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THE SEIFERT FIBER SPACE CONJECTURE 
AND TORUS THEOREM 

FOR NONORIENTABLE 3-MANIFOLDS 

WOLFGANG HEIL AND WILBUR WHITTEN 

ABSTRACT. The Seifert-fiber-space conjecture for nonorientable 3-manifolds states 
that if M denotes a compact, irreducible, nonorientable 3-manifold that is not a fake 
P2 x S{, if 7TiM is infinité and does not contain Z^ * Z2 as a subgroup, and if n\M does 
however contain a nontrivial, cyclic, normal subgroup, then M is a Seifert bundle. In 
this paper, we construct all compact, irreducible, nonorientable 3-manifolds (that do not 
contain a fake P1 xl) each of whose fundamental group contains Z2 * Z2 and an infinité 
cyclic, normal subgroup; none of these manifolds admits a Seifert fibration, but they 
satisfy Thurston's Geometrization Conjecture. We then reformulate the statement of the 
(nonorientable) SFS-conjecture and obtain a torus theorem for nonorientable manifolds. 

1. Introduction. The proof of the Seifert fiber space conjecture (Theorem A) was 
recently completed by Casson and Jungreis [1] and, independently, by Gabai ([6], [7]). 
The nonorientable version (Theorem B) was given in [19]. 

THEOREM A. Let M denote a compact, orientable, irreducible 3-manifold with in­
finite fundamental group. Then M is a Seifert fiber space if and only ifn\M contains a 
nontrivial, cyclic, normal subgroup. 

THEOREM B. Let M denote a compact, irreducible, nonorientable 3-manifold with 
infinite fundamental group. Suppose that M is not a fake P2 xSx, and that TT\M does not 
contain a subgroup isomorphic to Z2 * Z2. Then M is a Seifert bundle if and only ifir\M 
contains a nontrivial, cyclic, normal subgroup. 

REMARK. A 3-manifold is a Seifert bundle if it admits a decomposition into disjoint 
circles (fibers) each having a regular neighborhood that is either a fibered solid torus or 
a fibered solid Klein bottle. With this definition, a compact 3-manifold admits a Seifert 
fibration if and only if it can be foliated by circles ([3], [14]). 

As mentioned in the abstract we construct all compact, irreducible, nonorientable 3-
manifolds (not containing a fake P2 xl) that mimic Seifert bundles in the sense that they 
are not Seifert bundles even though the fundamental group of each of them contains a 
nontrivial (indeed, infinite), cyclic, normal subgroup. An example of such a manifold is 
the disk-connected sum P of P2 xl with itself; notice that 7TiP = Z2 *Z2. The remaining 
such manifolds contain at least one copy of P and are constructed by gluing together 
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copies of P with Seifert bundles (with nonempty boundaries) in a certain way that we shall 
describe. We call each of these constructed manifolds a Seifert bundle mod P and point 
out here that each of them has at least two projective planes as boundary components 
(there can also be other types of boundary components). 

TORUS THEOREM. If M is an orientable, irreducible 3-manifold and Z 0 Z C ir\ (M), 
then M contains an incompressible torus or M is a Seifert fiber space. 

For Haken manifolds this was announced by Waldhausen [18] and proved by Feustel 
[4], [5], Johannson [10], Jaco-Shalen [9]. For compact orientable 3-manifolds, Scott [15] 
shows that M either has an incompressible torus or it\ (M) contains a cyclic normal sub­
group. From this the Torus Theorem for compact orientable 3-manifolds follows by the 
Seifert fiber space conjecture. Gabai [7] also extends the theorem to the noncompact 
case. 

Our final result is the following torus theorem for nonorientable 3-manifolds. 

THEOREM. Let M denote a nonorientable, irreducible 3-manifold. If "Z © Z C n\ (M), 
then M contains an incompressible torus or Klein bottle. 

2. Seifert bundles mod P. We first start with some examples. 
Let P = P2 x / A P2 x / be the disk connected sum of two copies of P2 x I as in 

Figure 1 with 3P = PQ U P\ U K. Note that the simple closed curve t = ab on the Klein 
bottle K generates a cyclic normal subgroup in m (P) = (a,b : a2 = b2 = 1 ). An annulus 
A on K is special if A is parallel on K to a regular neighborhood of t in K. 

FIGURE 1 
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EXAMPLE 1. Let M be either a Seifert bundle or a copy of P and let A[,...,A'm 

be disjoint annuli on dM (not necessarily in the same boundary component). If M is a 
bundle assume that each A- is fibered; if M is a copy of P assume the A-'s are special. 
Let A\,..., Am be disjoint parallel copies of A on K. Let W be obtained from M and P by 
gluing A- to Ai by some homeomorphism for / = 1, . . . , n. Note that n\(W) has a cyclic 
normal subgroup generated by t. 

EXAMPLE 2. Note that the Klein bottle K can be fibered over Sx with fiber t. Let M 
be either a Seifert bundle that contains a fibered (without exceptional fibers) Klein bottle 
K' in its boundary or a copy of P. Let W be obtained from M and P by identifying K' and 
K by a fiber preserving homeomorphism. 

It is not hard to see that the infinite cyclic normal subgroup of m (M) corresponding 
to the fiber remains infinite cyclic in TT\(W). 

We wish to define a 3-manifold W to be a Seifert bundle mod P if W is obtained by 
applying the process of Examples 1 and 2 a finite number of times. Note that Example 1 
can be thought of as being obtained from example 2 as follows. Let K x / be a collar of 
K = K x 0 in P and if M is a copy of P let K' x / be a collar of the Klein bottle boundary 
K1 = K' x 0 of the copy of P. If in Example 1, M is a Seifert bundle, then Kx = K x \ 
splits W into P and a Seifert bundle. If M is a copy of P, then K\ and K[ = K' x 1 split 
W into two copies of P and a Seifert fiber space. 

DEFINITION. A 3-manifold W is a Seifert bundle mod P if there is a collection of mu­
tually disjoint Klein bottles K\,..., Ks in Int( W) that splits W into 3-manifolds P i , . . . , Pn, 
M\,..., Mm where each P; is homeomorphic to P and each Mr is a Seifert bundle. Further­
more, each Ki is a boundary component of some P/ and is fibered (without exceptional 
fibers) such that a fibered annulus is special in P7. If Ki lies in 3P7 and dMk then this 
fibering of Ki agrees with the fibering of Ki induced by the fibration of Mk. If Ki lies in 
dPj and dPk then a fibered annulus on Ki is special in P/ and in Pk. 
We allow n = 0 or m = 0, so that P and Seifert bundles are also Seifert bundles mod P. 

Note that a Seifert bundle mod P contains an even number (possibly 0) of projective 
planes in its boundary and every P2 in this manifold is parallel to the boundary. 

LEMMA 1. Let M be a compact, irreducible 3-manifold which does not contain a fake 
P2 x I and suppose 1X\{M) contains an infinite cyclic normal subgroup N.IfM contains 
a 2-sided P2 then either M = P2 X Sl or P2 is parallel to a component of dM. 

PROOF. Let Pi be a 2-sided P2 in M. Then Pi lifts to an incompressible sphere Si 
in the 2-fold orientable cover M of M and N = N n 1T\ (M) is an infinite cyclic normal 
subgroup of 7Ti(M). 

CASE (1). Si separates M into M\ and M^. Since P2
% is 2-sided, the covering trans­

formation c does not interchange the sides of S2
% and hence P2 separates M into M\, M2, 

where M; is the 2-fold orientable cover of M/. If 7Ti(M/) ^ 1 for / = 1 and 2, then since 
TV is a cyclic normal subgroup of TT\ (M\ ) * TT\ (M2), we must have IT\ (Mf) = Z2 for / = 1 
and 2. But then 7Ti(M/) is finite and must also be Z2, by [2], a contradiction. Therefore 
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7Ti(Mi) = 1, say. Then TÏ\{M\) = Z2 and by [2], M\ = P2 x I with Pi as one of the 
boundary components. Therefore Pi is parallel to a boundary component of M. 

CASE (2). Si does not separate M. Then TT\(M) = 7Ti(M \ Si) * Z and since N is 
a cyclic normal subgroup it follows that TT\(M \Sl) = 1, hence 7ri(M \ Pi) = Z2'. As 
before, M \ Pi = P2 x / and therefore M = P2 x S1. • 

LEMMA 2. Le£ M be as in Lemma 1 and let M be obtained from the 2-fold orientable 
cover M by capping off the boundary 2-spheres with 3-balls. Then M is either S2 x S1 or 
irreducible. 

PROOF. Assuming that M ^ S2 x S1 it suffices to show that every S2 in Int(M) bounds 
a (punctured) ball in M (where the punctures are components of dM). 

Suppose S is a 2-sphere in Int(M). Let c: M —• M be the non-trivial covering transfor­
mation. By an isotopy we can assume that either c(S) = S or c(S) f) S consists of simple 
closed curves. If c(S) = S then S covers a P2 in M which by Lemma 1 is parallel to the 
boundary of M. But then S bounds the punctured ball S2 x / in M. So assume S does not 
bound a punctured ball in M and c(S) D S consists of n simple closed curves, where S 
is chosen so that in addition n is minimal. If n > 0, let D be an innermost disk on c(S). 
Then dD bounds a disk D' on 5. Let Si = S\D'\JD and 52 = DUD'. By a small isotopy 
(see [16]), either Sj = c(Sj) or SjdciSj) has fewer than « components. Moreover, at least 
one of S\, 62 does not bound a punctured ball in M, say S\. As above, Si ^ c(Si ), and so 
Si Pi c(Si ) has fewer than n components. Hence for our original sphere S, we have n = 0 
and S H c(S) = 0. Therefore S covers a 2-sphere in M that bounds a 3-ball in M and so S 
bounds a 3-ball in M. Thus M is irreducible. • 

The next result is a reformulation of the SFS-conjecture (Theorem B) for nonori-
entable 3-manifolds. 

THEOREM 1. Let M be a compact, irreducible, nonorientable 3-manifold that does 
not contain a fake P2 x /. Then m (M) contains a nontrivial cyclic normal subgroup iff 
M is either P2 xlora Seifert bundle mod P. 

PROOF. If 7n(M) is finite then M = P2 x / (by [2]). So we assume that 7Ti(M) is 
infinite. By [19, Proof of Theorem 1] we can also assume that the cyclic normal subgroup 
N is infinite. Let/?: M —• M be the 2-fold orientable covering and c:M —• M the covering 
transformation. Then c extends to an involution c: M —* M of the manifold M obtained 
from M by filling in the boundary spheres with 3-balls, such that c has one isolated fixed 
point for each such 3-ball. Now N = p^l(N) is an infinite cyclic normal subgroup of 
7Ti (M) and since M is irreducible (by Lemma 2) it follows from Theorem A that M is 
a Seifert fiber space. By the argument in the proof of Theorem 1 of [19], c* leaves the 
subgroup of 7Ti (M) that is generated by a fiber H invariant and therefore it follows from 
[12] that M has an c-invariant Seifert fibration. (If M is different from a Seifert fiber space 
over S2with three exceptional fibers, this already follows from [17].) 

If c contains no fixed points, i.e., if M = M, then M is a Seifert bundle. 
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Suppose P is a fixed point of c. If H is the fiber containing P then c(H) = H and there 
is exactly one other fixed point Q on H such that c:H —+ H is reflection on PUQ. Let 
^ 1 , . • •, Pm, Q\, • • •, Qm be all the fixed points of c, where P, and g/ lie on the c-invariant 
fiber Hi (c = 1 , . . . , ra). Let Ni be an c-invariant fibered solid torus neighborhood of 
Hi not containing any exceptional fibers (except possibly for Hi itself) and such that 
Ni H Nj; = 0 for / ^ 7. We can assume that Ni C IntM. Represent N, as D2 x S1 with 
£>2 = { z G C | |z| < l JandS 1 = 3D2, and let a:D2 —> D2 be d(z) = - z , k: Sl —> Sl be 
k(z) = z. Then by [8, p. 898], we can assume that c: Ni —• Ni is the map à x k. This is 
illustrated in Figure 2, where/?:Ni —* p(Nf) = P; with P, = P and where the c-invariant 
3-balls Bi\, Bi2 must be removed to get the covering/?: M -—•M. A,i, A/2 on dNi map down 
to a special annulus A/. The Klein bottle p(dNi) splits off a copy of P in M. It follows that 
M is a Seifert bundle mod P. • 

We now see that Thurston's Geometrization Conjecture holds for Seifert bundles 
mod P. In fact, we have the following result. 

COROLLARY 1. Let M denote a compact, irreducible ^-manifold that does not con­
tain a fake P2 x I and whose fundamental group is infinite if M is orientable. Ifix\{M) 
contains a nontrivial, cyclic, normal subgroup, then Thurston's Geometrization Conjec­
ture holds for M. 

PROOF. By Theorem A and Theorem 1, the manifold M is either Seifert fibered, or 
P2 x /, or a Seifert bundle modP that is not Seifert fibered. In the first two cases, M 
is geometrically modeled on a Seifert geometry. In the latter case, M (as in the proof 
of Theorem 1) is Seifert fibered and the involution c:M —+ M preserves some Seifert 
fibration of M, and so c preserves the geometric structure of M [12; p. 291]. It follows 
that the Geometrization Conjecture holds for M (see [14; §6]). • 

REMARK. A special case of the above proof is when M = P. There is a properly 
imbedded disk in P compressing the Klein bottle boundary component and splitting P 
into two copies of P2 x /, which of course has geometric structure. We did not mention 
this above, since when M = P, M is a solid torus whose trivial fibration is c-invariant, 
and the above proof holds. The point here is that there are two ways to show that the Ge­
ometrization Conjecture holds for P. Similarly, to show the Geometrization Conjecture 
for M a Seifert bundle modP one could split M by the Klein bottles (in the definition of 
Seifert bundle mod P) into copies of P and Seifert bundles, where each piece clearly has 
a geometric structure. 

3. The Torus Theorem for nonorientable 3-manifolds. The Torus Theorem for 
compact nonorientable 3-manifolds M is proved by applying the Torus Theorem to the 
2-fold orientable cover M of M. If M is irreducible and if TT\ (M) contains Z ® Z, but M 
does not contain an incompressible torus, then M is a "small" Seifert fiber space, i.e., M 
does not contain a vertical torus. In this case the orbit surface S of M is either S2, D2 or 
P2 and we have one of the following cases, where n is the number of exceptional fibers 
ofM: 
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(i) S = S2, n < 3. 
(ii) S = D2,n< 1. 

(iii) S = P2,n< 1. 
In case (i) n = 3, since otherwise M is a lens space. Also case (ii) cannot happen since 
here M is a solid torus. In case (iii) n\(M) is either Z2 * Z2 or finite [13; (6.2)], hence 
does not contain Z © Z. Thus the only small Seifert fiber spaces that do not contain an 
incompressible torus but whose fundamental groups contain Z © Z are those in the next 
lemma. 

LEMMA 3. Let M be a Seifert fiber space with orbit surface S2 and with three ex­
ceptional fibers. Then M does not admit an orientation reversing and fiber preserving 
involution i with at most isolated fixed points. 

PROOF. Suppose c:M —• M is an orientation reversing, fiber preserving involution. 
Then c permutes the exceptional fibers and therefore there is an exceptional fiber H which 
is oinvariant. Let V be an invariant fibered solid torus neighborhood of H. If c has no 
fixed points on H we can assume that c has no fixed points on V\ hence c\ V is a covering 
translation and c: V —• V is orientation reversing. But then V would cover a fibered solid 
Klein bottle and that fibering lifts to a trivial fibering of V, a contradiction. Therefore H 
contains a fixed point of c and we have the situation of Figure 2 with c = à x k. For 
canonical generators a = 1 x S1 C D2 x Sl = V and b = dD2 x Sl of 7Ti(3V) we have 
c*(a) = a~{, c*(è) = b. Since H is exceptional, a regular fiber H ~ a^bu with |jx| > 1. 
But then c*(H) = H±l since c is fiber preserving and c*(//) = a~^bv. This implies that 
/i = 0 or ± 1 , a contradiction. • 

THEOREM 2 (TORUS THEOREM). If M is an irreducible nonorientable 3-manifold 
and Z © Z C 7Ti(M) r/zen M contains an incompressible torus or Klein bottle. 

PROOF: CASE (1). M is compact and P2-irreducible. The squares of the two genera­
tors of Z © Z in 7Ti (M) lift to loops in the 2-fold orientable cover M of M and generate a 
subgroup Z © Z in n\(M). By the Torus Theorem (for the orientable irreducible case) M 
either contains an incompressible torus or M is a small Seifert fiber space. In the first case, 
by [11, Corollary (3.14)], M contains an oequivariant incompressible torus, where c is 
the covering translation. Therefore M contains an incompressible torus or Klein bottle. 

The second case cannot happen by Lemma 3 and the discussion preceding Lemma 3. 

CASE (2). M is compact irreducible and contains projective planes. 
(2a) Every P2 in M is parallel to dM. 

Let M be obtained from M by capping off the 2-spheres of dM with 3-balls. By 
the proof of Lemma 2, M is irreducible and TT\(M) contains a Z © Z. The cov­
ering map c on M extends to an involution c with isolated fixed points. Now the 
argument of Case 1 applies: By Luft's result M contains an c-equivariant incom­
pressible torus T that is disjoint from the fixed points. Hence T C M projects to 
an incompressible torus or Klein bottle in M. 

(2b) M contains non-boundary parallel P2's. 
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Let (p be a maximal collection of non-parallel and non-boundary parallel projec­
tive planes in M. Then M \ ip = M\ \J--UMn and M\p~l((f) = M\ U- "UMW 

(where /?: M —• M is the covering map), hence m (M) = 7Ti (M\ ) * • • • * TT\ (Mn) * 
Z * • • • * Z (where the Z-factors come from 2-spheres in the boundary of a M, 
which are identified in M). Therefore Z 0 Z C 7Ti(Af*) for some &. Now M^ and 
M# are as in case (a). So there is an incompressible torus or Klein bottle in Mk 

and hence in M. 

CASE (3). M is not compact. 

This case is reduced to the compact case by the argument in the proof of Corol­
lary (9.6) in [7]. • 
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