THE SEIFERT FIBER SPACE CONJECTURE AND TORUS THEOREM FOR NONORIENTABLE 3-MANIFOLDS

WOLFGANG HEIL AND WILBUR WHITTEN

ABSTRACT. The Seifert-fiber-space conjecture for nonorientable 3-manifolds states that if M denotes a compact, irreducible, nonorientable 3-manifold that is not a fake $P^2 \times S^1$, if $\pi_1 M$ is infinite and does not contain $Z_2 * Z_2$ as a subgroup, and if $\pi_1 M$ does however contain a nontrivial, cyclic, normal subgroup, then M is a Seifert bundle. In this paper, we construct all compact, irreducible, nonorientable 3-manifolds (that do not contain a fake $P^2 \times I$) each of whose fundamental group contains $Z_2 * Z_2$ and an infinite cyclic, normal subgroup; none of these manifolds admits a Seifert fibration, but they satisfy Thurston's Geometrization Conjecture. We then reformulate the statement of the (nonorientable) SFS-conjecture and obtain a torus theorem for nonorientable manifolds.

1. **Introduction.** The proof of the Seifert fiber space conjecture (Theorem A) was recently completed by Casson and Jungreis [1] and, independently, by Gabai ([6], [7]). The nonorientable version (Theorem B) was given in [19].

THEOREM A. Let M denote a compact, orientable, irreducible 3-manifold with infinite fundamental group. Then M is a Seifert fiber space if and only if $\pi_1 M$ contains a nontrivial, cyclic, normal subgroup.

THEOREM B. Let M denote a compact, irreducible, nonorientable 3-manifold with infinite fundamental group. Suppose that M is not a fake $P^2 \times S^1$, and that $\pi_1 M$ does not contain a subgroup isomorphic to $Z_2 * Z_2$. Then M is a Seifert bundle if and only if $\pi_1 M$ contains a nontrivial, cyclic, normal subgroup.

REMARK. A 3-manifold is a *Seifert bundle* if it admits a decomposition into disjoint circles (*fibers*) each having a regular neighborhood that is either a fibered solid torus or a fibered solid Klein bottle. With this definition, a compact 3-manifold admits a Seifert fibration if and only if it can be foliated by circles ([3], [14]).

As mentioned in the abstract we construct all compact, irreducible, nonorientable 3-manifolds (not containing a fake $P^2 \times I$) that mimic Seifert bundles in the sense that they are not Seifert bundles even though the fundamental group of each of them contains a nontrivial (indeed, infinite), cyclic, normal subgroup. An example of such a manifold is the disk-connected sum \mathbb{P} of $P^2 \times I$ with itself; notice that $\pi_1 \mathbb{P} \cong Z_2 * Z_2$. The remaining such manifolds contain at least one copy of \mathbb{P} and are constructed by gluing together

Received by the editors April 19, 1993.

AMS subject classification: Primary: 57N10; secondary: 57M50.

Key words and phrases: Seifert bundle, Seifert bundle mod P.

[©] Canadian Mathematical Society 1994.

copies of \mathbb{P} with Seifert bundles (with nonempty boundaries) in a certain way that we shall describe. We call each of these constructed manifolds a *Seifert bundle* mod \mathbb{P} and point out here that each of them has at least two projective planes as boundary components (there can also be other types of boundary components).

TORUS THEOREM. If M is an orientable, irreducible 3-manifold and $\mathbb{Z} \oplus \mathbb{Z} \subset \pi_1(M)$, then M contains an incompressible torus or M is a Seifert fiber space.

For Haken manifolds this was announced by Waldhausen [18] and proved by Feustel [4], [5], Johannson [10], Jaco-Shalen [9]. For compact orientable 3-manifolds, Scott [15] shows that M either has an incompressible torus or $\pi_1(M)$ contains a cyclic normal subgroup. From this the Torus Theorem for compact orientable 3-manifolds follows by the Seifert fiber space conjecture. Gabai [7] also extends the theorem to the noncompact case.

Our final result is the following torus theorem for nonorientable 3-manifolds.

THEOREM. Let M denote a nonorientable, irreducible 3-manifold. If $\mathbb{Z} \oplus \mathbb{Z} \subset \pi_1(M)$, then M contains an incompressible torus or K lein bottle.

2. **Seifert bundles** mod P. We first start with some examples.

Let $\mathbb{P} = P^2 \times I \triangle P^2 \times I$ be the disk connected sum of two copies of $P^2 \times I$ as in Figure 1 with $\partial \mathbb{P} = P_0^2 \cup P_1^2 \cup K$. Note that the simple closed curve t = ab on the Klein bottle K generates a cyclic normal subgroup in $\pi_1(\mathbb{P}) = \langle a, b : a^2 = b^2 = 1 \rangle$. An annulus A on K is *special* if A is parallel on K to a regular neighborhood of t in K.

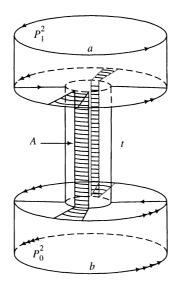


FIGURE 1

EXAMPLE 1. Let M be either a Seifert bundle or a copy of \mathbb{P} and let A'_1, \ldots, A'_m be disjoint annuli on ∂M (not necessarily in the same boundary component). If M is a bundle assume that each A'_i is fibered; if M is a copy of \mathbb{P} assume the A'_i 's are special. Let A_1, \ldots, A_m be disjoint parallel copies of A on K. Let W be obtained from M and \mathbb{P} by gluing A'_i to A_i by some homeomorphism for $i = 1, \ldots, n$. Note that $\pi_1(W)$ has a cyclic normal subgroup generated by t.

EXAMPLE 2. Note that the Klein bottle K can be fibered over S^1 with fiber t. Let M be either a Seifert bundle that contains a fibered (without exceptional fibers) Klein bottle K' in its boundary or a copy of \mathbb{P} . Let W be obtained from M and \mathbb{P} by identifying K' and K by a fiber preserving homeomorphism.

It is not hard to see that the infinite cyclic normal subgroup of $\pi_1(M)$ corresponding to the fiber remains infinite cyclic in $\pi_1(W)$.

We wish to define a 3-manifold W to be a *Seifert bundle* mod \mathbb{P} if W is obtained by applying the process of Examples 1 and 2 a finite number of times. Note that Example 1 can be thought of as being obtained from example 2 as follows. Let $K \times I$ be a collar of $K = K \times 0$ in \mathbb{P} and if M is a copy of \mathbb{P} let $K' \times I$ be a collar of the Klein bottle boundary $K' = K' \times 0$ of the copy of \mathbb{P} . If in Example 1, M is a Seifert bundle, then $K_1 = K \times 1$ splits W into \mathbb{P} and a Seifert bundle. If M is a copy of \mathbb{P} , then K_1 and $K'_1 = K' \times 1$ split W into two copies of \mathbb{P} and a Seifert fiber space.

DEFINITION. A 3-manifold W is a Seifert bundle mod \mathbb{P} if there is a collection of mutually disjoint Klein bottles K_1, \ldots, K_s in Int(W) that splits W into 3-manifolds $\mathbb{P}_1, \ldots, \mathbb{P}_n$, M_1, \ldots, M_m where each \mathbb{P}_i is homeomorphic to \mathbb{P} and each M_i is a Seifert bundle. Furthermore, each K_i is a boundary component of some \mathbb{P}_j and is fibered (without exceptional fibers) such that a fibered annulus is special in \mathbb{P}_j . If K_i lies in $\partial \mathbb{P}_j$ and ∂M_k then this fibering of K_i agrees with the fibering of K_i induced by the fibration of M_k . If K_i lies in $\partial \mathbb{P}_j$ and $\partial \mathbb{P}_k$ then a fibered annulus on K_i is special in \mathbb{P}_j and in \mathbb{P}_k .

We allow n = 0 or m = 0, so that \mathbb{P} and Seifert bundles are also Seifert bundles mod \mathbb{P} . Note that a Seifert bundle mod \mathbb{P} contains an even number (possibly 0) of projective planes in its boundary and every P^2 in this manifold is parallel to the boundary.

LEMMA 1. Let M be a compact, irreducible 3-manifold which does not contain a fake $P^2 \times I$ and suppose $\pi_1(M)$ contains an infinite cyclic normal subgroup N. If M contains a 2-sided P^2 then either $M = P^2 \times S^1$ or P^2 is parallel to a component of ∂M .

PROOF. Let P_*^2 be a 2-sided P^2 in M. Then P_*^2 lifts to an incompressible sphere S_*^2 in the 2-fold orientable cover \tilde{M} of M and $\tilde{N} = N \cap \pi_1(\tilde{M})$ is an infinite cyclic normal subgroup of $\pi_1(\tilde{M})$.

CASE (1). S_*^2 separates \tilde{M} into \tilde{M}_1 and \tilde{M}_2 . Since P_*^2 is 2-sided, the covering transformation c does not interchange the sides of S_*^2 and hence P^2 separates M into M_1, M_2 , where \tilde{M}_i is the 2-fold orientable cover of M_i . If $\pi_1(\tilde{M}_i) \neq 1$ for i = 1 and 2, then since \tilde{N} is a cyclic normal subgroup of $\pi_1(\tilde{M}_1) * \pi_1(\tilde{M}_2)$, we must have $\pi_1(\tilde{M}_i) = \mathbb{Z}_2$ for i = 1 and 2. But then $\pi_1(M_i)$ is finite and must also be \mathbb{Z}_2 , by [2], a contradiction. Therefore

 $\pi_1(\tilde{M}_1) = 1$, say. Then $\pi_1(M_1) = \mathbb{Z}_2$ and by [2], $M_1 = P^2 \times I$ with P_*^2 as one of the boundary components. Therefore P_*^2 is parallel to a boundary component of M.

CASE (2). S_*^2 does not separate \tilde{M} . Then $\pi_1(\tilde{M}) = \pi_1(\tilde{M} \setminus S_*^2) * \mathbb{Z}$ and since \tilde{N} is a cyclic normal subgroup it follows that $\pi_1(\tilde{M} \setminus S_*^2) = 1$, hence $\pi_1(M \setminus P_*^2) = \mathbb{Z}_2$. As before, $M \setminus P_*^2 = P^2 \times I$ and therefore $M = P^2 \times S^1$.

LEMMA 2. Let M be as in Lemma 1 and let \hat{M} be obtained from the 2-fold orientable cover \tilde{M} by capping off the boundary 2-spheres with 3-balls. Then \hat{M} is either $S^2 \times S^1$ or irreducible.

PROOF. Assuming that $\hat{M} \neq S^2 \times S^1$ it suffices to show that every S^2 in $Int(\tilde{M})$ bounds a (punctured) ball in \tilde{M} (where the punctures are components of $\partial \tilde{M}$).

Suppose S is a 2-sphere in $\operatorname{Int}(\tilde{M})$. Let $c\colon \tilde{M} \to \tilde{M}$ be the non-trivial covering transformation. By an isotopy we can assume that either c(S) = S or $c(S) \cap S$ consists of simple closed curves. If c(S) = S then S covers a P^2 in M which by Lemma 1 is parallel to the boundary of M. But then S bounds the punctured ball $S^2 \times I$ in \tilde{M} . So assume S does not bound a punctured ball in \tilde{M} and $c(S) \cap S$ consists of n simple closed curves, where S is chosen so that in addition n is minimal. If n > 0, let D be an innermost disk on c(S). Then ∂D bounds a disk D' on S. Let $S_1 = S \setminus D' \cup D$ and $S_2 = D \cup D'$. By a small isotopy (see [16]), either $S_j = c(S_j)$ or $S_j \cap c(S_j)$ has fewer than n components. Moreover, at least one of S_1, S_2 does not bound a punctured ball in \tilde{M} , say S_1 . As above, $S_1 \neq c(S_1)$, and so $S_1 \cap c(S_1)$ has fewer than n components. Hence for our original sphere S, we have n = 0 and $S \cap c(S) = \emptyset$. Therefore S covers a 2-sphere in M that bounds a 3-ball in M and so S bounds a 3-ball in \tilde{M} . Thus \hat{M} is irreducible.

The next result is a reformulation of the SFS-conjecture (Theorem B) for nonorientable 3-manifolds.

THEOREM 1. Let M be a compact, irreducible, nonorientable 3-manifold that does not contain a fake $P^2 \times I$. Then $\pi_1(M)$ contains a nontrivial cyclic normal subgroup iff M is either $P^2 \times I$ or a Seifert bundle mod \mathbb{P} .

PROOF. If $\pi_1(M)$ is finite then $M = P^2 \times I$ (by [2]). So we assume that $\pi_1(M)$ is infinite. By [19, Proof of Theorem 1] we can also assume that the cyclic normal subgroup N is infinite. Let $p: \tilde{M} \to M$ be the 2-fold orientable covering and $c: \tilde{M} \to \tilde{M}$ the covering transformation. Then c extends to an involution $\hat{c}: \hat{M} \to \hat{M}$ of the manifold \hat{M} obtained from \tilde{M} by filling in the boundary spheres with 3-balls, such that \hat{c} has one isolated fixed point for each such 3-ball. Now $\tilde{N} = p_*^{-1}(N)$ is an infinite cyclic normal subgroup of $\pi_1(\hat{M})$ and since \hat{M} is irreducible (by Lemma 2) it follows from Theorem A that \hat{M} is a Seifert fiber space. By the argument in the proof of Theorem 1 of [19], \hat{c}_* leaves the subgroup of $\pi_1(\hat{M})$ that is generated by a fiber H invariant and therefore it follows from [12] that \hat{M} has an \hat{c} -invariant Seifert fibration. (If \hat{M} is different from a Seifert fiber space over S^2 with three exceptional fibers, this already follows from [17].)

If \hat{c} contains no fixed points, i.e., if $\hat{M} = \tilde{M}$, then M is a Seifert bundle.

Suppose P is a fixed point of \hat{c} . If H is the fiber containing P then $\hat{c}(H) = H$ and there is exactly one other fixed point Q on H such that $\hat{c}: H \to H$ is reflection on $P \cup Q$. Let $P_1, \ldots, P_m, Q_1, \ldots, Q_m$ be all the fixed points of \hat{c} , where P_i and Q_i lie on the \hat{c} -invariant fiber H_i ($c = 1, \ldots, m$). Let N_i be an \hat{c} -invariant fibered solid torus neighborhood of H_i not containing any exceptional fibers (except possibly for H_i itself) and such that $N_i \cap N_j = \emptyset$ for $i \neq j$. We can assume that $N_i \subset \operatorname{Int} \hat{M}$. Represent N_i as $D^2 \times S^1$ with $D^2 = \{z \in \mathbb{C} \mid |z| \leq 1\}$ and $S^1 = \partial D^2$, and let $\hat{\alpha}: D^2 \to D^2$ be $\hat{\alpha}(z) = -z, k: S^1 \to S^1$ be $k(z) = \overline{z}$. Then by [8, p. 898], we can assume that $\hat{c}: N_i \to N_i$ is the map $\hat{\alpha} \times k$. This is illustrated in Figure 2, where $p: N_i \to p(N_i) = \mathbb{P}_i$ with $\mathbb{P}_i \cong \mathbb{P}$ and where the \hat{c} -invariant 3-balls B_{i1}, B_{i2} must be removed to get the covering $p: \tilde{M} \to M$. A_{i1}, A_{i2} on ∂N_i map down to a special annulus A_i . The Klein bottle $p(\partial N_i)$ splits off a copy of \mathbb{P} in M. It follows that M is a Seifert bundle mod \mathbb{P} .

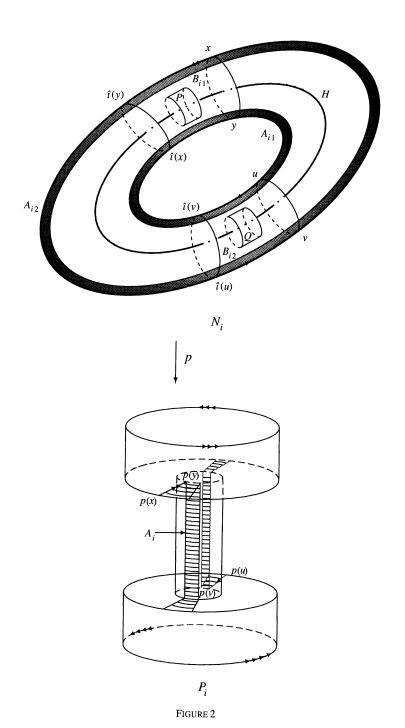
We now see that Thurston's Geometrization Conjecture holds for Seifert bundles mod P. In fact, we have the following result.

COROLLARY 1. Let M denote a compact, irreducible 3-manifold that does not contain a fake $P^2 \times I$ and whose fundamental group is infinite if M is orientable. If $\pi_1(M)$ contains a nontrivial, cyclic, normal subgroup, then Thurston's Geometrization Conjecture holds for M.

PROOF. By Theorem A and Theorem 1, the manifold M is either Seifert fibered, or $P^2 \times I$, or a Seifert bundle mod \mathbb{P} that is not Seifert fibered. In the first two cases, M is geometrically modeled on a Seifert geometry. In the latter case, \hat{M} (as in the proof of Theorem 1) is Seifert fibered and the involution $\hat{c}: \hat{M} \to \hat{M}$ preserves some Seifert fibration of \hat{M} , and so \hat{c} preserves the geometric structure of \hat{M} [12; p. 291]. It follows that the Geometrization Conjecture holds for M (see [14; §6]).

REMARK. A special case of the above proof is when $M = \mathbb{P}$. There is a properly imbedded disk in \mathbb{P} compressing the Klein bottle boundary component and splitting \mathbb{P} into two copies of $P^2 \times I$, which of course has geometric structure. We did not mention this above, since when $M = \mathbb{P}$, \hat{M} is a solid torus whose trivial fibration is \hat{c} -invariant, and the above proof holds. The point here is that there are *two* ways to show that the Geometrization Conjecture holds for \mathbb{P} . Similarly, to show the Geometrization Conjecture for M a Seifert bundle mod \mathbb{P} one could split M by the Klein bottles (in the definition of Seifert bundle mod \mathbb{P}) into copies of \mathbb{P} and Seifert bundles, where each piece clearly has a geometric structure.

3. The Torus Theorem for nonorientable 3-manifolds. The Torus Theorem for compact nonorientable 3-manifolds M is proved by applying the Torus Theorem to the 2-fold orientable cover \tilde{M} of M. If \tilde{M} is irreducible and if $\pi_1(\tilde{M})$ contains $\mathbb{Z} \oplus \mathbb{Z}$, but \tilde{M} does not contain an incompressible torus, then \tilde{M} is a "small" Seifert fiber space, *i.e.*, \tilde{M} does not contain a vertical torus. In this case the orbit surface S of \tilde{M} is either S^2 , D^2 or P^2 and we have one of the following cases, where n is the number of exceptional fibers of \tilde{M} :



- (i) $S = S^2$, n < 3.
- (ii) $S = D^2, n \le 1$.
- (iii) $S = P^2, n \le 1$.

In case (i) n=3, since otherwise \tilde{M} is a lens space. Also case (ii) cannot happen since here \tilde{M} is a solid torus. In case (iii) $\pi_1(M)$ is either $\mathbb{Z}_2 * \mathbb{Z}_2$ or finite [13; (6.2)], hence does not contain $\mathbb{Z} \oplus \mathbb{Z}$. Thus the only small Seifert fiber spaces that do not contain an incompressible torus but whose fundamental groups contain $\mathbb{Z} \oplus \mathbb{Z}$ are those in the next lemma.

LEMMA 3. Let \tilde{M} be a Seifert fiber space with orbit surface S^2 and with three exceptional fibers. Then \tilde{M} does not admit an orientation reversing and fiber preserving involution i with at most isolated fixed points.

PROOF. Suppose $c: \tilde{M} \to \tilde{M}$ is an orientation reversing, fiber preserving involution. Then c permutes the exceptional fibers and therefore there is an exceptional fiber \bar{H} which is c-invariant. Let V be an invariant fibered solid torus neighborhood of \bar{H} . If c has no fixed points on \bar{H} we can assume that c has no fixed points on V; hence c|V is a covering translation and $c:V\to V$ is orientation reversing. But then V would cover a fibered solid Klein bottle and that fibering lifts to a trivial fibering of V, a contradiction. Therefore \bar{H} contains a fixed point of c and we have the situation of Figure 2 with $c=\hat{\alpha}\times k$. For canonical generators $a=1\times S^1\subset D^2\times S^1=V$ and $b=\partial D^2\times S^1$ of $\pi_1(\partial V)$ we have $c_*(a)=a^{-1}, c_*(b)=b$. Since \bar{H} is exceptional, a regular fiber $H\sim a^\mu b^\nu$ with $|\mu|>1$. But then $c_*(H)=H^{\pm 1}$ since c is fiber preserving and $c_*(H)=a^{-\mu}b^\nu$. This implies that $\mu=0$ or ± 1 , a contradiction.

THEOREM 2 (TORUS THEOREM). If M is an irreducible nonorientable 3-manifold and $\mathbb{Z} \oplus \mathbb{Z} \subset \pi_1(M)$ then M contains an incompressible torus or Klein bottle.

PROOF: CASE (1). M is compact and P^2 -irreducible. The squares of the two generators of $\mathbb{Z} \oplus \mathbb{Z}$ in $\pi_1(M)$ lift to loops in the 2-fold orientable cover \tilde{M} of M and generate a subgroup $\mathbb{Z} \oplus \mathbb{Z}$ in $\pi_1(\tilde{M})$. By the Torus Theorem (for the orientable irreducible case) \tilde{M} either contains an incompressible torus or \tilde{M} is a small Seifert fiber space. In the first case, by [11, Corollary (3.14)], \tilde{M} contains an c-equivariant incompressible torus, where c is the covering translation. Therefore M contains an incompressible torus or Klein bottle.

The second case cannot happen by Lemma 3 and the discussion preceding Lemma 3.

CASE (2). *M* is compact irreducible and contains projective planes.

- (2a) Every P^2 in M is parallel to ∂M .
 - Let \hat{M} be obtained from \tilde{M} by capping off the 2-spheres of $\partial \tilde{M}$ with 3-balls. By the proof of Lemma 2, \hat{M} is irreducible and $\pi_1(\hat{M})$ contains a $\mathbb{Z} \oplus \mathbb{Z}$. The covering map c on \tilde{M} extends to an involution \hat{c} with isolated fixed points. Now the argument of Case 1 applies: By Luft's result \hat{M} contains an \hat{c} -equivariant incompressible torus T that is disjoint from the fixed points. Hence $T \subset \tilde{M}$ projects to an incompressible torus or Klein bottle in M.
- (2b) M contains non-boundary parallel P^2 's.

Let φ be a maximal collection of non-parallel and non-boundary parallel projective planes in M. Then $M \setminus \varphi = M_1 \cup \cdots \cup M_n$ and $\tilde{M} \setminus p^{-1}(\varphi) = \tilde{M}_1 \cup \cdots \cup \tilde{M}_n$ (where $p: \tilde{M} \to M$ is the covering map), hence $\pi_1(\tilde{M}) = \pi_1(\tilde{M}_1) * \cdots * \pi_1(\tilde{M}_n) * \mathbb{Z} * \cdots * \mathbb{Z}$ (where the \mathbb{Z} -factors come from 2-spheres in the boundary of a \tilde{M}_i which are identified in \tilde{M}). Therefore $\mathbb{Z} \oplus \mathbb{Z} \subset \pi_1(\tilde{M}_k)$ for some k. Now M_k and \tilde{M}_k are as in case (a). So there is an incompressible torus or Klein bottle in M_k and hence in M.

CASE (3). M is not compact.

This case is reduced to the compact case by the argument in the proof of Corollary (9.6) in [7].

REFERENCES

- 1. A. Casson and D. Jungreis, Convergence groups and Seifert fibered 3-manifolds, preprint.
- 2. D. B. A. Epstein, Projective planes in 3-manifolds, Proc. London Math. Soc. (3) 11(1961), 469-484.
- 3. ______, Periodic flows on 3-manifolds, Ann. of Math. 95(1972), 66-82.
- 4. C. D. Feustel, On the torus theorem for closed 3-manifolds, Trans. Amer. Math. Soc. 217(1976), 45-47.
- 5. _____, On the torus theorem and its applications, Trans. Amer. Math. Soc. 217(1976), 1–43.
- 6. D. Gabai, Convergence groups are Fuchsian groups, Bull. Amer. Math. Soc. (2) 25(1991), 395-402.
- 7. _____, Convergence groups are Fuchsian groups, preprint.
- 8. W. H. Holzman, An equivariant torus theorem for involutions, Trans. Amer. Math. Soc. 326(1991), 887–906.
- 9. W. Jaco and P. Shalen, Seifert fiber spaces in 3-manifolds, Mem. Amer. Math. Soc. (220) 21(1979).
- K. Johannson, Homotopy Equivalences of 3-Manifolds with Boundary, Lecture Notes in Math. 761, Springer, 1979.
- 11. E. Luft, Equivariant surgery on incompressible tori and Klein bottles in 3-manifolds with respect to involutions, Math. Ann. 272(1985), 519–544.
- 12. W. H. Meeks and P. Scott, Finite group actions on 3-manifolds, Invent. Math. 86(1986), 287-346.
- 13. P. Orlik, Seifert Manifolds, Lecture Notes in Math. 291, Springer, 1972.
- 14. G. P. Scott, The geometries of 3-manifolds, Bull. London Math. Soc. 15(1983), 401–487.
- 15. _____, Strong annulus and torus theorems and the enclosing property of characteristic submanifolds of 3-manifolds, Quart. J. Math. Oxford 35(1984), 485–506.
- 16. J. Tollefson, Free involutions on non-prime 3-manifolds, Osaka J. Math. 7(1970), 161-164.
- 17. _____, Involution of Seifert fiber spaces, Pacific J. Math. 74(1978), 519-529.
- **18.** F. Waldhausen, On the determination of some bounded 3-manifolds by their fundamental group alone, Proc. Internat. Symp. Topology, Herce-Novi, Yugoslavia 1968; Beograd, 1969, 331–332.
- 19. W. Whitten, Recognizing nonorientable Seifert bundles, J. Knot Theory Ramifications 1(1992), 471-475.

Department of Mathematics Florida State University Tallahassee, Florida 32306-3027 U.S.A.

Department of Mathematics University of Southwestern Louisiana Lafayette, Louisiana 70504 U.S.A.