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Abstract

We present a self-biased three-stage GaN-based monolithic microwave integrated circuit low-
noise amplifier (LNA) operating between 26 and 29 GHz for 5G mobile communications. The
self-biasing circuit, common-source topology with inductive source feedback, and RLC nega-
tive feedback loops between gate and drain of the third transistor were implemented to achieve
low noise, good port match, high stability, high gain, and compact size. Measurement results
show that the LNA has a high and flat gain of 30.5 ± 0.4 dB with noise figure (NF) of 1.65–1.8 dB
across the band. The three-stage topology also achieves high linearity, providing the 1 dB com-
pression point output power (P1dB) of 21 dBm in the band. To our knowledge, this combination
of NF, gain, and linearity performance represents the state of art of self-biased LNA in this
frequency band.

Introduction

The first 5th generation (5G) mobile network was rolled out in South Korea in 2019.
Compared to the previous generations, 5G provides much higher capacity and lower latency
to meet the requirements of ever-increasing data rate, number of connected devices, and emer-
ging applications. To achieve this, wider bandwidth and more frequency bands have been
assigned to 5G including sub-6 GHz bands and millimeter-wave (mm-wave) bands such as
26–30 GHz [1, 2]. Although mm-wave can provide a chunk of continuous bandwidth up to
GHz, only a few countries have adopted it in reality; most deployed 5G networks are running
at sub-6 GHz bands. One of the major challenges for deploying mm-wave 5G lies in the imma-
ture technology for frontends, causing low gain, low power efficiency, and high cost. Low-noise
amplifiers (LNAs) are critical components in the frontend of all communication systems usu-
ally located at the first stage of the receiver after the antenna. Typical semiconductor technolo-
gies for LNAs are divided into two categories: silicon and III–V compound. The former
includes complementary metal oxide semiconductor (CMOS), silicon germanium bipolar
complementary metal oxide semiconductor (SiGe BiCMOS), and silicon on insulator which
have the advantages of low power consumption, high integrability, low cost, and compact
size but is poor with regard tonoise figure (NF) and gain [3, 4]. The latter consists of
conventional Indium phosphide (InP) [5] and gallium arsenide (GaAs) [6] high electron
mobility transistors (HEMTs) which have lower NF and higher gain than the silicon technolo-
gies. More recently, gallium nitride (GaN) HEMTs have received great attention for their
excellent performance in both low noise and high power [7–9]. Compared with GaAs and
InP, one of the significant advantages of GaN LNAs is their high-power handling capability
which is preferable in complex electromagnetic environments, e.g., remote sensing in space
or satellite communications, where additional measures, such as limiters, must be imple-
mented to protect the receivers. In addition, the high-power tolerance ability is also desirable
in signal detection and electronic countermeasure and multiple input multiple output
communications [7].

In this work, we demonstrate a three-stage monolithic integrated GaN LNA operating
between 26 and 29 GHz for mm-wave 5G applications. Unlike GaN LNAs reported elsewhere
[10, 11], the LNA demonstrated here has three stages and is powered by a single power supply.
Such a design simplifies biasing circuits and makes the whole circuit more compact. The
measured gain and 1 dB compression point output power (P1dB) are 30.5 ± 0.4 dB and 21
dBm, respectively. The NF is 1.65–1.8 dB in 26–29 GHz. The measured S11 and S22 are both
below −10 dB across the whole band. The results show the proposed GaN LNA could be
an ideal candidate for mm-wave 5G.
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LNA design

The HEMT and its small-signal model

The GaN transistor used in this work is 2 × 30 μm and is developed
using a 0.1 μm depletion mode. Figure 1 shows its small signal
equivalent circuit. The initial bias conditions of the device were
chosen to achieve the maximum value of fT × gm/IDS, where fT,
gm, and IDS are transition frequency, transconductance, and source-
drain current, respectively [12–15]. However, the ultimate optimal
bias voltages at the gate, Vg, and the drain, Vd, are −2 and 15 V,
respectively. They were decided as a compromise among matching
loss, NF, gain, and stability. In order to match the input impedance
(Zin) of the LNA to 50Ω, an inductive degeneration was adopted,
making the real part of Zin equal to 2πLseff + Rs, where Lseff is the

effective source or emitter inductance and Rs is the source resist-
ance. The measured S-parameters of the transistor are shown in
Fig. 2 and extracted values of the small-signal equivalent circuit
are shown in Table 1. The simulated results based on the model
are in good agreement with the measured ones.

LNA design

In this work, we used a common source cascaded three-stage
architecture to achieve a minimum gain of 30 dB, which is higher
than the state of art LNAs operating in the same frequency range,
while keeping NF as low as possible as shown in Fig. 3. The overall
NF in a cascaded system is determined by the well-known Friis
equation

NF = NF1 + NF2 − 1
G1

+ NF3 − 1
G1G2

(1)

where NFx and Gx (x = 1, 2, 3) are NF and gain of the xth stage of
the cascaded LNA in a linear scale. The gain and NF of the first
stage are more important than those of the following stages. Since
HEMTs are constructed in a common source topology and the
same HEMTs are used for all stages, the main task is then focused
on input matching for minimizing the NF and lowering the input
return loss at the first stage. The final stage serves the purpose of
maximizing gain, improving the flatness of the gain, and reducing
output return loss. A series RLC negative feedback loop, highlighted
in blue in Fig. 3, is applied between the gate and drain of the third
stage to adjust the gain flatness and improve the stability. However,
its contribution to the overall NF is very limited as seen in (1). The
inter-stage is tuned to ensure noise, gain, and input and output
standing wave ratio meet the overall goal. A feedback inductor
was deployed at the source of the HEMT, to achieve minimum
NF and low input return loss simultaneously as highlighted in
green in Fig. 3. Adding this inductor at the first stage will rotate
S11 of the LNA close to the optimum reflection coefficient Гopt
for noise [10] and achieve both optimal noise matching and input
conjugate matching [16]. Finally, the inductive source feedback
can also improve the stability. Although the inductive degeneration
does not have the same impact on the NF as resistive degeneration
does, it still reduces the overall gain of the circuit.

Fig. 1. The small-signal equivalent circuit of GaN HEMT when being biased at Vg =−2 V and Vd = 15 V.

Fig. 2. The measured (blue circle) and modeled (red line) S-parameters. The fre-
quency range is from 0.2 to 60 GHz.
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Biasing circuit

A self-biasing technology is utilized to power all HEMTs conveni-
ently through a single drain voltage, providing greater flexibility of
biasing conditions [17, 18]. As highlighted in red in Fig. 3, the circuit
contains a shunt resistor (R) and capacitor. The capacitor acts as a
bypassing capacitor, helping to filter out noise contribution from
the feedback resistor and improve the gain at the interested frequency
range. The negative voltage on the resistor (R) is supplied to the gate
through the grounded microstrip of the input matching circuit that,
as part of source impedancematching, simplifies the input matching
network, thusVg can be expressed as−IDS × R. In the proposed LNA,
IDS andR are 25.9mAand77Ω, respectively,when it is biasedatVg =
−2 VandVd = 15 V.Although careful design and several iterations of
process validation have been made, the process variation may still

affect the self-biasing circuit. In fact, we implemented a laser trim-
ming on the resistor for fine-tuning. It should be noted that, due to
the presence of the capacitor,muchmore care should be taken for sta-
bility simulation. A quarter-wavelength stub with a resonant capaci-
tor and a resistor in the drain bias line is used as a radio frequency
(RF) choke for stability improvement at each stage. Furthermore,
the whole circuit has only two bonding pads for the drain, which
can largely ease bonding and packaging. The overall bias circuits
are more favorable for practical applications.

Measurements and discussion

Figure 4 shows the fabricated monolithic microwave integrated
circuit (MMIC) LNA that has an area of 0.8 × 2.4 mm2.

Fig. 3. Simplified schematic of the designed LNA.

Table 1. Extracted intrinsic small-signal parameters of the GaN HEMT

Intrinsic parameters gm (mS) Rds (Ω) Rs (Ω) Rd (Ω) Ls (pH) Cgs (fF) Cgd (fF)

Value 84.5 192 22.9 64.9 5.8 47.9 5.1

Fig. 4. Photograph of the fabricated LNA.
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Fig. 6. Measured and simulated S21 (a) and NF (b) of the LNA at different bias points.

Fig. 5. Measured and simulated S11 (a) and S22 (b) of the LNA at different bias points.

Fig. 7. Measured P1dB (a) and OIP3 (b) of the LNA at different bias points.
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Although −2 and 15 V are required for gate and drain of the
HEMT, only 15 V was needed because a self-biasing technology
was adopted. S-parameter measurements were made on chip
with ground-signal-ground probes at room temperature and the
results are shown in Figs 5 and 6. As can be seen, the measured
S11 and S22 are below −10 dB between 26 and 29 GHz, indicating
that both the input and output matching are good. Moreover, the
measured gain is 30.5 ± 0.4 dB in the same frequency range. The
simulated results are also plotted against the experimental results,
and good agreements have been achieved. The cold source method
was used to measure NF and both the experimental and simulated
results are shown in Fig. 6(b). One can notice that the measured
NF is between 1.65 and 1.8 dB in the band, and the discrepancy
between the measurement and simulation is smaller than 0.3 dB.
The linearity of the LNA was also investigated and the results are
shown in Fig. 7. The measured P1dB and third-order intercept
point output power (OIP3) are approximately 21 and 27 dBm,
respectively, which are much higher than GaAs and InP LNAs.
Figure 8 shows the measured gain and output power versus input
power at 28 GHz when the LNA is biased at Vd = 15 V. Note that
the measured OIP3 and the results in Fig. 8 were obtained after the
chip was packaged, which are slightly lower than the results obtained
by on-chip measurements due to bondwire and packaging.

The analysis of the fabricated LNA is also performed at differ-
ent bias points (10–20 V) as shown in Figs 5–7. It is observed that
the device performs better in terms of return loss and gain at
lower drain voltage and the gain ripple remains the same for all
the cases. The designed LNA gives promising results to all four
bias conditions. It is noticed that the LNA can accommodate a
wide range of supply voltages from 10 to 20 V, which is preferred
in radar systems in practice.

We compared the performance of the designed LNA with
recently published LNAs using different semiconductor tech-
nologies for mm-wave 5G and the results are summarized in
Table 2. We can observe that NF of this work is comparable
with InP LNAs, even better than GaAs and CMOS. Moreover,
it is noteworthy that the single power supply employed in this
work can ensure a competitively excellent performance com-
pared with the other works powered by dual sources using the
same technique. It is known that the main drawback of the self-
biasing technique is sacrificed gain and NF. In addition, this
LNA has a relatively high and flat gain as well as a high P1dB
of 21 dBm compared to GaAs and InP LNAs. Meanwhile, the
high linearity sacrifices the power consumption but is still
much higher than LNAs using other technologies. The measured
NF is slightly higher than that of other LNAs based on 0.1 μm
GaN process due to the resistors in the self-biasing circuits.
However, the adopted self-biasing structure simplifies external
circuitry.

Conclusion

A GaN LNA based on 0.1 μm GaN MMIC process operating at
26–29 GHz is demonstrated in this work. The single powered
LNA has a high and flat gain of 30.1–30.9 dB and good input
and output matching. The NF is 1.65–1.8 dB in the band. The
LNA has good linearity with P1dB close to 21 dBm. Compared
with the published LNAs, the LNA demonstrated in this work
exhibits a competitive NF and a relatively high and flat gain as
well as high linearity. In addition, this single powered LNA pro-
vides ease of use and simplifies the overall system on account of
the powering method compared to that of the individually pow-
ered LNA. To our knowledge, the combination of NF, gain, and
linearity performance represents the state of art of self-biased
LNAs suitable for mm-wave 5G communications.

Table 2. Comparisons of LNAs for mm-wave 5G using different semiconductor technologies

Ref. Tech. Freq. (GHz) Gain (dB) NF (dB) P1dB (dBm) Size (mm2) PDC (mW)

[5] 0.1 μm InP 26–40 21–22.8 1.3–1.9 NA 2.1 × 0.82 14

[11] 0.15 μm GaN 27–31 15–20 3.7–3.9 NA 1.2 × 3.4 280

[6] 0.15 μm GaAs 25–40 18.7–21.7 2.2–2.8 NA 2.5 × 1.2 230

[19] 65 nm CMOS 25–30 17–21 >3.7 NA 0.2 × 0.85 10

[20] 130 nm CMOS 26.3–28 17–20 5.2–7.5 NA 0.27 24

[4] 22 nm FD-SOI CMOS 26.6–31.6 16–19.3 4.8–5.2 −18 0.705 × 0.38 11.4

[10] 0.1 μm GaN 23–31 22–27.5 0.93–1.4 22–25 1.9 × 0.8 NA

This work 0.1 μm GaN 26–29 30.1–30.9 1.65–1.8 21 2.4 × 0.8 1165

Fig. 8. Measured gain and output power versus input power at 28 GHz (Vd = 15 V, with
RF and direct current (DC) pads bonded to the test board).
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