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Abstract

We show that every automorphism of a thick twin building interchanging the halves of the building maps
some residue to an opposite one. Furthermore, we show that no automorphism of a locally finite 2-
spherical twin building of rank at least 3 maps every residue of one fixed type to an opposite (a key step
in the proof is showing that every duality of a thick finite projective plane admits an absolute point).
Our results also hold for all finite irreducible spherical buildings of rank at least 3, and imply that every
involution of a thick irreducible finite spherical building of rank at least 3 has a fixed residue.
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1. Introduction

The theory of buildings grew from the fundamental work of Jacques Tits starting in
the 1950s. The initial impetus was to give a uniform description of semisimple Lie
groups and algebraic groups by associating a geometry to each such group. This
‘geometry of parabolic subgroups’ later became known as the (spherical) building
of the group [18]. Twin buildings were introduced by Ronan and Tits in the 1980s,
motivated by the theory of Kac–Moody groups. Roughly speaking, a twin building is
a pair of buildings, called the halves, together with an opposition relation between the
two halves which resembles the important opposition relation in a spherical building.
Indeed, every spherical building can be regarded as a twin building in a natural way
(see Section 2).

Fixed point structures of automorphisms play an important and prominent role in
the theory of buildings and related groups, and more generally in permutation group
theory. Two key notions in the theory of spherical buildings are the relations of
adjacency and opposition of the chambers of the building (the chambers are the basic
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elements of the building). The adjacency relation endows the building with a graph
structure, and two chambers are opposite if they are at maximal distance in this graph
structure. This gives additional structure to work with when studying automorphisms
of spherical buildings. In particular, there is a connection between the size of the
fixed point set of an automorphism and the size of the set of chambers mapped to an
opposite chamber by the automorphism. Indeed, recently it was shown in the papers
[15–17, 22] that large fixed point structures in spherical buildings are often implied by
automorphisms that do not map any chambers to opposite chambers. In other words,
if no chamber is mapped far away then the automorphism will fix a lot of chambers (or
more generally, residues). When it is not meaningful to consider fixed point structures,
such as when an automorphism interchanges the two halves of a twin building, the
structure of the set of chambers mapped onto an opposite chamber may replace the
tool of fixed point structures. The initiation of such a study is one of the main goals of
the present paper.

Another motivation for our work stems from so-called ‘Phan theory’, where
amalgams of groups acting on twin buildings and the related presentations are
efficiently investigated using the geometry of chambers mapped onto an opposite by
the involution centralising the group in question; see [8]. Here we deal with the more
general case of an arbitrary automorphism (not necessarily of order two).

An initial observation is the following (see [8, Proposition 4.9] for the case of an
involution, and Section 3 for the general case).

P 1.1. Every automorphism of a thick twin building swapping the two halves
of the building maps some spherical residue to an opposite residue.

Thus we ask the question ‘How much can be mapped to an opposite?’. For example,
in the real projective plane PG(2, R) the automorphism given by [a : b : c]↔ (a : b : c)
maps every flag to an opposite flag (here [a : b : c] is a point of the projective
plane in homogeneous coordinates, and (a : b : c) is the line of the projective plane
corresponding to the plane ax + by + cz = 0 in R3). Furthermore, it is shown in [17,
Remark 4.5] that there are automorphisms of thick finite generalised quadrangles of
order (2n − 1, 2n + 1) mapping every flag to an opposite. Considered as twin buildings,
these examples show that it is possible for an automorphism of a twin building to map
every chamber to an opposite chamber. Other such examples can be constructed for
the twin tree arising from PGL2(F[t, t−1]) where F is any field. Despite these examples
our main theorem is as follows.

T 1.2. Suppose that ∆ is an irreducible 2-spherical locally finite thick twin
building of type (W, S ) with rank at least 3 and let J ⊆ S be nonempty. Then an
automorphism of ∆ cannot map every S \ J-residue to an opposite residue.

In fact we prove a slightly stronger statement (see Theorem 5.1) which also shows
that in an irreducible finite thick Moufang rank-two building it is impossible for an
automorphism to map every vertex of a given type to an opposite one. (Note that in
the ‘simplicial complex’ language, S \ J-residues correspond to simplices of type J.)
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In particular, we see that under the hypothesis of Theorem 1.2 it is impossible for an
automorphism to map every chamber to an opposite. After some general reductions,
the proof of Theorem 1.2 boils down to looking at rank-two residues. Recent results
of [13] (see also [12]) imply that finite Moufang generalized polygons other than
projective planes do not admit collineations mapping every chamber to an opposite.
For projective planes, the results of [13] can only be applied under some restrictions.
In the present paper we remove these restrictions, and show that no duality of any finite
projective plane can map every chamber to an opposite. These observations will imply
Theorem 1.2.

Along the way to proving Theorem 1.2 we prove the following theorem, which is
of interest in its own right.

T 1.3. Let ∆ be a twin building of type (W, S ) and let J ⊆ S be nonempty. An
automorphism θ : ∆→ ∆ maps all S \ J-residues to opposite residues if and only if
it maps all chambers to opposite chambers. Moreover, if θ maps all chambers to
opposites then θ is necessarily type-preserving, and maps all residues to opposite
residues.

Our analysis is ‘building-theoretic’ in nature, yet our main results have broader
group-theoretic applications. For example, in Corollary 5.6 we deduce that if G
is a finite group of Lie type or a locally finite Kac–Moody group (satisfying some
conditions), then no ‘generalised Iwasawa decomposition’ can exist. That is, if θ
is an automorphism of G mapping the positive Borel B+ to the negative Borel B−

then G ,GθB+, where Gθ is the centraliser of θ in G. This extends results of [4]
where involutions θ are studied. We thank an anonymous referee for suggesting this
application.

We also provide an application of our results to fixed point structures of involutions
of spherical buildings. In Corollary 5.5 we deduce that every involution of a finite
irreducible thick spherical building of rank at least 3 fixes some simplex, generalising
the well-known fact that every involution of a projective space has many fixed points.

2. Definitions and examples

The main reference for this section is [1]. Let (W, S ) be a Coxeter system. We
always assume that |S | <∞, and that W is irreducible. Let ` : W → Z≥0 be the length
function on W with respect to the generating set S . A building of type (W, S ) is a pair
(∆, δ) where ∆ is a nonempty set (whose elements are called chambers) together with
a map δ : ∆ × ∆→W (called the Weyl distance function) such that if C, D ∈ ∆ then the
following conditions hold.

(B1) δ(C, D) = 1 if and only if C = D.
(B2) If δ(C, D) = w and if C′ ∈ ∆ is a chamber with δ(C′,C) = s then δ(C′, D) ∈

{w, sw}. If `(sw) = `(w) + 1 then δ(C′, D) = sw.
(B3) If δ(C, D) = w then for any s ∈ S there is a chamber C′ ∈ ∆ with δ(C′,C) = s and

δ(C′, D) = sw.
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A twin building of type (W, S ) is a triple ∆ = (∆+, ∆−, δ∗) where ∆+ and ∆−

are buildings of type (W, S ), and δ∗ is a Weyl codistance function which measures
codistance between chambers in the ‘two halves’ of the twin building. This codistance
function satisfies the following three axioms (see [1, Definition 5.133] or [21, Section
2.2]), where we write δ for the Weyl distance function on the buildings ∆+ and ∆−.
The following must hold for all ε ∈ {+, −}, C ∈ ∆ε and D ∈ ∆−ε , where w = δ∗(C, D).

(T1) δ∗(D,C) = w−1.
(T2) If C′ ∈ ∆ε is such that δ(C′,C) = s ∈ S and `(sw) = `(w) − 1, then δ∗(C′, D) = sw.
(T3) If s ∈ S then there exists C′ ∈ ∆ε such that δ(C′,C) = s and δ∗(C′, D) = sw.

Let s ∈ S . Chambers C, D in the same half of the building are s-adjacent if
δ(C, D) = s. Chambers C and D are adjacent if they are s-adjacent for some s ∈ S .
If J ⊆ S then a J-residue (or residue of type J) of ∆ε is a set of the form {D ∈ ∆ε |

δ(C, D) ∈WJ} where C ∈ ∆ε and WJ is the subgroup of W generated by J. There is
a standard way to consider buildings as simplicial complexes. In this language a J-
residue becomes a simplex of type S \ J. In particular, S \ {s}-residues correspond to
vertices of type s. In this paper we will mainly use the ‘residue’ language. We note
that a J-residue is a building of type (WJ , J).

Chambers C and D in different halves of a twin building are opposite if δ∗(C, D) = 1.
Residues P and Q in different halves of a twin building are opposite if for each chamber
C in P there is a chamber D in Q such that C and D are opposite, and vice versa. Note
that the axioms imply that opposite residues have the same type.

An automorphism of a twin building is a bijection θ of the chamber set which maps
adjacent chambers to adjacent chambers, and preserves the opposition relation. By a
standard gallery argument one sees that an automorphism θ : ∆→ ∆ of a twin building
induces an automorphism σ : S → S of the Coxeter graph such that if the chambers C
and D are s-adjacent then Cθ and Dθ are σ(s)-adjacent. In this paper we are interested
in automorphisms θ which interchange the two halves of the twin building. The case
where θ is an involution is studied in [4, 8, 9]. We do not assume that θ is an involution,
nor that it is type-preserving (that is, we do not assume that σ is the identity).

We recall some more terminology: a spherical building is a building (∆, δ) of
type (W, S ) with W a finite Coxeter group. An {s}-residue is sometimes called an
s-panel or a panel for short. A (twin) building is thick if every panel contains at least
three chambers. A 2-spherical (twin) building is one where every rank-two residue
is spherical, that is, no rank-two residue is a tree (the rank of a building of type
(W, S ) is |S |). Recall also that a locally finite building is one where the number of
chambers in a panel is always finite; locally finite is equivalent to finite for spherical
buildings. In every thick twin building and in every thick 2-spherical building, the
number of chambers in an s-panel, s ∈ S , only depends on s. The building is locally
finite precisely when all these numbers are finite. In this case the parameters of the
building are the numbers qs, s ∈ S , where every panel of type s contains precisely
qs + 1 chambers.

We conclude this section with some examples of buildings and twin buildings.
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E 2.1. Let (∆, δ) be a spherical building of type (W, S ) (and so W is finite).
Let w0 be the unique longest element of W. Let ∆+ and ∆− be disjoint copies
of ∆, and for each C ∈ ∆ let C± denote the corresponding chamber in ∆±. Define
Weyl distance functions δ± : ∆± × ∆±→W by δ+(C+, D+) = δ(C, D) and δ−(C−, D−) =

w0δ(C, D)w−1
0 , so that (∆+, δ+) and (∆−, δ−) are spherical buildings of type (W, S ).

Define a Weyl codistance function δ∗ by

δ∗(C+, D−) = δ(C, D)w0 and δ∗(C−, D+) = w0δ(C, D).

Then (∆+, ∆−, δ∗) is a twin building of type (W, S ). Note that chambers C+ ∈ ∆+

and D− ∈ ∆− are opposite in the twin building (that is, δ∗(C+, D−) = 1) if and only
if the chambers C and D are opposite in the original spherical building (that is,
δ(C, D) = w0). Thus all spherical buildings can be regarded as twin buildings, and
opposition in the twin building agrees with opposition in the spherical building.

E 2.2. Rank-two buildings play an important role in the theory of buildings.
Usually rank-two buildings are viewed as geometries, where one type of panels is the
point set, and the other the set of lines. Then spherical rank-two buildings are precisely
the same as generalised m-gons (bipartite graphs with diameter m and girth 2m, with
m <∞). By the Feit–Higman theorem [5] finite thick generalised m-gons only exist for
m = 2, 3, 4, 6, 8. Generalised m-gons with m = 3 are projective planes. Generalised m-
gons with m = 2, 4, 6, 8 are generalised digons, quadrangles, hexagons, and octagons,
respectively.

E 2.3. Let G be a Kac–Moody group over a field F with Weyl system (W, S )
(see [20]). Let B+ and B− be opposite ‘Borel subgroups’ of G. The Bruhat
decompositions and the Birkhoff decompositions of G are

G =
⊔
w∈W

BεwBε and G =
⊔
w∈W

B−εwBε

where ε ∈ {−, +}. Then ∆+ = G/B+ and ∆− = G/B− are buildings of type (W, S ) with
Weyl distance functions given by δ(gBε , hBε) = w if and only if g−1hBε ⊆ BεwBε . Then
∆ = (∆+, ∆−, δ∗) is a twin building of type (W, S ), where the Weyl codistance function
is given by δ∗(gB−ε , hBε) = w if and only if g−1hBε ⊆ B−εwBε .

E 2.4. Let F be a field and let G = PGL2(F[t, t−1]). Let K+ = PGL2(F[t])
and K− = PGL2(F[t−1]). Let τ be the diagonal matrix diag(t, 1). Then G has
decompositions

G =
⊔
n≥0

KετnKε and G =
⊔
n≥0

K−ετnKε

where ε ∈ {−, +}. Let T ε be the graph with vertex set G/Kε , with vertices gKε

and hKε connected by an edge if and only if g−1hKε ⊆ KετKε . Define a numerical
codistance function d∗ by d∗(gK−ε , hKε) = n if and only if g−1hKε ⊆ K−ετnKε . Then
T = (T +, T−, d∗) is a twin tree (see [11]; in the rank-two case the twin building axioms
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can be efficiently restated in terms of a numerical codistance function d∗). Note that
the group homomorphism t 7→ t−1 induces an involutive automorphism θ : T → T of
the twin tree which interchanges the two halves of the twin tree.

3. Proof of Proposition 1.1

The arguments of this section are adapted from [2, Lemma 3.1, Theorem 3.2]
(where it is shown that automorphisms of nonspherical buildings have unbounded
displacement) and [8, Proposition 4.9] (where involutions of twin buildings are
considered).

L 3.1. Let σ : S → S be an automorphism of the Coxeter graph of W. Let w ∈W,
and let J = {s ∈ S | `(sw) < `(w)}. Then WJ is spherical, and if `(wσ(s)) < `(w) and
`(swσ(s)) = `(w) for all s ∈ J, then σ(J) = J, w = wJ (the longest element of WJ), and
swσ(s) = w for all s ∈ J.

P. By [1, Proposition 2.17] the parabolic subgroup WJ is finite. Assume now
that `(wσ(s)) < `(w) and `(swσ(s)) = `(w) for all s ∈ J. The first inequality tells us
that σ(J) ⊆ J′ = {t ∈ S |`(wt) < `(w)}. By the dual version of [1, Proposition 2.17],
it follows that there is an expression w = v′wσ(J) with `(w) = `(v′) + `(wσ(J)), since
wσ(J) ∈WJ′ . If v′ , 1 has reduced expression v′ = s1 · · · sr, then s1 ∈ J, and since there
is a reduced expression for wσ(J) ending in σ(s1) we obtain a reduced expression for
w which starts with s1 ∈ J and ends with σ(s1), contradicting the condition that for all
s ∈ J, we require `(swσ(s)) = `(w). Therefore v′ = 1, and w = wσ(J). Since σ(s)wσ(J)

(s ∈ J) is in Wσ(J), it must be shorter than wσ(J), and so σ(J) ⊆ J. Since J is finite
and σ is a bijection, it follows that σ(J) = J and w = wJ . Now swσ(s) ∈WJ for s ∈ J
(since s, σ(s) ∈ J and w = wJ ∈WJ) and `(swσ(s)) = `(wJ), so swσ(s) = w for all s ∈ J
(by the uniqueness of the longest element of WJ). �

P  P 1.1. Let C ∈ ∆ be such that the codistance w = δ∗(C,Cθ) has
minimal length. Let J = {s ∈ S | `(sw) < `(w)}, and let σ : S → S be the automorphism
of the Coxeter graph induced by θ. We claim that for all s ∈ J we have `(wσ(s)) < `(w)
and `(swσ(s)) = `(w).

For if `(wσ(s)) > `(w) then, by thickness, we can choose a chamber D with
δ(C, D) = s such that δ∗(C, Dθ) = w. Since `(sw) < `(w) we have δ∗(D, Dθ) = sw,
contradicting minimality of w.

Therefore `(wσ(s)) < `(w), and so for all D with δ(C, D) = s we have δ∗(C, Dθ) =

wσ(s). Therefore δ∗(D, Dθ) ∈ {wσ(s), swσ(s)}. By minimality of w we have
δ∗(D, Dθ) = swσ(s) and `(swσ(s)) = `(w).

By the previous lemma, w = wJ = swσ(s) ∈WJ . By connectivity in the J-residue R
of C, we get that δ∗(E, Eθ) = wJ ∈WJ for all chambers E in R, and so every chamber
in R is opposite to a chamber in Rθ, that is, R is a spherical residue which is opposite
its image under θ. �
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4. Proof of Theorem 1.3

In this section we prove Theorem 1.3, which will be an ingredient in the proof of
Theorem 1.2. Let J ⊆ S . We call an automorphism θ of a twin building J-opposite
if it maps all S \ J-residues to opposite residues (in other words, θ maps all type J
simplices to opposites). We simply say opposite instead of S -opposite (and so an
automorphism is opposite if it maps all chambers to opposite chambers).

A key observation is that if θ is J-opposite then δ∗(C,Cθ) ∈WS \ J for all
chambers C. Indeed if the S \ J-residue of C is opposite the S \ J-residue of Cθ

then there is a chamber D in the S \ J-residue of C with δ∗(D,Cθ) = 1. Since
δ(C, D) ∈WS \ J it follows that δ∗(C,Cθ) ∈WS \ J .

L 4.1. Suppose that the automorphism θ of ∆ is J-opposite with J ⊆ S nonempty.
Then θ is {s}-opposite for every s ∈ J.

P. We will call (S \ {s})-residues type s vertices (using simplicial complex
language). We need to show that θ maps type s vertices to type s vertices, for each
s ∈ J. Let x be a type s vertex, with s ∈ J, and suppose that xθ has type s′. Then s′ ∈ J
because θ preserves J setwise (as θ maps S \ J-residues to S \ J-residues). Let C be
a chamber contained in x. Since θ is J-opposite we have w := δ∗(C,Cθ) ∈WS \ J . By
(T3) there is a chamber D with δ(C, D) = s and δ∗(D,Cθ) = sw. Since θmaps the type s
vertex of C to the type s′ vertex of Cθ we have δ(Cθ, Dθ) = s′, and so [1, Lemma 5.139]
gives δ∗(D, Dθ) ∈ {sw, sws′}. Since θ is J-opposite we have δ∗(D, Dθ) ∈WS \ J . Since
w ∈WS \ J this forces δ∗(D, Dθ) = sws′, and since this must be an element of WS \ J

the deletion condition [1, Section 2.1] implies that sws′ = w. Thus sw = ws′. The
expressions sw and ws′ are reduced since w ∈WS \ J , and so by [1, Proposition 2.16]
we have s = s′. �

L 4.2. If w ∈WS \ {s}, s ∈ S , then sw = ws if and only if s commutes with each
generator appearing in a reduced expression for w.

P. We have `(ws) = `(w) + 1 because w ∈WS \ {s}. It follows from Tits’ solution to
the word problem [1, Theorem 2.33] that every reduced expression for ws has exactly 1
occurrence of the generator s. Also if s′ appears in a reduced expression for w, and s′

does not commute with s, then every occurrence of s′ in any reduced expression for
ws must occur to the left of the unique s generator. �

L 4.3. If θ is {s}-opposite for some s ∈ S then θ is S -opposite.

P. For the proof we define the Coxeter distance cox(u, v) between u ∈W and
v ∈W to be the minimum distance in the Coxeter graph of W between nodes s and
t such that s appears in a reduced expression for u, and t appears in a reduced
expression for v. (This is well defined because by [1, Proposition 2.16] the set of
generators appearing in a reduced expression for an element of W does not depend on
the particular reduced expression chosen.) Since W is irreducible, the Coxeter graph is
connected, and so if u, v , 1 then cox(u, v) <∞. By convention we set cox(u, v) =∞

if either u or v is the identity.
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Suppose that the automorphism θ is {s}-opposite. Let C be a chamber of ∆ such
that the Coxeter distance between s and w = δ∗(C,Cθ) is minimal. Since w ∈WS \ {s}

we have cox(s, w) ≥ 1. We aim to show that cox(s, w) =∞ (and so δ∗(C,Cθ) = 1 for
all C, hence the result).

Suppose, for a contradiction, that d = cox(s, w) satisfies 1 ≤ d <∞. Let s′ be a
generator appearing in a reduced expression for w with cox(s, s′) = d. Let t be the
second last node on a geodesic in the Coxeter graph from s to s′, so that cox(s, t) =

d − 1 and cox(t, w) = cox(t, s′) = 1. By the twin building axiom (T3) we can choose
a chamber D with δ(C, D) = t and δ∗(D,Cθ) = tw. Then δ∗(D, Dθ) ∈ {tw, twt′} where
δ(Cθ, Dθ) = t′. We consider each case.

Suppose that δ∗(D, Dθ) = tw. Since t does not appear in a reduced expression for w
we have `(tw) = `(w) + 1, and therefore cox(s, tw) = d − 1, contradicting the fact that
the chamber C minimises Coxeter distance.

Suppose that δ∗(D, Dθ) = twt′. Suppose first that t′ , t (this case only happens if
d > 1). Since θ induces an automorphism of the Coxeter graph preserving s we have
cox(s, t) = cox(s, t′) = d − 1. Thus `(twt′) = `(w) + 2 (since neither t nor t′ appear in a
reduced expression for w). Therefore cox(s, twt′) = d − 1, a contradiction. So we must
have that t′ = t. Since `(tw) = `(w) + 1 we have `(twt) = `(w) + 2 or `(twt) = `(w).
If `(twt) = `(w) + 2 then cox(s, twt) = d − 1, a contradiction. If `(twt) = `(w) then
by the deletion condition twt = w (for otherwise cox(s, twt) = d − 1, a contradiction).
Therefore tw = wt, contradicting Lemma 4.2 since cox(s, s′) = 1 and so s and s′ do not
commute.

Therefore cox(s, w) =∞, and the proof is complete. �

P  T 1.3. By Lemmas 4.1 and 4.3, if θ is J-opposite with J ⊆ S
nonempty then θ is opposite and so it maps all chambers to opposite chambers. If θ
maps all chambers to opposite chambers, then it is immediate that θ maps all residues
to opposite residues, so θ is J-opposite for any J ⊆ S . In particular, θ is {s}-opposite
for all s ∈ S , which means vertices of type s are mapped to vertices of type s for all
s ∈ S . �

5. Proof of Theorem 1.2

We call a rank-two building nonexotic if it is thick, finite and has parameters (p, q)
with gcd(p, q) > 1. As in Section 2, by parameters (p, q) we mean that every panel of
one type contains precisely p + 1 chambers and every panel of the other type contains
precisely q + 1 chambers.

It follows from [21, Section 5.6, Corollary 3] that every rank-two residue in a
locally finite 2-spherical thick twin building of rank at least 3 satisfies the Moufang
condition. Now, it follows from the last sentences of [19, Section 3] and [6, 7] that
every thick finite Moufang building of rank 2 is nonexotic. Hence every rank-two
residue in a locally finite 2-spherical thick twin building of rank at least 3 is nonexotic.
(In particular, this applies to any finite thick spherical building of rank at least 3.)
Hence the following theorem implies Theorem 1.2.
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T 5.1. Suppose that ∆ is a twin building of type (W, S ) with at least one
nonexotic rank-two residue which is not a generalised digon. Let J ⊆ S be nonempty.
Then an automorphism θ : ∆→ ∆ cannot map every S \ J-residue to an opposite
residue.

We will deduce Theorem 5.1 from Theorem 1.3 and the following propositions
about automorphisms of rank-two buildings. We will take the geometric view of rank-
two buildings as generalised m-gons (see Example 2.2).

Recall that a collineation (respectively, duality) of a generalised m-gon ∆ is a type-
preserving (respectively, type-swapping) automorphism θ : ∆→ ∆. Here, the type is
with respect to the ‘single’ spherical building structure, and not as a twin building (see
Example 2.1). Thus a duality maps points to lines. An absolute point of a duality of a
projective plane is a point which is mapped to a line incident with the point.

P 5.2 [12, 13]. Let ∆ be a finite generalised quadrangle, hexagon or
octagon with parameters (p, q), where gcd(p, q) > 1. Then every collineation of ∆

maps some point to a point at distance at most 2 in the incidence graph. In particular,
no collineation is opposite.

Dualities of finite projective planes are also treated in [13], but there is an error in
the proof of Corollary 5.5, which is pointed out in [14]. The correct version can be
found in [12, Corollary 1.4.5], which we restate here.

P 5.3. Let ∆ be a finite projective plane of order q and let θ be a duality of
∆ of order n. Let q′ be the square-free part of q (with q′ = 0 if q is a perfect square).
Then θ admits at least one absolute point if one of the following conditions is satisfied.

(i) q′ does not divide n.
(ii) q′ is even and divides n, but 8 does not divide n.
(iii) q′ = 3 mod 4, q′ divides n, but 4 does not divide n.

In the next proposition we show that these conditions can be omitted, not only
for the classical finite projective planes, but for all finite projective planes including
potential projective planes of nonprime-power orders.

P 5.4. Every duality of a finite projective plane has an absolute point.

P. Suppose that this is not true and consider a smallest counter-example ∆, of
order q, with a duality θ without absolute points.

By Proposition 5.3 every duality of a plane of square order q admits at least one
absolute point, so q is not a square. Let q′ , 0 be its square-free part. Also by
Proposition 5.3, if q′ does not divide |θ| (the order of θ), then θ admits at least one
absolute point. Hence we may assume from now on that q′ divides |θ|. Now we claim
that |θ| can be written as 2q′r, r ∈ N. Indeed, if q′ is odd, this follows from the fact that
θ is a duality. If q′ is even, then by Proposition 5.3, |θ| is a multiple of 8 and the claim
follows.

Let θ′ = θq′r, so θ′ is an involution. We now divide our arguments into three cases.
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Case 1. q′r is even and q is even. In this case θ′ is a collineation (a type-preserving
automorphism). Now we will use the fact that there are only three possible types of
collineations of order 2 of a projective plane of order q: homologies, elations, and Baer
involutions; see [10, Theorems 4.3 and 4.4]. They are characterised by their set of fixed
points and lines. A Baer involution happens only for q a perfect square and it pointwise
fixes a Baer subplane (a projective plane of order

√
q). Homologies and elations

happen when q is odd and even, respectively, and they are central collineations: they
have a unique centre (all lines through the centre are fixed), and a unique axis (all
points on the axis are fixed). For homologies the centre is not on the axis, for elations
it is.

Hence in our present situation, θ′ is an elation with axis L and centre x, where x ∈ L.
Since θ centralizes θ′, θ acts on the set of fixed points and fixed lines of θ′, and hence
must fix the flag {x, L}. Therefore x is an absolute point for θ, a contradiction.

Case 2. q′r is even and q is odd. In this case θ′ is again a collineation of order 2,
but since q is odd, θ′ is a homology with axis L and centre x, where x < L. Since
θ centralizes θ′, θ must interchange x and L, and preserve the set F of flags {y, yx}
where y ∈ L and xy denotes the line containing x and y. Since q is odd, so is q′. Pick
a prime p dividing q′ and write |θ| = ph`, where ` is not divisible by p. Note that `
is even. Let θ′′ = θ`. It has order ph and is a collineation. Since θ′′ centralises θ′, it
fixes both x and L, and preserves the set F . All the orbits of θ′′ have size 1 or a power
of p. Since F has size q + 1, which is congruent to 1 modulo p, θ′′ must fix at least
one flag of F . If there were only one such flag, then it follows from the fact that θ
centralises θ′′ that θ would fix that flag, and hence the point of that flag is absolute, a
contradiction.

Let P be the set of fixed points of θ′′ and let L be the set of lines of ∆ intersecting
P at at least two points. We claim that ∆′ = (P,L) is a projective plane. By definition,
two points are on one line, and since the intersection of two lines with two fixed points
each is also fixed, two lines in L meet at a point of P. The only remaining axiom to
check is that (P,L) contains a quadrangle. Let {zi, Mi}, i = 1, 2, be two distinct flags
of F fixed by θ′′. Since θ′′ fixes at least two points of Mi, namely x and zi and all
θ′′-orbits have size 1 or a power of p, there are at least p + 1 points of Mi in P. Let
yi be a point of Mi distinct from x and zi, in P (i = 1, 2). Then {y1, z1, y2, z2} forms a
quadrangle. Hence ∆′ = (P,L) is a projective plane. Since θ′′ is not the identity, P is
strictly contained in the point set of ∆.

Since θ centralises θ′′, θ acts on the projective plane ∆′, also without absolute points.
This contradicts the fact that ∆ was a smallest counter-example.

Case 3. q′r is odd. In this case θ′ is a duality of order 2, that is, a polarity, of a
projective plane with nonsquare order q. Baer showed [3] that the number of absolute
points of θ′ is exactly q + 1. Moreover, for q even, all the absolute points are collinear;
for q odd, not more than two absolute points lie on a given line. Note that the point x
is absolute for θ′ if and only if {x, xθ

′

} is a flag fixed by θ′. Let F be the set of flags
fixed by θ′; this set has size q + 1.
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Pick a prime p dividing q′ and write |θ| = ph`, where ` is not a multiple of p (note
that p is odd and ` is even). Let θ′′ = θ`. It has order ph and is a collineation. Since θ′′

centralises θ′, it preserves the set F . All the orbits of θ′′ have size 1 or a power of p.
Since F has size q + 1, which is congruent to 1 modulo p, θ′′ must fix at least one flag
of F . If there were only one such flag, then it follows from the fact that θ centralises
θ′′ that θ would fix that flag too, and then the point of that flag would be an absolute
point for θ, a contradiction. Hence θ′′ must fix at least p + 1 ≥ 4 flags of F .

Let P be the set of fixed points of θ′′ and let L be the set of lines of ∆ intersecting
P at at least two points. We claim that ∆′ = (P,L) is a projective plane. As above, the
only significant axiom to check is that (P,L) contains a quadrangle. If q is odd, then
the flags {x, xθ

′

} of F are such that no three of the absolute points are on a given line,
and since there are at least four such flags, (P,L) contains a quadrangle.

So assume now that q is even. Then, as noticed above, all the absolute points of θ′

form a line, say L. In other words, all the points of the flags of F lie on L, and there
are at least p + 1 ≥ 4 such points which are in P. Since L is the image by θ′ of at most
one of them (namely Lθ

′

, if it is an absolute point), there are at least two points x1,
x2 of P which are on L, and such that xθ

′

i , L and {xi, xθ
′

i } ∈ F is fixed by θ′′, i = 1, 2.
Hence θ′′ fixes y := xθ

′

1 ∩ xθ
′

2 . Since θ′′ fixes at least two points of xθ
′

i , namely xi and y,
and all θ′′-orbits have size 1 or a power of p, there are at least p + 1 points of xθ

′

i in P.
Let yi be a point of xθ

′

i distinct from xi and y, in P (i = 1, 2). Then {x1, y1, x2, y2} forms
a quadrangle.

Hence, in all cases, ∆′ := (P,L) is a projective plane. Since θ′′ is not the identity,
P is strictly contained in the point set of ∆.

Since θ centralises θ′′, θ acts on the projective plane ∆′ and as above it has no
absolute points, contradicting the fact that ∆ was a smallest counter-example. �

We now give the proof of Theorem 5.1 (and hence Theorem 1.2).

P  T 5.1. Suppose that θ : ∆→ ∆ maps all S \ J-residues to opposites.
Then by Theorem 1.3, θ is type-preserving and maps all chambers to opposites. Let
R be a nonexotic rank-two residue of ∆. Then (R, Rθ) forms a twin building with
codistance induced by the codistance of ∆. Since R is of spherical type we can see
this twin building as a (single) spherical building R in the usual way. The induced
automorphism θ̃ : R→ R is a duality if R is a projective plane, and a collineation
for generalised quadrangles, hexagons, and octagons. This automorphism maps all
chambers to opposites, contradicting Propositions 5.2 and 5.4. �

We conclude with some applications of Theorem 5.1. Our first application is to
involutions of spherical buildings.

C 5.5. An involution θ of a spherical building ∆ either maps every chamber
to an opposite or fixes at least one simplex. In particular, every involution of a finite
irreducible thick spherical building of rank at least 3 fixes some simplex.
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P. Suppose that θ does not map every chamber to an opposite and let C be a
chamber such that Cθ is not opposite C. Suppose that C ,Cθ. Choose an apartment A
through C and Cθ and let θ′ be the unique type-preserving isomorphism Aθ→ A fixing
C and Cθ. Then θθ′ restricted to A is an involution A→ A, as (θθ′)2 fixes C and Cθ but
θθ′ switches them.

Let Σ be the geometric realisation (on a sphere) of A as a Coxeter complex. Consider
the geodesic joining the barycentres of the chambers C and Cθ. Since C and Cθ are not
opposite, this geodesic is unique. In this case θθ′ fixes the midpoint of the geodesic,
and since θ′ acts as the identity on the convex closure of C and Cθ, this implies that θ
fixes some simplex.

If ∆ is a finite thick spherical building of rank at least 3, then all rank-two residues
are nonexotic (as we noted at the beginning of this section). By Theorem 1.2 the
involution θ : ∆→ ∆ cannot map all chambers to opposites, and hence fixes a simplex
by the above argument. �

We conclude with a group-theoretic application. Following [4, Definition 1.1], we
say that a group G with a twin BN-pair (see [1, Section 6.3.3]) admits a generalised
Iwasawa decomposition if there exists an automorphism θ of G such that (B+)θ = B−

and G = GθB+, where Gθ is the centraliser of θ in G. (For the motivations behind
Iwasawa decompositions, see the introduction to [4]).

C 5.6. Let G be an irreducible 2-spherical locally finite Kac–Moody group
of rank at least 3. Then no generalised Iwasawa decomposition of G can exist.

P. Let (∆+, ∆−, δ∗) be the twin building associated to G (see [1, Definition 6.82]).
The codistance between chambers gB+ ∈ ∆+ and hB− ∈ ∆− is given by δ∗(gB+, hB−) =

w if and only if g−1hB− ⊆ B+wB−. Suppose that there is an automorphism θ of
G with (B+)θ = B− and G = GθB+. Then each chamber of ∆+ can be written as
gB+ for some g ∈Gθ, and since g−1gθB− = B− ⊆ B+B− we have δ∗(gB+, (gB−)θ) = 1.
Hence each chamber of ∆+ is mapped to an opposite chamber under θ, contradicting
Theorem 1.2. �
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