penetrates into the
outer region of the BL. Thus, the AMI equation provides a quantitative assessment of the
flow physics observed by Balin & Jansen (2021) and others in terms of the skin friction
coefficient.

Interesting similarities and differences between the turbulent APG BLs in the Bump
(figure 4) and Wing (figure 3) cases may be observed. Both flows show the rapid
growth of the opposing pressure-gradient torque and the mean flux. Prior to separation,
one important difference between the two flows is that the turbulent torque increases
significantly over the APG region in the Bump case whereas it is nearly constant in the
APG region on the suction surface in the Wing case. The increase of the turbulent torque
continues and even accelerates downstream of the peak Cf , driven mostly by a faster
increase of Reynolds shear stress in the outer layer.

Despite the friction enhancements by both turbulent torque and mean flux, they prove
insufficient, as APG forces the flow to separate at approximately ξ/L = 0.2 in the Bump
case. The trends in the pressure gradient and mean flux terms from the AMI equation
reverse, but the residual error in the AMI equation becomes too large (presumably due
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to statistical convergence errors) to justify further interpretation of the results without
further time averaging (see Appendix A). It is essential to note that the AMI equation,
obtained solely from conservation equations, does not depend on the validity of the BL
approximation. Therefore, accurate results from AMI can be expected with sufficient
(time) averaging, even for separated flows. In proximity of the separated flow region, where
Cf ≤ 0, statistics are noisy due to an unsteady separation bubble (e.g. characterized by
several frequencies (Simpson 1989; Na & Moin 1998)), and the BL approximations are
naturally invalidated. Within that region, the amplitude of the residual error in the AMI
equation increases in magnitude, shown as a faded dotted black line in figure 4(b). Even
so, the effect of residual error remains significantly smaller than the turbulent torque and
the pressure gradient which play the dominant role for such flows. Note that, in figure 4(c),
the turbulent torque within the logarithmic region and the outer layer are omitted in the
separated flow region, because the definition of y+ is much less meaningful when τw ≈ 0.

4.3. Favourable pressure gradients: relaminarization
The relaminarization of the Bump dataset was described in Balin & Jansen (2021) and
in a similar simulation was analysed by Uzun & Malik (2022). Here, we revisit and
expound on their insights in connection with the AMI equation, mainly the behaviour
of the turbulent torque (integral of the Reynolds shear stress) through the FPG region.
The absolute and outer-scaled profiles of Reynolds shear stress and turbulent kinetic
energy, k = 1

2(u′u′ + v′v′ + w′w′), are presented in figure 5. These profiles are plotted
at three distinct streamwise locations: ξ/L = −0.2, ξ/L = −0.14 and ξ/L = −0.01; these
locations are depicted in figure 4 with asterisk symbols. As shown in figure 5(a), −u′v′
has the largest values at ξ/L = −0.2, where the turbulent torque peaks. However, as the
FPG acts on the BL, the peak Reynolds shear stress is shifted towards the surface. This is
consistent with the observations of FPG trends in figure 4(c) and with the growth of an
internal layer initiated at the start of the strong FPG region (Balin & Jansen 2021).

The turbulent torque in the AMI equation is normalized by Uio, so figure 5(b) represents
the integrand of the turbulent torque. As such it represents how the turbulent enhancement
of skin friction coefficient (relative to the baseline laminar case) is distributed in the
wall-normal direction. In particular, it shows how the contribution of the Reynolds shear
stress to the skin friction coefficient changes through the FPG region, decreasing most
severely in the outer region. The fact that the outer layer accounts for the large majority
of turbulent torque skin friction enhancement in the FPG region (figure 4) helps explain
the significant drop in the overall turbulent torque despite the fact that the Reynolds shear
stress in the inner layer remains relatively constant in an absolute sense (figure 5a).

The Reynolds shear stress responsible for skin friction enhancement in the AMI
equation requires (correlated) fluctuations in both streamwise and wall-normal velocities.
The streamwise kinetic energy is produced/sustained directly proportional to the produced
mean shear and the existing Reynolds shear stress. The wall-normal kinetic energy,
however, relies mostly on pressure redistribution for sustenance. Interestingly, the peak
turbulent kinetic energy shown in figure 5(c) increases through the FPG region, reaching
a maximum near the bump’s peak where the turbulent torque is minimum. This peak
occurs in the buffer layer and is almost entirely due to the streamwise component (shown
as a dashed line in figure 5). Kinetic energy further from the surface decreases, however.
The wall-normal and spanwise kinetic energy components uniformly decrease through the
FPG region (shown as a dotted line in figure 5). When normalized by Uio (figure 5d), the
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Figure 5. Reynolds shear stress and turbulent kinetic energy profiles in the bump flow with respect to y+:
absolute (a,c) and outer-scaled (normalized by U2

io) (b,d). In (c,d), the dashed and dotted lines are associated
with u′u′/2 and (v′v′ + w′w′)/2, respectively. The streamwise location for each of the profiles is indicated by
asterisks with corresponding colour in figure 4.

kinetic energy decreases through the FPG region, though not as severely as the Reynolds
shear stress (figure 5b). This shows that the mean flow acceleration outpaces the growth in
streamwise kinetic energy, while the other two components decay.

The following picture emerges (see also Uzun & Malik 2022). As the mean shear
moves towards the surface under the action of the FPG, the production of the streamwise
component of kinetic energy occurs more in the buffer layer, where the wall-blocking
effect strongly suppresses the pressure redistribution of kinetic energy to the wall-normal
component and the turbulence is predominantly single-component. Therefore the outer
layer relaminarizes while the inner layer actually gains kinetic energy due to the increasing
free-stream velocity (increasing total shear). Overall, the shifting of kinetic energy towards
the surface affects a deactivation of turbulence or frozen turbulence as described by
Narasimha & Sreenivasan (1973). That is, thinking in terms of integrals of the Reynolds
stress components across the BL, the turbulence becomes one-dimensional so that the
existing streamwise kinetic energy affects little momentum transport and the turbulent
enhancement of skin friction.

The preceding two paragraphs largely summarize and synthesize insights from Balin &
Jansen (2021) and Uzun & Malik (2022). What the AMI equation adds to this picture is an
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exact quantification of how the suppression of Reynolds stresses impacts the skin friction
coefficient. The turbulent torque is an unweighted integral of the Reynolds shear stress
across the BL and the outer layer encompassing a significant majority of the domain of
integration experiences a severe attenuation of Reynolds shear stress. The Reynolds shear
stress in the inner layer makes up a small portion of the turbulent torque at the beginning
of the FPG region (as is typical of BLs in near-ZPG conditions). Therefore, even though
the Reynolds shear stress maintains a near-constant magnitude in the near-wall region, the
overall turbulent torque decreases dramatically, especially through relaminarization. The
RANS models typically over-predict the skin friction coefficient in relaminarizing BLs and
the AMI analysis of RANS results could help evaluate the relative importance of model
errors related to RANS predictions of Reynolds stress profiles through the FPG region.

4.4. Adverse pressure gradient: AMI budget
Next, the focus turns to the effect of APG on turbulent BLs. In particular, it is fruitful to
compare and contrast the AMI budget and statistics of the APG region of the Wing and
Bump cases with a set of flat plates that experience weak-to-moderate APG, as detailed
in the dataset provided in table 1. In the APG region, the reference Blasius BL is set
based on matching the Reynolds number based on the displacement thickness, Reδ1 ,
by setting � = 1.75δ1 based on (2.11). The choice of the Blasius BL allows for clean
isolation of pressure-gradient effects in a single term of the AMI equation, in contrast
to choosing a Falkner–Skan BL with some APG effects baked into the laminar skin
friction. The displacement thickness is selected for the AMI length scale for APG analysis,
� ∼ δ1, because of its significance in the pressure-gradient term in the momentum integral
equation and the definition of non-equilibrium Clauser parameter, (2.12) and (2.14).

Based on the available data from the Wing and Bump datasets, the current investigation
shows results for streamwise positions corresponding to 1400 ≤ Reδ1 ≤ 6500, where
Reδ1 = Uioδ1/ν, and to regions where 0 ≤ β < 40 and 0 ≤ β� < 20. For the Bump
dataset, it is useful to relate this range of Reδ1 to a few key landmarks. First, the apex of the
bump occurs at ξ/L = 0.00 where Reδ1 ≈ 1360. The small local maximum in skin friction
caused by retransition occurs at ξ/L ≈ 0.05 where Reδ1 ≈ 1850. The analysis by Balin &
Jansen (2021) includes up to ξ/L = 0.1 where Reδ1 ≈ 3300. Here we consider up to ξ/L ≈
0.145 (Reδ1 = 6500). We end our analysis upstream of incipient separation (ξ/L ≈ 0.19,
Reδ1 ≈ 11 000). The detailed physics of retransition can be sensitive to grid resolution
(Shur et al. 2021), given the role of smaller-scale flow structures in re-establishing a fully
turbulent BL. Our analysis based on the AMI equation does not include statistics of higher
order than the wall-normal integral of the Reynolds shear stress. It is instructive to explore
the physical response of turbulent APG BLs to different upstream histories using to the
AMI equation, even if the quantitative details of the retransition history in the Bump
simulation could be sensitive to grid resolution.

The primary components of the AMI equation are illustrated in figure 6 for each dataset
using the associated colours given in table 1. Notably, the laminar friction in figure 6(a) is
the same across all cases due to the choice of � based on the Blasius solution at a matched
Reδ1 . This gives a unified baseline laminar BL with which all APG turbulent BL datasets
are compared in the AMI analysis. As may be expected, the magnitude of the laminar skin
friction is fairly small compared with the other terms in the AMI equation.

In contrast, the turbulent torque is a dominant contribution to the skin friction
throughout the APG region (figure 6b). For each of the flat plates, the streamwise variation
of the turbulent torque is quite limited, with the highest variation at only 8 %, associated
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Figure 7. The Clauser parameter with respect to Reδ1 (a) based on δ1 (the classic definition) and (b) based on
δ�

1 obtained from the AMI analysis. The black dots denote the matching locations at which turbulent statistics
are compared according to table 2.

with case m18. This is not surprising, given that the BLs in these cases experience
relatively constant values of the Clauser parameter. More notably, the turbulent torques
of the different flat-plate cases largely collapse on top of each other. For instance, the
difference in the turbulent torque between cases β1 and m18 never exceeds 7 %, despite
rather significant differences in the Clauser parameter (table 1). Meanwhile, the turbulent
torque for the Wing BL also exhibits a low amount of streamwise variation, only 13 %
over the investigated region, despite the Clauser parameter ranging from β ≈ 0 to β ≈ 40.
The turbulent torque, however, shows more variation in the Bump case. As the effects
of relaminarization are reversed, the early APG region, the turbulent torque experiences
a substantial increase of about 63 % in the range 1400 ≤ Reδ1 < 2000. A similar rapid
growth of the turbulent torque occurs during transition to turbulence (Kianfar et al. 2023b).
Following this retransition in the Bump case, the turbulent torque changes relatively slowly,
increasing only by 20 % from Reδ1 = 2000 to Reδ1 = 6500. Together with figure 7(a),
these observations suggest that the turbulent torque does not depend strongly on the
strength of the APG, but is more sensitive to other details of the flow configuration such
as an upstream history of relaminarization.

Figure 6(c) shows that the pressure-gradient torques in the AMI equation are generally
negative because the APG acts to attenuate the skin friction coefficient. One notable
exception in the present results is the positive torque of the APG (β > 0) in the range
1400 ≤ Reδ1 < 2500 for the Bump case. Mathematically, this reflects that δ�

1 becomes
negative in this region. Physically, it suggests that the comparison with a laminar BL
at the same Reδ1 captures the historical influence of FPG in some way. Based on our
current analysis, it is not clear whether or not this is related to relaminarization. For the
flat-plate cases, there is little streamwise variation of the pressure-gradient torque, as may
be expected. Further downstream in the Bump case, as also in the Wing case, the skin
friction attenuation of the pressure-gradient torque grows in magnitude, competing with
and eventually overtaking the magnitude of the turbulent enhancement in figure 6(b). The
battle between the turbulent torque and APG torque (see figure 1) lies at the heart of the
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dynamics leading to BL separation, and figure 6(b,c) illustrates the ability of the AMI
equation to produce a simple quantitative account of this competition.

The mean flux term in the AMI equation, figure 6(d), encapsulates the effect of mean
wall-normal velocity and streamwise BL growth on the skin friction coefficient. This term
often opposes (and partially cancels) the prevailing trends from other terms in the AMI
equation, such as the growth of the turbulent torque during transition to turbulence. In
ZPG turbulent BLs, the mean flux attenuates the skin friction by absorbing some of the
turbulent torque into an increase of the BL’s moment of momentum by increasing the
physical thickness of the BL. In the flat-plate APG cases, the mean flux term is also
negative, in opposition to the turbulent torque, which is stronger than the pressure gradient
torque. The mean flux varies little in the streamwise direction for these cases, following
the trend in the pressure-gradient and turbulent torques. In the Wing and Bump cases,
the mean flux follows the inverse trend of the pressure-gradient torque and undergoes a
sign change near the location where the pressure-gradient torque overtakes the turbulent
torque in magnitude. This signals that the mean flux transitions into a regime primarily
characterized by absorption of the pressure-gradient torque into streamwise changes in
the moment of momentum as well as a growth in the mean wall-normal velocity. Finally,
as turbulence is restored after relaminarization between Reδ1 = 1400 and Reδ1 = 2000 in
the Bump case, the mean flux generates an increasingly negative contribution to resist the
growing turbulent torque. A similar observation has been made for ZPG transitional BLs
(Elnahhas & Johnson 2022; Kianfar et al. 2023b).

Given the opposite trends of pressure gradient and mean flux in figure 6(c,d), the
summation of these two terms is explored in figure 6(e). In each BL case, this combination
reaches an approximately streamwise-constant value (for � = 1.75δ1) even for the Wing
and Bump BLs undergoing strong streamwise development forced by a strong APG. This
suggests a picture in which, in addition to the momentum transport of turbulence, the
pressure-gradient torque must also generate significant mean wall-normal velocity and
streamwise BL growth to force the BL to separate.

4.5. Adverse pressure gradients: AMI-based Clauser-like parameter
The commonly used Clauser parameter, (2.14), emerges from the momentum integral
equation, (2.12), as the ratio of the pressure-gradient term and the skin friction coefficient.
Similarly, the ratio of the pressure-gradient torque in the AMI equation, figure 6(c), and the
skin friction coefficient leads to a new AMI-based Clauser parameter, β�. This AMI-based
Clauser-like parameter physically represents the fractional attenuation of the skin friction
coefficient due to the direct effect of the APG imposed by the free stream, in competition
with the turbulent stress. Mathematically, β� provides this streamlined interpretability by
careful treatment of the linear dependence of the free-stream source/sink term on the defect
velocity in (2.5) in terms of the implied impact on how momentum is (re)distributed in the
wall-normal direction by the imposed free-stream pressure-gradient force (see figure 1).
As such, it is of interest to explore the similarities and differences relating to the use of β

and β� to characterize APG turbulent BLs.
Figure 7 illustrates the trends of β and β� over the range of Reδ1 explored in figure 6.

The overall trends of β and β� are similar; however, β spans from 0 to 40, and β� yields
smaller values in the range 0 < β� < 20 because the 1 − y/� weighting in the integral
for δ�

1 reduces it compared with δ1. Additionally, the growth rates of β and β� differ,
leading to different intersection (or matching) locations between the datasets. The most
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ID Symbol Data label Reδ1 –β� Reδ1 –β

I × Wing–β1 1886–0.34 1958–1.14
II ◦ Wing–m13 2341–0.61 2296–1.69
III � Wing–β2 2455–0.72 2421–1.96
IV � Wing–m16 2811–1.48 2732–2.71

V ♦ Wing–m18 3044–1.48 2965–3.45
VI × Bump–β1 2691–0.37 1508–0.93
VII ◦ Bump–m13 2802–0.58 1612–1.44
VIII � Bump–β2 2915–0.82 1558–1.2
IX � Bump–m16 3073–1.18 1674–1.68
X ♦ Bump–m18 3232–1.57 1638–1.54

XI1 � Wing–Bump 3712–3.05 —
XI2 � Wing–Bump 4193–4.83 —
XI3 � Wing–Bump 5063–9.25 —
XI4 � Wing–Bump 5258–10.24 —
XI5 � Wing–Bump 5585–12.48 —
XI6 � Wing–Bump 6245–18.39 6404–37.54

Table 2. Matching positions between Reδ1 –β� and Reδ1 –β for the dataset in table 1.

significant difference in behaviour between β and β� corresponds to the Bump dataset,
where the plot of β� versus Reδ1 shifts to the right compared with the plot of β. The
differences in BL characterization between β and β� observed in figure 7 raises the
question of how an analysis of history effects may be affected by taking into account
the AMI equation. That is, if two BLs have the same Reynolds number and β or β�, to
what degree do different upstream conditions alter the state of the BL at the matching
point?

The matching location has been the subject of several studies examining the pressure
gradient history effects on turbulent statistics. Specifically, Bobke et al. (2017) chose
the matching Reτ –β to examine the upstream pressure gradient history effect. Some
of the differences observed in that study can be accounted for using a Reynolds
number based on the displacement thickness rather than the local wall shear stress. To
deepen our understanding of the similarities and differences between APG BLs having
various upstream histories, including the mean streamwise velocity and Reynolds stress
components, matching locations for Reδ1–β and Reδ1–β� between the different APG
BL datasets are explored in this subsection. All such matching points are recorded
in table 2.

Furthermore, figure 8 illustrates profiles of the inner-scaled mean streamwise velocity, ū,
and Reynolds stress components, u′

iu
′
j, for matching points V (Wing–m18), X (Bump–m18)

and XI6 (Wing–Bump) based on both β� and β. These corresponding locations are
indicated in figure 7 with details provided in table 2. In all these plots, the x axis represents
the wall-normal position normalized by � = 1.75δ1, while the insets present the profiles
with respect to y+. In figure 8 the bold lines depict the profiles at matching points for
Reδ1–β�, and faded colours represent profiles from matching points for Reδ1–β.

As a representative of the comparison of the Wing and flat-plate datasets, figure 8(a,b)
shows the mean velocity and Reynolds stress profiles at matching point V using both β

(faded lines) and β� (bold lines). When matching based on Reδ1–β�, the mean velocity
profiles from the two datasets are more similar to each other than when matching Reδ1–β.
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Figure 8. The APG history effect on inner-scaled flow statistics with respect to y/� at matching Reδ1 –β�

(Reδ1 –β faded lines) for (a,b) V, 3064–1.48 (2872–3.45); (c,d) X, 3232–1.57 (1638–1.54); and (e, f ) XI6,
6245–18.51 (6404–37.54). (a,c,e) The mean velocity and (b,d,e) the Reynolds stress components, where the
solid and dotted lines represent u′u′+ and −u′v′+, respectively. The insets exhibit the same profiles versus y+.
Symbol � denotes the wall-normal position of δ99.
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The increased similarity when using Reδ1–β� is also evident in the Reynolds stress profile,
though less complete. The streamwise variance exhibits a secondary peak in the outer layer
in addition to the buffer layer peak observed near the wall. This secondary peak is strongly
influenced by the pressure gradient, and its location and magnitude vary depending on the
upstream pressure-gradient history (Bobke et al. 2017). The improved similarity between
the profiles from the two datasets when matching based on β� rather than β does suggest
that the AMI-based analysis does alter the perceived effect of upstream history, reducing
it at least in some cases. The magnitude of the peak Reynolds stress in the outer layer is
smaller for the Wing case, presumably due to the fact that it has experienced a weaker
pressure gradient upstream than in the case of the flat-plate BL (see figure 7). It is
worthwhile to note in passing that more robust similarity of Reynolds stress profiles was
observed when comparing the Wing case with flat-plate cases having weaker pressure
gradients, such as the β1 or m16 cases (not shown).

As shown in figure 8(c,d), the differences between the Bump and flat-plate profiles are
more significant, presumably due to the larger differences in upstream history stemming
from the FPG and relaminarization in the Bump case. Compared with the β� matching
location, the matching point using β occurs significantly upstream, before the streamwise
variance develops the secondary outer peak. The spanwise and wall-normal variances are
not shown for reasons related to the readability of the figure. Therefore, the use of the
AMI-based β� parameter has a larger effect on the comparison of the Bump and flat-plate
datasets, significantly reducing the perceived history effects.

The matching location of the Wing and Bump datasets, XI6, occurs further downstream
at Reδ1 = 6242 for β� and Reδ1 = 6404 for β. The associated profiles for these locations
are shown in figure 8(e, f ). There, an inner peak of the streamwise variance is no
longer observed. In the Wing–Bump comparison, there is not a significant difference
between the matching based on β or β�. Note that the AMI-based analysis of the
Wing–Bump comparison coincidentally leads to a significant region of overlap, permitting
the investigation of a case when the two BLs share the same history for some distance
along the surface.

To further investigate, figure 9 displays the skin friction coefficient at matching Reδ1–β�

(and Reδ1–β with faded colour) for the intersections (table 2) between the Wing and
flat plates and Bump and flat plates. The comparison of the Wing BL with flat plate
cases in figure 9(a) shows that both β and β� indicate relatively weak history effects,
especially in the case of β� for stronger pressure gradients. In comparison, figure 9(b)
shows significant differences in Cf for the matching locations between the Bump and flat
plate cases when matched based on β and Reδ1 , presumably due to significant differences
in upstream history. On the other hand, the history effects do not seem as severe from the
AMI-based perspective. Matching based on β� shows a significantly lower sensitivity of
Cf to differences between the Bump and flat-plate BLs.

Finally, the skin friction coefficient comparison is carried out for the Wing and Bump
cases in figure 10. Figure 7 shows that there is a single matching point in Reδ1–β space,
whereas in plots of β�, the Wing and Bump lines continuously overlap each other for a
segment starting at Reδ1 = 3712 (β� = 3.05) until Reδ1 = 6245 (β� = 18.51). The skin
friction coefficients between the two cases converge towards each other throughout the
interval with overlapping β�, such that they are virtually indistinguishable by the point that
β also matches. This result shows the gradual ‘forgetting’ of upstream history (in terms of
its influence on Cf ) by the BL over the length of surface where the two BLs experience the
same β�. Note that figure 8(e, f ) shows that the mean velocity and Reynolds stress profiles
still retain some differences even after this period of forgetting.
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Figure 10. Skin friction coefficients for the Wing and Bump datasets at the streamwise location of matching
Reδ1 –β� (Reδ1 –β faded colour).

5. Conclusion

In this paper, the AMI equation, first demonstrated by Elnahhas & Johnson (2022) for
ZPG incompressible BLs, is extended and applied as an analysis tool to study turbulent
BLs undergoing non-zero pressure gradient. The AMI equation is an integral conservation
law for the first moment about y = �(x) of momentum defect, written in terms of the skin
friction coefficient. The length scale � about which the moment is taken to be the centre of
action of the viscous force for a laminar BL sharing the same Reynolds number, such that
the skin friction of an equivalent laminar BL is isolated into a single term as a function of
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the Reynolds number only. This choice allows the other terms in the AMI equation such as
turbulence and free-stream pressure gradients to be straightforwardly interpreted in terms
of how the associated flow phenomena enhance (or attenuate) the skin friction coefficient
relative to the laminar baseline case. That is, the AMI equation adapts the FIK approach
(Fukagata et al. 2002) (widely used for investigating fully developed internal flows) to the
scientific and engineering context of BL flows with FPGs or APGs.

The AMI equation, expressed in terms of wall-tangential and wall-normal coordinates,
is applied to high-fidelity numerical turbulent BL simulation datasets, including flat-plate
APG BLs, flow over the suction side of a NACA 4412 airfoil and a two-dimensional
Gaussian bump flow. The AMI analysis for the BL over the flat plates and airfoil
displays only a minor variation of the turbulent enhancement term, while the APG term
changes substantially downstream driving strong streamwise growth and wall-normal
mean velocity. In the bump flow, a region of strong FPG results in a substantial reduction
of turbulent torque, co-occurring with the enhancement of skin friction by the pressure
gradient term in the AMI equation. These results quantify the effect of relaminarization
on the skin friction coefficient in the FPG region. Downstream of the bump’s peak, flow
experiences a severe APG that leads to flow separation at which the error of the AMI
budget increases primarily due to the lack of sufficient averaging. Within the APG region
prior to incipient separation, turbulent torque increases downstream, recovering from the
upstream FPG. In this region, the contribution of the inner layer to the turbulent torque
becomes much larger than elsewhere as the BL experiences a retransition.

For APG BLs approaching incipient separation, the AMI analysis concisely quantifies
the competition between turbulence and the pressure gradient within its streamlined
interpretive framework. One implication is the emergence of a new AMI-based Clauser
parameter, β�, that carries the interpretation as the fractional attenuation of skin friction
due to the APG in competition with the turbulent shear stress (see figure 1). Given
its clear physical meaning, the β� parameter provides a new window for investigating
pressure-gradient history effects on the mean velocity and Reynolds stress profiles of the
airfoil, bump and flat-plate flows. The profiles were plotted at the matching Reynolds
number (based on displacement thickness), Reδ1 , and β� compared with the original
Clauser parameter, β. The shapes of the velocity profiles between flat plate, airfoil and
bump flows show differences stemming from upstream history effects. When the Wing
and Bump flows are independently compared with the flat-plate APG BLs at matching β�,
the difference in skin friction coefficient is less than when matched based on β. This is
especially true for the Bump flow. Further, a direct comparison of the Wing and Bump
flows with each other reveals a significant region where β� overlaps. This appears to be
coincidental, but fortuitously allows for the following observation. While the skin friction
coefficients of the two flows are different at the beginning of the β� matched region,
they relax towards each other as the flows progress downstream. This suggests a gradual
forgetting of older upstream history.

In conclusion, the AMI equation provides a flexible and intuitive framework for the
careful accounting of free-stream pressure gradients on skin friction following in the
tradition of FIK analysis (Fukagata et al. 2002). While geometric curvature effects were
not significant for the flows studied here, future development of the AMI equation in
curvilinear coordinates would further expand its capability. While the explicit terms
related to a transformation to curvilinear coordinates did not seem necessary for the
flows studied here, future development of the AMI equation in curvilinear coordinates
would further expand its capability. (Note that this does not imply that the effect of
surface or streamline curvature on the physical flow is negligible.) Also, future AMI-based

1002 A29-28

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
54

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1154


Integral analysis of turbulent BLs with pressure gradient

investigation of bump flows at higher Reynolds numbers where relaminarization does
not occur (Prakash et al. 2024) could yield more insight into pressure-gradient history
effects. Other promising applications of the AMI equation include the assessment and
optimization of flow control strategies in BLs. As discussed in Appendix B for the
Wing case with suction and blowing, the AMI equation quantifies the effect of non-zero
wall-normal velocity at the wall on the AMI interpretation of skin friction coefficient. This
analysis can further examine the impact of subsurfaces, e.g. phononic structures (Hussein
et al. 2015; Kianfar & Hussein 2023b), on BL turbulence. Additionally, it is of interest to
leverage the insight from the AMI equation for developing new strategies for modelling
and simulation.

Acknowledgements. P.L.J. acknowledges support by the National Science Foundation under grant number
2340121. The bump dataset is from a simulation performed by R. Balin with K. Jansen. The authors thank
A. Prakash for facilitating access to the Gaussian bump DNS dataset, as well as M. Atzori and R. Vinuesa for
access to their NACA airfoil simulation dataset. A. Prakash is also acknowledged for helpful discussions and
feedback on a draft manuscript.

Declaration of interests. The authors report no conflict of interest.

Author ORCIDs.
Armin Kianfar https://orcid.org/0000-0002-7043-132X;
Perry L. Johnson https://orcid.org/0000-0002-7929-9396.

Appendix A. Full budget of the AMI equation

The form of the AMI equation derived in this paper makes use of the standard BL
assumptions to neglect certain terms in the mean momentum equation. Given that the
Wing and Bump datasets involve strong pressure gradients, it is worthwhile to document
the full AMI equation, including the supposedly negligible terms. For example, Wei et al.
(2024) analysed DNS data from a simulation of a BL separation bubble induced by an
imposed transpiration profile at the top of the domain (Coleman, Rumsey & Spalart 2018)
and demonstrated that the negligible terms in the momentum integral equation can be quite
significant for strong APGs.

A.1. Wing dataset
This appendix provides the full budget of the AMI equation, including negligible terms,
for the Wing dataset. Figure 11 exhibits Cf /2 and the sum of the all terms on the right-hand
side of (2.7), denoted as RHS, where a great match between the left- and right-hand sides
of the AMI budget is evident. Unsurprisingly, negligible terms remain insignificant even
downstream under relatively higher APG.

A.2. Bump dataset
This appendix presents the complete budget of the AMI equation, including negligible
terms, for the Bump dataset. Figure 12 illustrates Cf /2 and the sum of all terms on
the right-hand side of (2.7), labelled as RHS. A good agreement is observed between
the left- and right-hand sides of the AMI equation, except in regions very close to
separation (or separated flow). Additionally, downstream of the separation bubble, where
flow reattachment occurs, the sum of the right-hand side of (2.7) fluctuates around Cf /2.
This suggests that the AMI analysis captures the physics within this region, although
insufficient averaging leads to oscillations.
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Figure 12. The full budget of the AMI equation for the Bump dataset. Here, � = 4.54δ2 obtained from the
Blasius solution. The faded lines represent the flow phenomena already shown in figure 4.

As expected, negligible terms remain insignificant away from the separation region.
However, near and within the separation bubble, the terms neglected by the BL
approximation and unsteady acceleration become significant. Furthermore, the (absolute)
contribution of negligible terms slightly increases where the flow is accelerating within
the FPG region. The authors attribute this marginal enhancement to an increase in the
streamwise derivatives that appear in (2.6). Specifically, the streamwise derivative of u′u′
is higher than that for the other regions of the flow. A further exploration of the negligible
terms in the AMI equation, and how they may be used to create alternative Clauser-like
parameters (Wei et al. 2024), is deferred to future work.

Appendix B. The AMI analysis of blowing and suction

Another application of the AMI equation is to assess flow control schemes, such as
surface suction and blowing, along with the influence of pressure gradient on skin friction.
Figure 13 illustrates the budget of the AMI equation for a turbulent BL over an airfoil
under suction and blowing, compared with the reference Wing discussed earlier. For both
suction and blowing, the control region spans from ξ/c = 0.25 to ξ/c = 0.855 with a
control intensity of 0.1 % of U∞, reported by Atzori et al. (2023). This region is shaded in
grey in figure 13.

With surface suction (or blowing), laminar friction is marginally higher (or lower)
than the reference case as BL thickness reduces (or increases) downstream; thinning
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Figure 13. The AMI budget of the reference wing compared with the suction and blowing cases with respect
to ξ/c for (a) turbulent torque, (b) pressure gradient, (c) mean flux and (d) wall BC. The shaded grey region
denotes the streamwise position under suction (or blowing). In (a), faded black lines exhibit Cf /2.

of δ99 is correlated with a reduction in δ2, and hence �. Ignoring the contribution of
laminar friction, which is not effectively impacted by suction (or blowing), a major flow
phenomenon is wall BC. In the AMI equation, the direct impact of suction and blowing
(or any imposed wall BC) on Cf /2 is associated with wall BC. This flow phenomenon
explicitly depends on the wall-normal velocity at the surface, Vw. Figure 13(a) depicts
wall BC along with Cf /2 shown in faded black lines. In these plots, suction is represented
by dashed lines, and the blowing case is illustrated by dotted lines. As expected, suction
naturally increases the skin friction coefficient by enhancing the wall-edge velocity
gradient through the reduction of the BL thickness. On the other hand, surface blowing
leads to an about 20 % reduction of Cf with respect to the reference case by thickening
the BL. With regular no-slip and no-penetration wall BCs, wall BC is naturally as shown
for the reference wing; however, this term positively (or negatively) contributes to the
surface friction in the suction (or blowing) case. For instance, in the surface suction (or
blowing) case, the relative contribution of wall BC reads from 24 % (or −35 %) at the
leading edge to approximately 80 % (or approximately −200 %) at the trailing edge of the
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control region. This monotonic increase of the relative contribution downstream is merely
due to the reduction of Cf /2 because Vw is imposed to be a constant.

Despite the limited influence of suction (or blowing) on laminar friction, the control
region changes the turbulence enhancement. As shown in figure 13(b), the impact of
suction (or blowing) on turbulent torque is opposite and less significant compared with
its impact on Cf . For example, surface suction increases the skin friction coefficient,
but diminishes turbulent torque. The AMI equation quantifies the maximum change of
turbulent torque to be, respectively, −10 % and 9 % for suction and blowing. Moreover,
suction (or blowing) seems to have a cumulative effect on turbulent torque; at the
trailing edge of the control region, the difference between turbulent torques is negligible,
yet it increases downstream. Therefore, for the suction case, the lower downstream
turbulent torque shows that surface suction alleviates the impact of pressure gradient on
the upstream-to-downstream variation of the turbulence enhancement; the difference of
turbulent torque between ξ/c = 0.2 and ξ/c = 0.9 is less than 1 %, while in the reference
case, this number was reported to be 13 %. These results suggest that surface suction must
reduce the negative contribution of pressure gradient by pulling the flow towards the wall.

As presented in figure 13(c), similar to the turbulent torque analysis, the impact
of surface suction (or blowing) on pressure gradient appears to be cumulative too.
Within ξ/c ≤ 0.4, the effect of suction (or blowing) on pressure gradient is insignificant.
However, the accumulated effect becomes more pronounced downstream of ξ/c = 0.4,
also slightly influencing the growth rate of pressure gradient. The AMI analysis quantifies
the maximum impact of surface suction on pressure gradient to be approximately 14 %,
observed at the trailing edge of the control surface, compared with the reference wing.
Surface blowing has a similar but opposite effect, enhancing the strength of pressure
gradient.

Due to the natural cumulative effect of suction (or blowing) on turbulent torque and
pressure gradient, mean flux is the only flow phenomenon partially resisting the immediate
impact of wall BC on Cf . In other words, mean flux alleviates the non-equilibrium caused
by both pressure gradient and wall BC. In the spatial range of 0.2 ≤ ξ/c ≤ 0.4, where
pressure gradient is relatively weaker, the absolute contribution of mean flux to Cf /2
is insignificant, approximately 5 %. In the suction (or blowing) case, on the other hand,
mean flux resists the immediate skin friction enhancement (or reduction) caused by wall
BC. The immediate response of mean flux to suction (or blowing) can be understood by
looking into its subterms. As described in § 2, mean flux is the sum of the streamwise
growth of the BL thickness and the mean wall-normal flux, first introduced in Elnahhas
& Johnson (2022). Suction (or blowing) only implicitly influences the streamwise growth
of the BL. On the other hand, the mean wall-normal flux absorbs the immediate change
of suction (or blowing). This term, demonstrated to enhance wall shear stress in fully
turbulent flows (Elnahhas & Johnson 2022; Kianfar et al. 2023a,b), exhibits a weaker
effect with suction but a stronger impact with blowing at the surface of the control region.
This is a consequence of suction (or blowing) altering the mean wall-normal velocity
profile, influencing the wall-normal transport of momentum, particularly near the surface.
For example, suction induces a region with negative mean wall-normal velocity, leading
to an inverse contribution of mean wall-normal flux. Therefore, mean flux compensates
for approximately 70 % of the wall BC’s friction enhancement, primarily by generating
weaker (and sometimes negative) mean wall-normal flux. Interestingly, this observation
parallels findings in transitional incompressible BLs (Kianfar et al. 2023b), where a
small region near the surface exhibited wall-normal deceleration and v̄ ≤ 0, forcing the

1002 A29-32

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

11
54

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.1154


Integral analysis of turbulent BLs with pressure gradient

near-wall flow to accelerate in the streamwise direction due to the continuity constraint.
The authors contend that BLs with suction and transitional flows, which are characterized
by the presence of negative near-surface wall-normal velocity, have the potential to foster
more robust passive control schemes. This could be achieved through the use of a porous
medium or phononic subsurfaces (Hussein et al. 2015; Kianfar & Hussein 2023a). The
negative velocity near the surface is anticipated to enhance the effectiveness of such
control schemes by further stimulating the control surface.

Appendix C. The AMI analysis using the Falkner–Skan BL

In the preceding section, we primarily focused on the BL regions experiencing moderate
APG, where we investigated the impact of APG on the Reynolds shear stress enhancement
of skin friction coefficient using the AMI analysis. Additionally, we introduced an
AMI-based non-equilibrium Clauser parameter, denoted as β�, to delve into the influence
of pressure gradient history effects on turbulent statistics. However, thus far, our approach
has relied on an AMI length scale derived from the Blasius solution. In this appendix,
we explore an alternative approach by employing the Falkner–Skan laminar solution to
determine �.

Our objective here is to establish a relationship for � within the APG region, specifically
within the range of 1400 ≤ Reδ1 ≤ 6500, by aligning the Clauser parameter between the
turbulent datasets listed in table 1 and the laminar Falkner–Skan solution. In essence, we
determine the coefficient c (introduced in § 2) by utilizing the Falkner–Skan solution with
the precise value of β at each streamwise location.

To obtain the coefficient αFS based on the Falkner–Skan solution, we developed an
ordinary differential equation solver using the shooting method to solve the self-similar
Falkner–Skan momentum equation. The similarity form, introduced by Falkneb & Skan
(1931), is defined by η = Cyxa, where η represents the self-similar variable, consistent
with a power-law edge velocity distribution given by Ue(x) = Kxm, where C and K are
constants to make η dimensionless and m = 2a + 1. The ordinary differential equation
solver selects η = y

√
(m + 1)Ue(x)/νx, and imposes appropriate BCs, similar to the

Blasius solution for a flat plate (refer to chapter 4 in White & Majdalani (2006)). Using the
similarity solution, the skin friction coefficient and displacement thickness, respectively,
are expressed as

Cf

2
≡ 2τw

ρU2
e

=
√

(m + 1)
ν

Ux
f ′′(0) (C1)

and

δ1 ≡
∫ ∞

0

(
1 − u

Ue

)
dy =

√
1

m + 1
νx
Ue

lim
η→∞(η − f ), (C2)

where f represents the similarity function and the prime indicates differentiation with
respect to η. Similarly, we can derive a relationship for the Clauser parameter that reads

β ≡ − 1
Ue

dUe

dx
2δ1

Cf
= − m

m + 1

⎡
⎣ lim

η→∞(η − f )

f ′′(0)

⎤
⎦ , (C3)
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Figure 14. Self-similar Falkner–Skan solution and the Clauser parameter. Relationships between β and m (a)
and αFS and β (b).

where the term enclosed by brackets is self-similar. We further relate β to the AMI’s length
scale coefficient, αFS, as

β = −m
m + 1

[
lim

η→∞(η − f )
]2

αFS. (C4)

Figure 14(a) illustrates a plot of β with respect to m within the APG region (m ≥ 0).
Interestingly, the plot of αFS with respect to β in figure 14(b) demonstrates a (semi-)linear
relationship between them. Therefore, one can determine the appropriate αFS at each
streamwise position by knowing the Clauser parameter, i.e. αFS(x) = 1.75 + 0.822β(x).

Now that we have established a relationship between β and �, we can determine
� = αFSδ1 by knowing the β values in the turbulent dataset (table 1). As a result, when
we apply this � to the AMI analysis, the first term on the right-hand side of the AMI
equation, representing the laminar friction (1/Re�), precisely yields half of the skin friction
coefficient that would be expected if the flow were laminar (with the same Reynolds
number) under the same β. This term, although for the turbulent dataset is more distinct
than in figure 6(a), weakly contributes to the skin friction coefficient. The explicit turbulent
enhancement in the AMI equation based on the Falkner–Skan solution, however, remains
the primary contributor to Cf .

In figure 15(a), we observe a distinct trend in the behaviour of turbulent torque compared
with figure 6(b), where the analysis was based on the Blasius solution. Specifically,
the behaviour of turbulent torque shows an inverse relationship with the strength of the
pressure gradient, i.e. β. For flat-plate cases characterized by weak-to-moderate pressure
gradients, there is a minimal variation in turbulent torque from upstream to downstream,
especially beyond Reδ1 = 3500, where their β is flattened. In contrast, for cases exhibiting
rapid growth in β, such as Wing and Bump, the variation in turbulent torque from
upstream to downstream is more pronounced. This behaviour can be attributed to the fact
that the total Reynolds shear stress remains constant downstream, as discussed in § 4.4.
Consequently, as � increases with β, turbulent torque decreases downstream, at an inverse
rate.

Despite the significant changes in turbulent torque with β in the Wing and Bump cases,
it is noteworthy that the relative contribution (normalized by Cf /2) of turbulent torque (as
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Figure 15. Turbulent torque with respect to Reδ1 when � is obtained from the Falkner–Skan solution.
(a) The absolute contribution to Cf /2. (b) The relative contribution (normalized by Cf /2).
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Figure 16. The Clauser parameter with respect to Reδ1 based on δ�
1 obtained from the AMI analysis using the

Falkner–Skan laminar solution. The faded lines denote β as in figure 7(a).

shown in figure 15b) tends to flatten downstream of Reδ1 = 6000. This suggests that for
relatively strong APG, e.g. β ≥ 10, the spatial rate of change of this flow phenomenon
mirrors that of the skin friction coefficient.

Using the Falkner–Skan solution as the reference flow for the AMI equation allows us
to derive the AMI’s Clauser parameter, β�, where � varies downstream as a function of
β. Figure 16 illustrates this β� with respect to Reδ1 , compared with β (shown with faded
lines). According to the plots of the Wing and Bump cases in figure 16, far downstream
where the pressure gradient is relatively strong (β ≥ 40), β� and β converge to each other.
To understand this phenomenon, consider an asymptotic condition where β → ∞: the
AMI’s length scale, � → ∞. Consequently, as mentioned in § 2, if � → ∞, the AMI
equation will recover the von Kármán integral equation, i.e. β� → β. On the other hand,
for β → 0 (β < 1), the Falkner–Skan-based AMI yields analogous results as shown in
figure 7(b) for β� based on the Blasius solution.
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Additionally, in the Bump case, figure 16 indicates that β� has marginally captured the
upstream FPG effect. Therefore, compared with β, the plot of β� is slightly shifted to
the right. This absorption of the FPG history effect, however, is not sufficient; also, it is
weaker than what we observed in figure 7(b) for β� based on the Blasius solution. As a
result, the matching location between Bump and flat plates occurs too early upstream when
β� is based on the Falkner–Skan solution. Consequently, the turbulent statistics at these
matching locations yield less similarity compared with what we observed for β� obtained
from the Blasius solution, like in figure 8(c,d). This weaker similarity also manifests in the
correlation between Cf and β�, where we compute a weaker correlation when β� is based
on the Falkner–Skan solution rather than figure 9(b).
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