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THE SEIFERT FIBER SPACE CONJECTURE
AND TORUS THEOREM
FOR NONORIENTABLE 3-MANIFOLDS

WOLFGANG HEIL AND WILBUR WHITTEN

ABSTRACT.  The Seifert-fiber-space conjecture for nonorientable 3-manifolds states
that if M denotes a compact, irreducible, nonorientable 3-manifold that is not a fake
P2 x S', if ;M is infinite and does not contain Z, * Z, as a subgroup, and if m; M does
however contain a nontrivial, cyclic, normal subgroup, then M is a Seifert bundle. In
this paper, we construct all compact, irreducible, nonorientable 3-manifolds (that do not
contain a fake P? x I) each of whose fundamental group contains Z, * Z, and an infinite
cyclic, normal subgroup; none of these manifolds admits a Seifert fibration, but they
satisfy Thurston’s Geometrization Conjecture. We then reformulate the statement of the
(nonorientable) SFS-conjecture and obtain a torus theorem for nonorientable manifolds.

1. Introduction. The proof of the Seifert fiber space conjecture (Theorem A) was
recently completed by Casson and Jungreis [1] and, independently, by Gabai ([6], [7]).
The nonorientable version (Theorem B) was given in [19].

THEOREM A. Let M denote a compact, orientable, irreducible 3-manifold with in-
finite fundamental group. Then M is a Seifert fiber space if and only if ;M contains a
nontrivial, cyclic, normal subgroup.

THEOREM B. Let M denote a compact, irreducible, nonorientable 3-manifold with
infinite fundamental group. Suppose that M is not a fake P*> x S', and that m;M does not
contain a subgroup isomorphic to Z x Z. Then M is a Seifert bundle if and only if ;M
contains a nontrivial, cyclic, normal subgroup.

REMARK. A 3-manifold is a Seifert bundle if it admits a decomposition into disjoint
circles (fibers) each having a regular neighborhood that is either a fibered solid torus or
a fibered solid Klein bottle. With this definition, a compact 3-manifold admits a Seifert
fibration if and only if it can be foliated by circles ([3], [14]).

As mentioned in the abstract we construct all compact, irreducible, nonorientable 3-
manifolds (not containing a fake P? x I) that mimic Seifert bundles in the sense that they
are not Seifert bundles even though the fundamental group of each of them contains a
nontrivial (indeed, infinite), cyclic, normal subgroup. An example of such a manifold is
the disk-connected sum P of P2 x [ with itself; notice that 1P = Z, ¥ Z,. The remaining
such manifolds contain at least one copy of P and are constructed by gluing together
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copies of P with Seifert bundles (with nonempty boundaries) in a certain way that we shall
describe. We call each of these constructed manifolds a Seifert bundle mod P and point
out here that each of them has at least two projective planes as boundary components
(there can also be other types of boundary components).

TORUS THEOREM. If M is an orientable, irreducible 3-manifold and ZOZ C m (M),
then M contains an incompressible torus or M is a Seifert fiber space.

For Haken manifolds this was announced by Waldhausen [18] and proved by Feustel
[4], [5], Johannson [10], Jaco-Shalen [9]. For compact orientable 3-manifolds, Scott [15]
shows that M either has an incompressible torus or ; (M) contains a cyclic normal sub-
group. From this the Torus Theorem for compact orientable 3-manifolds follows by the
Seifert fiber space conjecture. Gabai [7] also extends the theorem to the noncompact
case.

Our final result is the following torus theorem for nonorientable 3-manifolds.

THEOREM. Let M denote a nonorientable, irreducible 3-manifold. If Z&Z C m(M),
then M contains an incompressible torus or Klein bottle.

2. Seifert bundles modP. We first start with some examples.

Let P = P2 x I AP? x I be the disk connected sum of two copies of P? X I as in
Figure 1 with P = P3U P? U K. Note that the simple closed curve ¢ = ab on the Klein
bottle K generates a cyclic normal subgroupin m (P) = {(a, b : @*> = b*> = 1). An annulus
A on K is special if A is parallel on K to a regular neighborhood of ¢ in K.

FIGURE 1
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EXAMPLE 1. Let M be either a Seifert bundle or a copy of P and let Ai, ... ,A:n
be disjoint annuli on dM (not necessarily in the same boundary component). If M is a
bundle assume that each A/ is fibered; if M is a copy of P assume the A!’s are special.
LetA,,...,A, be disjoint parallel copies of A on K. Let W be obtained from M and P by
gluing A/ to A; by some homeomorphism for i = 1,..., n. Note that (W) has a cyclic
normal subgroup generated by .

EXAMPLE 2. Note that the Klein bottle K can be fibered over S' with fiber ¢. Let M
be either a Seifert bundle that contains a fibered (without exceptional fibers) Klein bottle
K’ in its boundary or a copy of P. Let W be obtained from M and P by identifying K’ and
K by a fiber preserving homeomorphism.

It is not hard to see that the infinite cyclic normal subgroup of 7; (M) corresponding
to the fiber remains infinite cyclic in m(W).

We wish to define a 3-manifold W to be a Seifert bundle mod P if W is obtained by
applying the process of Examples 1 and 2 a finite number of times. Note that Example 1
can be thought of as being obtained from example 2 as follows. Let K X [ be a collar of
K = K x0inP and if M is a copy of P let K’ X I be a collar of the Klein bottle boundary
K' = K’ x 0 of the copy of P. If in Example 1, M is a Seifert bundle, then K; = K x 1
splits W into P and a Seifert bundle. If M is a copy of P, then K; and K} = K’ x 1 split
W into two copies of P and a Seifert fiber space.

DEFINITION. A 3-manifold W is a Seifert bundle mod P if there is a collection of mu-
tually disjoint Klein bottles K, . . ., K in Int(W) that splits W into 3-manifolds Py, ..., Py,
My, ..., M,, where each P; is homeomorphic to P and each M; is a Seifert bundle. Further-
more, each K; is a boundary component of some P; and is fibered (without exceptional
fibers) such that a fibered annulus is special in P;. If K; lies in dP; and dM; then this
fibering of K; agrees with the fibering of K; induced by the fibration of M;. If K; lies in
dP; and 0P, then a fibered annulus on K; is special in P; and in Py.

We allow n = 0 or m = 0, so that P and Seifert bundles are also Seifert bundles mod P.

Note that a Seifert bundle mod P contains an even number (possibly 0) of projective
planes in its boundary and every P? in this manifold is parallel to the boundary.

LEMMA 1. Let M be a compact, irreducible 3-manifold which does not contain a fake
P? x I and suppose 71(M) contains an infinite cyclic normal subgroup N. If M contains
a 2-sided P? then either M = P* x S' or P? is parallel to a component of OM.

PROOF. Let P2 be a 2-sided P2 in M. Then P? lifts to an incompressible sphere S?
in the 2-fold orientable cover M of M and N = N N m;(M) is an infinite cyclic normal
subgroup of ) (M).

CASE (1). S? separates M into M; and M,. Since P? is 2-sided, the covering trans-
formation ¢ does not interchange the sides of S and hence P? separates M into M}, M,
where M; is the 2-fold orientable cover of M;. If 7,(M,) # 1 for i = 1 and 2, then since
Nisa cyclic normal subgroup of ) M) * (Mz), we must have (l\7I,~) =Z7Z,fori=1
and 2. But then 7;(M;) is finite and must also be Z;, by [2], a contradiction. Therefore
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m (M) = 1, say. Then m(M;) = Z, and by [2], M; = P? x I with P? as one of the
boundary components. Therefore P? is parallel to a boundary component of M.

CASE (2). 2 does not separate M. Then m(M) = m(M \ S2) * Z and since N is
a cyclic normal subgroup it follows that 7;(M \ $2) = 1, hence m;(M \ P?) = Z5. As
before, M \ P2 = P? x [ and therefore M = P2 x S'. .

LEMMA 2. Let M be as in Lemma 1 and let M be obtained from the 2-fold orientable
cover M by capping off the boundary 2-spheres with 3-balls. Then M is either §* x S' or
irreducible.

PROOF. Assuming that M # $? x S! it suffices to show that every S2 in Int(M) bounds
a (punctured) ball in M (where the punctures are components of oM).

Suppose S is a 2-sphere in Int(M). Let c: M — M be the non-trivial covering transfor-
mation. By an isotopy we can assume that either c¢(S) = S or ¢(S) N S consists of simple
closed curves. If ¢(S) = S then S covers a P? in M which by Lemma 1 is parallel to the
boundary of M. But then S bounds the punctured ball §> x I in M. So assume S does not
bound a punctured ball in M and ¢(S) N S consists of n simple closed curves, where S
is chosen so that in addition » is minimal. If n > 0, let D be an innermost disk on c(S).
Then 0D bounds adisk D’ on S. Let S} = S\ D'UD and S, = DUD'. By a small isotopy
(see [16]), either S; = c(S;) or S;MNc(S;) has fewer than n components. Moreover, at least
one of Sy, S7 does not bound a punctured ball in M, say 5. As above, S; # ¢(S1), and so
S1Mc(Sy) has fewer than n components. Hence for our original sphere S, we have n = 0
and SN c(S) = §. Therefore S covers a 2-sphere in M that bounds a 3-ball in M and so S
bounds a 3-ball in M. Thus M is irreducible. .

The next result is a reformulation of the SFS-conjecture (Theorem B) for nonori-
entable 3-manifolds.

THEOREM 1. Let M be a compact, irreducible, nonorientable 3-manifold that does
not contain a fake P* x I. Then 7;(M) contains a nontrivial cyclic normal subgroup iff
M is either P? x I or a Seifert bundle mod P.

PROOFE. If m (M) is finite then M = P? x I (by [2]). So we assume that m;(M) is
infinite. By [19, Proof of Theorem 1] we can also assume that the cyclic normal subgroup
N is infinite. Let p: M — M be the 2-fold orientable covering and c: M — M the covering
transformation. Then ¢ extends to an involution & M — M of the manifold M obtained
from M by filling in the boundary spheres with 3-balls, such that ¢ has one isolated fixed
point for each such 3-ball. Now N = p;'(N) is an infinite cyclic normal subgroup of
m1(M) and since M is irreducible (by Lemma 2) it follows from Theorem A that M is
a Seifert fiber space. By the argument in the proof of Theorem 1 of [19], é, leaves the
subgroup of (M) that is generated by a fiber H invariant and therefore it follows from
[12] that M has an é-invariant Seifert fibration. (If M is different from a Seifert fiber space
over S2with three exceptional fibers, this already follows from [17].)

If ¢ contains no fixed points, i.e., if M = M, then M is a Seifert bundle.
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Suppose P is a fixed point of é. If H is the fiber containing P then é(H) = H and there
is exactly one other fixed point Q on H such that ¢: H — H is reflection on PU Q. Let
Py, ...,Pw,Q1,...,Qpn be all the fixed points of ¢, where P; and Q; lie on the é-invariant
fiber H; (c = 1,...,m). Let N; be an ¢-invariant fibered solid torus neighborhood of
H; not containing any exceptional fibers (except possibly for H; itself) and such that
N;NN; = @ for i # j. We can assume that N; C IntM. Represent N; as D> x S' with
D? = {z ecC | lz] < 1} and S' = 9D?, and let @: D* — D? be &(z) = —z, k: ' — S' be
k(z) = Z. Then by [8, p. 898], we can assume that é: N; — N; is the map & X k. This is
illustrated in Figure 2, where p: N; — p(N;) = P; with P; = P and where the ¢-invariant
3-balls B;, B, must be removed to get the covering p: M — M.Aj,Ap onoN; map down
to a special annulus A;. The Klein bottle p(dN;) splits off a copy of P in M. It follows that
M is a Seifert bundle mod P. u

We now see that Thurston’s Geometrization Conjecture holds for Seifert bundles
mod P. In fact, we have the following result.

COROLLARY 1. Let M denote a compact, irreducible 3-manifold that does not con-
tain a fake P? x I and whose fundamental group is infinite if M is orientable. If (M)
contains a nontrivial, cyclic, normal subgroup, then Thurston’s Geometrization Conjec-
ture holds for M.

PROOE. By Theorem A and Theorem 1, the manifold M is either Seifert fibered, or
P2 x I, or a Seifert bundle mod P that is not Seifert fibered. In the first two cases, M
is geometrically modeled on a Seifert geometry. In the latter case, M (as in the proof
of Theorem 1) is Seifert fibered and the involution é&: M — M preserves some Seifert
fibration of M, and so ¢ preserves the geometric structure of M [12; p. 291]. It follows
that the Geometrization Conjecture holds for M (see [14; §6]). n

REMARK. A special case of the above proof is when M = P. There is a properly
imbedded disk in P compressing the Klein bottle boundary component and splitting P
into two copies of P? x I, which of course has geometric structure. We did not mention
this above, since when M = P, M is a solid torus whose trivial fibration is é-invariant,
and the above proof holds. The point here is that there are two ways to show that the Ge-
ometrization Conjecture holds for P. Similarly, to show the Geometrization Conjecture
for M a Seifert bundle mod P one could split M by the Klein bottles (in the definition of
Seifert bundle mod P) into copies of P and Seifert bundles, where each piece clearly has
a geometric structure.

3. The Torus Theorem for nonorientable 3-manifolds. The Torus Theorem for
compact nonorientable 3-manifolds M is proved by applying the Torus Theorem to the
2-fold orientable cover M of M. If M is irreducible and if 7; (M) contains Z @ Z, but M
does not contain an incompressible torus, then M is a “small” Seifert fiber space, i.e., M
does not contain a vertical torus. In this case the orbit surface S of M is either S?, D? or

P? and we have one of the following cases, where 7 is the number of exceptional fibers
of M:
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() §=5%n<3.
(i) S=D*n<1.
(iii) S=P%,n<1.
In case (i) n = 3, since otherwise M is a lens space. Also case (ii) cannot happen since
here M is a solid torus. In case (iii) (M) is either Z, * Z, or finite [13; (6.2)], hence
does not contain Z @ Z. Thus the only small Seifert fiber spaces that do not contain an
incompressible torus but whose fundamental groups contain Z & Z are those in the next
lemma.

LEMMA 3. Let M be a Seifert fiber space with orbit surface S* and with three ex-
ceptional fibers. Then M does not admit an orientation reversing and fiber preserving
involution i with at most isolated fixed points.

PROOF. Suppose ¢: M — M is an orientation reversing, fiber preserving involution.
Then ¢ permutes the exceptional fibers and therefore there is an exceptional fiber H which
is c-invariant. Let V be an invariant fibered solid torus neighborhood of A. If ¢ has no
fixed points on A we can assume that ¢ has no fixed points on V; hence c|V is a covering
translation and c: V — V is orientation reversing. But then V would cover a fibered solid
Klein bottle and that fibering lifts to a trivial fibering of V, a contradiction. Therefore A
contains a fixed point of ¢ and we have the situation of Figure 2 with ¢ = & X k. For
canonical generators a = 1 x §' € D?> x S' = V and b = 9D? x S' of 7;(9V) we have
c«(@) = a”!, cu(b) = b. Since H is exceptional, a regular fiber H ~ a*b” with |u| > 1.
But then c,(H) = H*! since c is fiber preserving and c,(H) = a~*b". This implies that
¢ = 0or +£l1, a contradiction. n

THEOREM 2 (TORUS THEOREM). If M is an irreducible nonorientable 3-manifold
and L ® Z C m(M) then M contains an incompressible torus or Klein bottle.

PROOF: CASE (1). M is compact and P2-irreducible. The squares of the two genera-
tors of Z @ Z in (M) lift to loops in the 2-fold orientable cover M of M and generate a
subgroup Z @ Z in (M). By the Torus Theorem (for the orientable irreducible case) M
either contains an incompressible torus or M is a small Seifert fiber space. In the first case,
by [11, Corollary (3.14)], M contains an c-equivariant incompressible torus, where c is
the covering translation. Therefore M contains an incompressible torus or Klein bottle.

The second case cannot happen by Lemma 3 and the discussion preceding Lemma 3.

CASE (2). M is compact irreducible and contains projective planes.

(2a) Every P? in M is parallel to oM.
Let M be obtained from M by capping off the 2-spheres of oM with 3-balls. By
the proof of Lemma 2, M is irreducible and T (M) contains a Z @ Z. The cov-
ering map c on M extends to an involution ¢ with isolated fixed points. Now the
argument of Case 1 applies: By Luft’s result M contains an é-equivariant incom-
pressible torus T that is disjoint from the fixed points. Hence T C M projects to
an incompressible torus or Klein bottle in M.

(2b) M contains non-boundary parallel P?’s.
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Let ¢ be a maximal collection of non-parallel and non-boundary parallel projec-
tive planesin M. Then M\ ¢ = M U---UM, and M\ p~'(p) = M, U--- UM,
(where p: M — M is the covering map), hence (M) = m (M) % - - - % 7 (M) *
Z x - - - % Z (where the Z-factors come from 2-spheres in the boundary of a M;
which are identified in M). Therefore Z & Z C m;(M,) for some k. Now M; and
M, are as in case (a). So there is an incompressible torus or Klein bottle in M;
and hence in M.

CASE (3). M is not compact.
This case is reduced to the compact case by the argument in the proof of Corol-
lary (9.6) in [7]. n
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