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Abstract

This study aimed to conduct a meta-analysis using the random-effects model to merge pub-
lished genetic parameter estimates for milk coagulation properties (MCP: comprising rennet
coagulation time (RCT), curd-firming time (k20), curd firmness 30 min after rennet addition
(a30), titrable acidity (TA) and milk acidity or pH) in dairy cows. Overall, 80 heritability esti-
mates and 157 genetic correlations from 23 papers published between 1999 and 2020 were
used. The heritability estimates for RCT, a30, k20, TA, and pH were 0.273, 0.303, 0.278,
0.189 and 0.276, respectively. The genetic correlation estimates between RCT-a30, RCT-pH,
and RCT-TA were 0.842, 0.549 and −0.565, respectively. Genetic correlation estimates
between RCT and production traits were generally low and ranged from −0.142 (between
RCT and casein content) to 0.094 (between RCT and somatic cell score). Moderate and sig-
nificant genetic correlations were observed between a30-pH (−0.396) and a30-TA (0.662).
Also, the genetic correlation estimates between a30 and production traits were low to moder-
ate and varied from −0.165 (between a30 and milk yield) to 0.481 (between a30 and casein
content). Genetic correlation estimates between pH and production traits were low and varied
from −0.190 (between pH and milk protein percentage) to 0.254 (between pH and somatic
cell score). The results of this meta-analysis indicated the existence of additive genetic vari-
ation for MCP that could be used in genetic selection programs for dairy cows. Because of
the moderate heritability of MCP and small genetic correlations with production traits, it
could be possible to improve MCP with negligible correlated effects on production traits.

World demand for dairy products is expanding, and further development of trade in dairy
products is anticipated. Besides, in recent years, there has been a growing interest in milk com-
ponents with potential advantages for human health (Toffanin et al., 2015). The significance of
milk composition in the production process of dairy products is well accepted (Williams, 2003;
Murphy et al., 2016), which implies the importance of including milk composition traits in
different dairy cow breeding goals (Miglior et al., 2005). Milk processability, which indicates
the possibility of converting milk into different dairy products such as cheese and milk pow-
der, is a major feature of milk composition. Despite this, milk processability is not precisely
included in dairy cow breeding goals (Visentin et al., 2017).

Milk processability indicators are generally identified as milk coagulation properties
(MCP), and these mainly involve rennet coagulation time (RCT), curd-firming time
(k20), curd firmness 30 min after rennet addition (a30), titrable acidity (TA), and milk acid-
ity or pH. Good MCP is required for the process of cheese production. MCP is affected by
genetic and non-genetic factors (Bittante et al., 2012) including breed, somatic cell count,
milk protein composition, casein composition and stage of lactation (Tyrisevä et al., 2004;
Cassandro et al., 2008; Bittante et al., 2012). Ikonen et al. (2004) stated that MCP is herit-
able and could be improved in genetic selection plans. The problem with MCP relates to
difficulties in measuring its phenotype in a routine, timely manner and at a low cost on
individual cows. This complicates the collection of an adequate number of reliable pheno-
types for MCP to warrant genetic selection in dairy herds. Therefore, an alternative method
could be the selection and improvement of traits that favourably associate with MCP
(Duchemin et al., 2020).

In previous years, genetic parameters have been estimated for MCP in different dairy cat-
tle breeds. However, these estimates have been obtained from studies based on populations
of different breeds and lactations, generally with limited sample size and considering various
effects in the model, all of which has contributed to large associated standard errors of the
estimated (co) variance components. This has led to high variability among genetic param-
eter estimates. Meta-analysis is a statistical method to systematically evaluate the results of
previous research studies to get a comprehensive conclusion on a specific topic. Two well-
known statistical models for the meta-analysis are the fixed- and random-effects models.
Performing a meta-analysis using the random-effects model is considered a conservative

https://doi.org/10.1017/S0022029923000444 Published online by Cambridge University Press

https://www.cambridge.org/dar
https://doi.org/10.1017/S0022029923000444
https://doi.org/10.1017/S0022029923000444
mailto:nhosseinzadeh@guilan.ac.ir
https://doi.org/10.1017/S0022029923000444


method because it can supply estimates closest to the actual
parameters. The heterogeneity of variance among different stud-
ies is accounted for in random-effects meta-analysis models
(Borenstein et al., 2009; Ghavi Hossein-Zadeh, 2021), and, there-
fore, this is generally the recommended approach (Lean et al.,
2009). To the author’s knowledge, a particular meta-analysis
of the genetic parameter estimates for MCP in dairy cows has
not been yet reported in the literature. Therefore, this study
aimed to perform a meta-analysis based on a random-effects
model to merge published heritability estimates for these traits
and their genetic correlations with production traits in dairy
cows.

Material and methods

Characterizing the scope of the meta-analysis study

A systematic search of the literature using electronic databases of
ISI Web of Knowledge (https://apps.webofknowledge.com),
Google Scholar (https://scholar.google.com), NCBI (https://www.
ncbi.nlm.nih.gov), and ResearchGate (https://www.researchgate.
net) was conducted to identify all references reporting genetic
parameter estimates for MCP and milk pH in dairy cows. The
most exhaustive research query was built, using synonyms and
derivatives of the following keywords: ‘dairy cow’, ‘milk coagula-
tion properties’, ‘milk acidity’, ‘genetic parameters’, ‘heritability’,
‘genetic correlation’, ‘genetic evaluation’ and ‘performance traits’.
In total, 80 heritability and 157 genetic correlation estimates from
23 peer-reviewed articles were used in the present study. The con-
sidered articles were published between 1999 and 2020 (online
Supplementary Table S1) and the literature cited in the articles
was also checked. The estimates were derived from restricted max-
imum likelihood (REML) and Bayesian inference estimation
methods on a mixed model. Only articles published in indexed
journals and the proceedings of scientific conferences were
included in this meta-analysis study. The MCP attributes consid-
ered in this study were rennet coagulation time (RCT), curd-
firming time (k20), curd firmness 30 min after rennet addition
(a30), titrable acidity (TA), and milk acidity or pH.

Data recorded and variable transformation

The data sets included information on direct heritability esti-
mates for RCT, k20, a30, TA, and pH as well as genetic correla-
tions between these traits and the performance traits milk yield
(MY), milk fat percentage (FP), milk protein percentage (PP),
somatic cell score (SCS), casein percentage (CN) and lactose
percentage (Lac), and standard errors for these published par-
ameter estimates. Other information recorded was the publica-
tion year, journal name, the number of records, breed name,
parity, country of origin, years of data collection, phenotypic
mean and standard deviation, the estimation method used
(REML or Bayesian) and model of analysis (univariate or multi-
variate). Once an estimate of a genetic parameter that was simi-
lar was reported in multiple publications, based on the same
data set, the latest estimate was considered in the meta-analysis.
Moreover, the analysis was performed exclusively for traits in
which the parameter estimates were placed on not less than
two distinct data sets.

For articles in which the standard errors for the heritability or
correlation estimates were not reported, approximated standard
errors were derived by using the combined-variance method

(Sutton et al., 2000), which is given by the following formula:

SEij =
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where SEij is the predicted standard error for the published par-
ameter estimate for the ith trait in the jth article that has not
reported the standard error, sik is the published standard error
for the parameter estimate for the ith trait in the kth article that
has reported the standard error, nik is the number of used records
to predict the published parameter estimate for the ith trait in the
kth article that has reported the standard error, and n´ij is the
number of used records to predict the published parameter esti-
mate for the ith trait in the jth article that has not reported the
standard error.

Most meta-analyses do not use the published correlation esti-
mate itself because it usually does not have a normal distribution.
Rather, the published correlation is converted to the Fisher’s Z
scale, and all analyses are performed using the transformed
values. The results, such as the estimated parameter and its con-
fidence interval, would then be converted back to correlations for
presentation (Borenstein et al., 2009). The approximate normal
scale based on Fisher’s Z transformation (Steel and Torrie,
1960; Borenstein et al., 2009) is as follows:

Zij = 0.5[ln (1+ rgij )− ln (1− rgij )]

where rgij is the published genetic correlation estimate for the ith

trait in the jth article. To return to the original scale, the following
equation (Borenstein et al., 2009) was used:

r∗gij =
e2Zij − 1
e2Zij + 1

where r∗gij is the re-transformed genetic correlation for the ith trait in
the jth article, and Zij is the Fisher’s Z transformation.

Phenotypic trait

Means and standard deviations were calculated for all traits using
the sample sizes as weights. The total number of records for each
phenotypic trait was calculated as the sum of the number of
records in each article that reported the trait. The coefficient of
variation in percentage (CVi(%)) for each ith trait was calculated
as follows:

CVi(%) = si
�Xi

× 100

where si is the standard deviation for the ith trait and �Xi is the trait
mean.

Heritabilities and genetic correlations

Meta-analysis was performed based on a random-effects model
(Borenstein et al., 2009) using the comprehensive meta-analysis
(CMA) software version 2.2 (Biostat, USA) to calculate the effect
size for genetic parameter estimates. In the random-effects model,
observed differences among study results are due to the play of
chance in repeated sampling and random changes in real values
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of parameters. The general form of the random-effects model was
as follows:

ûj = �u+ uj + ej

where ûj is the published parameter estimate in the jth article, �u
is the weighted population parameter mean, uj is the among
study component of the deviation from the mean, assumed as
uj∼N(0, τ2), where τ2 is the variance representing the amount
of heterogeneity among studies, ej is the within-study compo-
nent due to sampling error in the parameter estimate in the
jth article, assumed as ej � N(0, s2

e ), where s2
e is the within-

study variance. Forest plots were constructed to indicate the
effect size for each study. Effect sizes for forest plots were the
mean heritability estimates for conformation traits or genetic
correlation estimates at a 95% confidence interval using the
random-effects model.

Heterogeneity

Chi-square (Q) test and the I2 statistic were performed to measure
heterogeneity. Variation among the study level was assessed using
a Q test. The significance level was set at 0.1 because the Q test has
relatively low power when a few studies are included (Lean et al.,
2009). Although the Q test helps identify heterogeneity, the meas-
ure I2 was used to measure heterogeneity as follows (Lean et al.,
2009):

I2(%) = Q− (k− 1)
Q

× 100

where Q is the χ2 heterogeneity statistic and k is the number of
studies. Q is the Q statistics given by the following formula:

Q =
∑k
j=1

wj(ûj − �u)
2

where wj is the parameter estimate weight (assumed as the
inverse of published sampling variance for the parameter,
1/s2j ) in the jth article; ûj and �u were defined above in the
random-effects model, and k is the number of used articles.
The I2 statistic describes the percentage of variation across stud-
ies due to heterogeneity. Negative values of I2 are set equal to
zero; consequently, I2 lies between 0 and 100% (Lean et al.,
2009). Its value might not be important if it falls within the
range of 0–40%. However, a value of 40–60% often indicates
moderate heterogeneity and a value in the range of 60–100%
represents considerable heterogeneity. The 95% lower and
upper limits for the estimated parameter would be computed
respectively for each trait as follows:

LL�u = �u− 1.96× SE�u and UL�u = �u+ 1.96× SE�u

where SE�u is the predicted standard error for the estimated par-
ameter �u, given by:

SE�u =
���������

1∑k
j=1 wj

√

Publication bias

Egger’s linear regression asymmetry was used to examine the
presence of publication bias. When significant bias was detected
(P < 0.10) the trim-and-fill method (Duval and Tweedie, 2000)
was applied to find the number of missing studies.

Funnel plots were used to present asymmetry. This technique
indicates the symmetric distribution of effect sizes around the true
effect size. No publication bias suggests that the most extreme
results have not been published. Once the number of missing
observations is estimated, estimated missing values are included
to recalculate a weighted mean effect size and its variance.
When heterogeneity (Q test, P < 0.10) was detected for the para-
meters analysed, testing for the occurrence of possible publication
bias is not appropriate because it may lead to false-positive claims
(Ioannidis and Trikalinos, 2007).

Results

Descriptive statistics

The number of literature estimates, measurement units, the total
number of records, weighted mean, standard deviation, and coef-
ficient of variation for MCP of dairy cows are indicated in Table 1.
The weighted coefficients of variation for MCP were generally low
to moderate and varied from 0.75 (for pH) to 24.86% (for a30).

Heritability estimates

Effect size and heterogeneity of the heritability estimates for MCP
obtained from the random-effects model of the meta-analysis are
presented in Table 2. The heritability estimates for RCT, a30, k20,
TA, and pH were 0.273, 0.303, 0.278, 0.189, and 0.276, respect-
ively. These estimates generally had low standard errors, and
their 95% confidence intervals were small. Also, the heritability
estimates for MCP were significant (P < 0.05). The heterogeneity
test of heritability estimates, conducted by Q statistic, indicated
that heritability estimates for a30, k20, and pH had high Q values
and significant heterogeneity (P < 0.10), but heritability estimates
for RCT and TA had non-significant heterogeneity (P > 0.10). In
agreement with the results observed by Q statistic, the I2 values
showed considerable heterogeneity for the heritability estimates
of a30, k20, and pH, but negligible heterogeneity for the heritabil-
ity estimates of RCT and TA (Table 2). The forest plots of individ-
ual studies and the overall outcome for heritability estimates of
MCP in dairy cows are indicated in online Supplementary Figs
S1 to S5. The funnel plot of mean heritability estimates for
RCT and TA are shown in Figs 1 and 2. Results from statistical
tests to evaluate publication bias and the trim-and-fill method
to correct funnel plot asymmetry in heritability estimates of
RCT and TA that did not present heterogeneity showed that
one and two missing studies were needed at the left side of the
funnel plot for RCT and TA to correct funnel plot asymmetry
according to the trim-and-fill method, respectively (Table 3).
After correcting the funnel plot asymmetry by including the
imputed studies, the mean heritability estimates for RCT and
TA were 0.272 and 0.173, respectively (Table 3).

Genetic correlation estimates

Effect size and heterogeneity of the genetic correlation estimates
between MCP and production traits of dairy cows are shown in
Table 4. The genetic correlation estimates between RCT-a30,
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RCT-pH, and RCT-TA were −0.842, 0.549 and −0.565, respect-
ively (P < 0.05). Genetic correlation estimates between RCT and
production traits were generally low and ranged from −0.142
(between RCT and CN) to 0.094 (between RCT and SCS).
Except for the genetic correlation estimate between RCT and
SCS, the genetic correlations between RCT and other production
traits were non-significant (P > 0.05). For non-significant genetic
correlation estimates, 95% CI included zero. Therefore, these cor-
relation estimates could not be statistically different from zero.
Moderate and significant genetic correlations were observed
between a30-pH (−0.396) and a30-TA (0.662). Also, the genetic
correlation estimates between a30 and production traits were
low to moderate and varied from −0.165 (between a30 and
MY) to 0.481 (between a30 and CN). Except for the genetic cor-
relations between a30 and MY, SCS and Lac, genetic correlation
estimates between a30 and other production traits were significant
and statistically different from zero (P < 0.05). Genetic correlation
estimates between pH-FP and pH-PP were −0.156 and −0.190,
respectively (P < 0.05). Genetic correlation estimates between pH
and MY, SCS, and CN were low and non-significant (P > 0.05).
Therefore, genetic correlations between pH and MY, pH and
SCS, and finally pH and CN could not be statistically different
from zero. The heterogeneity test of genetic correlation estimates,
conducted by Q statistic, indicated that except for the genetic cor-
relations between RCT and SCS, RCT and Lac, RCT and TA and
finally a30 and TA, which had low Q values and non-significant
heterogeneity (P > 0.10), the genetic correlations between MCT
traits with production traits showed significant heterogeneities
(P < 0.10) with greater Q values (Table 4). Consistent with the
Q values, the I2 values indicated negligible heterogeneities for
the genetic correlations between RCT and SCS, RCT and Lac,
RCT and TA and finally a30 and TA, but considerable heteroge-
neities for genetic correlation estimates among other traits
(Table 4).

The forest plots of individual studies and the overall outcome
for the genetic correlation estimates between MCP are depicted in

online Supplementary Figs S6 to S10. The funnel plots of the
mean genetic correlation estimates between RCT and SCS, RCT
and Lac, RCT and TA and finally a30 and TA are presented in
Figs 3–6, respectively. Results of statistical tests to examine publi-
cation bias and the trim-and-fill method to adjust funnel plot
asymmetry in genetic correlation estimates that did not indicate
heterogeneity are presented in Table 5. The results of Egger’s
test showed non-significant (P > 0.10) publication bias for the
genetic correlation estimates between RCT and SCS, RCT and
Lac and finally RCT and TA (Table 5). Two missing studies
were required on the left side of the funnel plot for genetic correl-
ation between RCT and SCS, and one missing study was required
on the left side of the funnel plot for genetic correlation between
RCT and Lac to obtain funnel plot symmetry based on the
trim-and-fill method (Table 5). Also, one missing study was
required on the right side of the funnel plot for genetic correlation
between RCT and TA to obtain funnel plot symmetry. After cor-
recting the funnel plot asymmetry by including the imputed stud-
ies, the genetic correlation estimates of RCT and SCS, RCT and
Lac and finally RCT and TA were 0.067, −0.007, −0.541 and
0.662, respectively (Table 5).

Discussion

Interest in the improvement of MCP has increased in recent years.
It has been extensively demonstrated that milk with desirable clot-
ting characteristics, namely relatively short clotting time, suitable
firming rate and high curd firmness at the cut, leads to higher
cheese yield than poorly coagulating milk (Pretto et al., 2013;
Tiezzi et al., 2013) resulting in increased profitability for the
dairy industry (Formaggioni et al., 2005). The improvement of
MCP is strongly recommended to increase dairy sector efficiency,
especially in countries where milk is mainly intended for cheese
production (Geary et al., 2010; Tiezzi et al., 2013). Assessing gen-
etic variation in MCP parameters and evaluating their genetic
associations with production traits will be helpful for the

Table 1. Number of literature estimates (N), measurement units (Unit), the total number of records (Records), weighted mean, standard deviation (SD), and
coefficient of variation (CV) for MCP of dairy cows

Trait Unit N Records Mean SD CV (%)

RCT Minute 24 601 476 18.73 4.64 24.77

a30 Millimetre 22 559 501 22.04 5.48 24.86

k20 Minute 8 431 115 6.10 0.68 11.15

TA Soxhlet Henkel°/50 ml 4 5312 3.31 0.07 2.11

pH – 19 412 806 6.69 0.05 0.75

RCT, Rennet coagulation time; a30, Curd firmness; k20, Curd firming time; TA, Titrable acidity.

Table 2. Effect size and heterogeneity of the heritability estimates for MCP in dairy cows obtained from the random-effects model of meta-analysis

Traita N h2 SE 95% CI P-value Q P-value I2

RCT 26 0.273 0.008 0.257–0.290 0.000 30.729 0.198 18.643

a30 22 0.303 0.027 0.249–0.357 0.000 233.280 0.000 90.998

k20 8 0.278 0.063 0.155–0.401 0.000 227.311 0.000 96.921

TA 4 0.189 0.025 0.140–0.237 0.000 1.681 0.641 0.000

pH 20 0.276 0.023 0.230–0.321 0.000 215.261 0.000 91.173

aFor traits, see Table 1.
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development of novel management and breeding programs in
dairy cows. In this regard, Wood et al. (2003) stated three precon-
ditions would be required. First, MCP must be sufficiently herit-
able for a relatively rapid and substantial improvement. Second, it
is necessary to prove the presence of adequate genetic variability
for these traits in dairy cow populations. Third, it is required to

know the genetic relationships between MCP and economically
important traits in the under-study population. For including
MCP in effective genetic evaluation and improvement programs,
understanding the genetic parameters for these traits is necessary.

The lowest weighted coefficient of variation was observed for
milk pH (0.75%), showing the limited phenotypic variation for

Figure 1. The funnel plot of the heritability estimates for RCT. The solid dots are the potentially missing studies imputed from the trim-and-fill method. The open
diamond represents the mean and confidence interval of the existing studies and the solid diamond represents the mean and confidence interval if the theoret-
ically imputed studies were included in the meta-analysis.

Figure 2. The funnel plot of the heritability estimates for TA. Detailed information is provided in Fig. 1.
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this trait from a biological view. Also, this low weighted coefficient
of variation indicated a low dispersion around the weighted mean
of the trait among studies. This result implied the more accurate
weighted mean estimate for milk pH. On the other hand, the
greatest weighted coefficient of variation was estimated for a30
(24.86%), indicating greater phenotypic variation in this trait
than in other traits.

The standard errors and 95% confidence intervals of the mean
heritability estimates of MCP were low, which implies the appro-
priate precision of mean heritability estimates reported in the cur-
rent study. In general, the moderate heritability estimates
observed for MCP indicated the moderate influence of additive
genetic effects on the expression of the studied traits. The

moderate heritability estimates for major MCP indicated the exist-
ence of an exploitable additive genetic variation for these traits
that could be used in genetic selection plans. Although heritability
would influence the rate of genetic gain, this rate also depends on
other effective factors such as genetic variation, selection intensity
and generation interval. Because meta-analysis integrates pub-
lished genetic parameter estimates reported by different studies,
the difference in the actual parameter among the studies could
be expected (Ghavi Hossein-Zadeh, 2022). Several factors might
explain the inconsistencies among genetic parameter estimates
reported in different studies, such as sample size, the investigated
breeds, models and methods of estimations as well as variation
across laboratories (Cassandro et al., 2008).

As indicated, RCT and a30 were highly correlated because
coagulation and firming are consecutive steps of the same process.
If milk takes a short time to coagulate, it leaves more time for curd
firming and has better coagulation ability, thus, the final curd will
be firmer. Conversely, if milk takes a long time to coagulate, the
curd will have less time to firm and be weaker (Cassandro
et al., 2008). The results of this study showed that desirable
MCP (i.e., short coagulation time and high curd firmness) were
markedly associated with the acidity of milk, measured both as
milk pH and TA. Because milk pH and TA can be measured
more easily than MCP, enhancement of MCP could be achieved
through indirect selection based on these indicator traits. The

Table 3. Results from statistical tests to evaluate publication bias and the
trim-and-fill method to correct funnel plot asymmetry in mean heritability
estimates of MCP that did not present heterogeneity

Traita
Egger’s test
P-value

Trim-and-fill method

Missing Mean 95% CI

RCT 0.782 1 0.272 0.254–0.290

TA 0.183 2 0.173 0.129–0.217

aFor traits, see Table 1. Missing: Number of missing studies.

Table 4. Effect size and heterogeneity of the genetic correlation estimates between MCP and production traits in dairy cows obtained from the random-effects
model of meta-analysis

Trait 1 Trait 2 N rg 95% CI P-value Q P-value I2

RCT a30 11 −0.842 −0.934– −0.645 0.000 147.068 0.000 93.200

RCT MY 9 0.056 −0.095–0.203 0.470 29.374 0.000 72.765

RCT FP 10 −0.125 −0.305–0.064 0.194 80.747 0.000 88.854

RCT PP 10 −0.014 −0.290–0.264 0.922 181.728 0.000 95.048

RCT SCS 9 0.094 0.017–0.170 0.017 7.334 0.501 0.000

RCT CN 7 −0.142 −0.452–0.198 0.415 146.914 0.000 95.916

RCT Lac 4 −0.007 −0.075–0.061 0.847 2.852 0.415 0.000

RCT pH 10 0.549 0.252–0.751 0.001 407.292 0.000 97.790

RCT TA 3 −0.565 −0.646– −0.473 0.000 1.392 0.499 0.000

a30 MY 9 −0.165 −0.340–0.022 0.083 51.149 0.000 84.360

a30 FP 9 0.268 0.062–0.453 0.011 89.579 0.000 91.069

a30 PP 9 0.381 0.089–0.613 0.012 180.845 0.000 95.576

a30 SCS 9 −0.107 −0.265–0.057 0.200 25.474 0.001 68.595

a30 CN 7 0.481 0.150–0.716 0.006 244.643 0.000 97.547

a30 Lac 3 −0.060 −0.238–0.122 0.522 13.568 0.001 85.260

a30 pH 8 −0.396 −0.576– −0.179 0.001 75.016 0.000 90.669

a30 TA 3 0.662 0.505–0.777 0.000 2.993 0.224 33.181

pH MY 5 0.047 −0.085–0.177 0.485 10.151 0.038 60.594

pH FP 6 −0.156 −0.260– −0.048 0.005 13.257 0.021 62.283

pH PP 6 −0.190 −0.299– −0.076 0.001 25.155 0.000 80.123

pH SCS 5 0.254 −0.040–0.507 0.090 23.409 0.000 82.913

pH CN 5 −0.153 −0.344–0.050 0.138 28.045 0.000 85.737

RCT, Rennet coagulation time; a30, Curd firmness; k20, Curd firming time; TA, Titrable acidity; Milk yield (MY), milk fat percentage (FP), milk protein percentage (PP); SCS, Somatic cell score;
CN, Casein percentage; Lac, Lactose percentage;rg, Genetic correlation.
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genetic correlations between MCP and production traits were
generally negligible and near zero or non-significant. The non-
significant genetic correlation estimates between MCP and
production traits had 95% CI which included zero. Thus, these
genetic correlations must be interpreted with caution. This lack
of genetic association proposes that selection for MCP would
not cause a significant change in milk production traits in dairy
cows. On the other hand, the selection of production traits is
unlikely to influence MCP. The negligible genetic correlations
between MCP and production traits indicated distinct genetic

and physiological mechanisms controlling these traits. These
results show that the correlated response of milk coagulation
ability to changes in milk yield and composition, as dictated by
current breeding goals of dairy cattle populations, is expected to
be restricted. MCP exhibited positive but low genetic correlations
with RCT and pH. Because current breeding objectives for dairy
cow populations favor low SCS, these correlations are considered
desirable. Low milk pH and high TA correlated with short RCT
and high a30, which are desirable milk properties for cheese mak-
ing. This suggests that variation in milk acidity might be used to

Figure 3. The funnel plot of the genetic correlation estimates between RCT-SCS. Detailed information is provided in Fig. 1.

Figure 4. The funnel plot of the genetic correlation estimates between RCT-Lac. Detailed information is provided in Fig. 1.
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increase the coagulation ability of milk (Cecchinato and Carnier,
2011). Low SCS was correlated with high a30, which is desirable
for cheese making. A possible explanation is that increased som-
atic cell count is associated with increased plasmin activity. The
accumulation of plasmin degradation products might also affect
coagulation because these components interfere with the aggre-
gating micelles responsible for curd formation (Politis and
Ng-Kwai-Hang, 1988; Cecchinato and Carnier, 2011). A moderate

and positive genetic correlation was observed between a30 and
CN. The important role of CN content in determining a30 vari-
ation has been reported in previous studies (Summer et al., 1999;
Malacarne et al., 2006). The a30 parameter indicated moderate
relationships with milk acidity traits (pH and TA). Okigbo
et al. (1985) reported that a30 decreased when pH increased
and, generally, milk samples did not coagulate when pH was
greater than 6.85. Ikonen et al. (2004) indicate that pH

Figure 5. The funnel plot of the genetic correlation estimates between RCT-TA. Detailed information is provided in Fig. 1.

Figure 6. The funnel plot of the genetic correlation estimates between a30-TA. Detailed information is provided in Fig. 1.
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modifications exert significant effects on a30. Changes in pH are
known to affect enzyme activity (Okigbo et al., 1985). The positive
and moderate to high genetic correlations between some traits
(such as between RCT and TA, a30 and pH and finally a30 and
TA) are evidence for common genetic and physiological mechan-
isms controlling these traits.

In conclusion, because genetic parameter estimates from one
animal population cannot be used for other breeds or popula-
tions, the combined estimates obtained through meta-analysis
can be a reliable alternative. The results of this meta-analysis indi-
cated moderate heritability estimates for MCP. Therefore, an
exploitable additive genetic variation for these traits could be
used in genetic selection plans for dairy cows. Because of the
moderate heritability of MCP and small genetic correlations
with production traits, it could be possible to improve MCP
with negligible correlated effects on production traits.

Supplementary material. The supplementary material for this article can
be found at https://doi.org/10.1017/S0022029923000444.
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