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Abstract For a finite abelian group A, the Reidemeister number of an endomorphism ϕ is the same as
the number of fixed points of ϕ, and the Reidemeister spectrum of A is completely determined by the
Reidemeister spectra of its Sylow p-subgroups. To compute the Reidemeister spectrum of a finite abelian
p-group P, we introduce a new number associated to an automorphism ψ of P that captures the number
of fixed points of ψ and its (additive) multiples, we provide upper and lower bounds for that number,
and we prove that every power of p between those bounds occurs as such a number.
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1. Introduction

Given a group G and an endomorphism ϕ, we define the ϕ-twisted conjugacy relation on
G by stating that x, y ∈ G are ϕ-conjugate if there exists a z ∈ G such that x = zyϕ(z)

−1
.

If x and y are ϕ-conjugate, we write this as x ∼ϕ y. The number of ϕ-conjugacy classes
is called the Reidemeister number of ϕ, and it is denoted by R(ϕ). If G is a finite abelian
group, the Reidemeister number of ϕ coincides with the size of Fix(ϕ), the fixed-point
subgroup of ϕ (see Proposition 2.1). Furthermore, we define the Reidemeister spectrum
of G as SpecR(G) := {R(ψ) | ψ ∈ Aut(G)}.
One of the general objectives is to determine the complete Reidemeister spectrum of

a group. There are two extreme cases that can occur: (1) G has the R∞-property, which
means that SpecR(G) = {∞}, and (2) G has full Reidemeister spectrum, which means
that SpecR(G) = N0 ∪ {∞}. The first case in particular has been extensively studied.
Non-abelian Baumslag-Solitar groups [6] and their generalizations [18], certain extensions
of linear groups by a countable abelian group [13] and Thompson’s group F [1] all have
the R∞-property; it has been proven that the free nilpotent group Nr,c of rank r ≥ 2
and class c ≥ 1 has the R∞-property if and only if c ≥ 2r, see, for example [2, 14]. We
refer the reader to [8] for a more exhaustive list of examples.
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The reidemeister spectrum of finite abelian groups 941

For the second extreme case, fewer examples of groups have been found. One family of
such groups are the groupsNr,2, where r ≥ 4 [5]. Finally, groups whose Reidemeister spec-
trum has been fully determined but have neither the R∞-property nor full Reidemeister
spectrum include the semidirect products Zn o Z/2Z, where n ≥ 2 and Z/2Z acts by
inversion [4].
For finite groups, however, neither extreme case can occur. As far as the author knows,

there is only little literature concerning twisted conjugacy and Reidemeister numbers on
finite groups. A. Fel’shtyn and R. Hill have proven that the Reidemeister number of an
endomorphism ϕ of a finite group equals the number of (ordinary) conjugacy classes that
are fixed by ϕ [7, Theorem 5], and they have also discussed Reidemeister zeta functions
on finite groups. Still, information about Reidemeister numbers of finite groups can aid
in determining the Reidemeister spectrum of infinite groups, since finitely generated
residually finite groups can be studied by looking at their finite characteristic quotients.
Given a finite group G, it is theoretically possible to compute its Reidemeister spectrum

using a computer; for instance, Tertooy has developed a GAP-package [19] that has these
functionalities. However, for an arbitrary finite group, the only feasible way to do so is to
use either the definition or the result by Fel’shtyn and Hill relating Reidemeister numbers
to fixed conjugacy classes. Either method requires a substantial amount of computation
time if the order of G increases, since one has to determine Aut(G), possibly the set
of all conjugacy classes, and the Reidemeister number R(ϕ) for each ϕ ∈ Aut(G). To
reduce this time, one can try and find explicit expressions for the Reidemeister spectrum
of certain (families of) finite groups or even just methods that do not require to fully
compute Aut(G) in order to determine SpecR(G). The former has been done by the
author for split metacyclic groups of the form Cn o Cp, where p is a prime number
in [16].
The aim of this paper is to completely determine the Reidemeister spectrum of finite

abelian groups. We would like to mention that Reidemeister spectra of infinite abelian
groups, on the other hand, have already been studied, see [14, § 3],[3, 9]. To determine
complete and explicit expressions for the Reidemeister spectrum of finite abelian groups,
we start in § 2 with recalling the necessary results regarding Reidemeister numbers and
reducing the problem to counting fixed points on finite abelian groups of prime power
order. In § 3, we determine the Reidemeister spectrum of finite abelian p-groups with p
an odd prime. In § 4, finally, we determine the Reidemeister spectrum of finite abelian
2-groups by solving a more general problem: we introduce a new number that counts
the number of fixed points of an automorphism and its (additive) multiples on a finite
abelian p-group and provide sharp upper and lower bounds for that number.
Unless otherwise stated, p denotes a prime number.

2. Preliminaries

Proposition 2.1. Let A be a finite abelian group and ϕ ∈ End(A). Then R(ϕ) =
|Fix(ϕ)|.

Proof. Note that, for all x, y ∈ A, we have

x ∼ϕ y ⇐⇒ ∃z ∈ A : x = z + y − ϕ(z) ⇐⇒ x− y ∈ Im(Id−ϕ).
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Therefore, R(ϕ) = [A : Im(Id−ϕ)]. Since A is finite, we moreover have that

[A : Im(Id−ϕ)] = |A|
|Im(Id−ϕ)|

= |ker(Id−ϕ)| = |Fix(ϕ)|

by the first isomorphism theorem for groups. �

Corollary 2.2. Let A be a finite abelian group. Then SpecR(A) ⊆ {d ∈ N |
d divides |A|}.

By this corollary, determining the complete Reidemeister spectrum of a finite abelian
group A reduces to determining which divisors of |A| occur. We argue that we can even
restrict ourselves to solving that problem for finite abelian p-groups.

Definition 2.3. Let A1, . . . , An be sets of natural numbers. We define

n∏
i=1

Ai := {a1 · · · an | ∀i ∈ {1, . . . , n} : ai ∈ Ai}.

If A1 = · · · = An =: A, we also write A(n).

The following can be found in, for example, [17, Corollary 2.6]:

Proposition 2.4. Let G1, . . . , Gn be groups and put G :=
n×

i=1
Gi. Then

n∏
i=1

SpecR(Gi) ⊆ SpecR(G).

Equality holds if Aut(G) =
n×

i=1
Aut(Gi) (i.e., if the natural embedding of

n×
i=1

Aut(Gi) in

Aut(G) is onto).

Corollary 2.5. Let G = G1 × · · · × Gn be a direct product of finite groups such that
gcd(|Gi| , |Gj |) = 1 for i 6= j. Then

SpecR(G) =
n∏

i=1

SpecR(Gi).

Proof. It is well known that under the conditions in the statement, the equality

Aut(G) =
n×

i=1
Aut(Gi)

holds. The result now follows from the previous proposition. �
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Since each finite abelian group A admits a unique decomposition of the form

A =
⊕
p∈P

A(p),

where P is the set of all primes and A(p) is the Sylow p-subgroup of A, it is conse-
quently sufficient to determine the Reidemeister spectrum of finite abelian p-groups to
completely determine the Reidemeister spectrum of finite abelian groups. For odd prime
numbers, this is straightforward. For p=2, on the other hand, the situation is much more
complicated, both the Reidemeister spectrum itself and the proof.
We write the cyclic group of order n as Z/nZ and write abelian groups additively. The

following two lemmata are tools to compute and bound Reidemeister numbers:

Lemma 2.6. Let n ≥ 2 and let ϕ ∈ End(Z/nZ) be given by ϕ(1) = k. Then R(ϕ) =
gcd(k − 1, n).

Proof. Since R(ϕ) = |Fix(ϕ)|, we determine the fixed points of ϕ. We have that
ϕ(i) = i if and only if i · (k − 1) ≡ 0 mod n. Writing d = gcd(k − 1, n), we see that k−1

d
is invertible modulo n. Hence, i · (k − 1) ≡ 0 mod n if and only if i · d ≡ 0 mod n. Thus,
for i · d ≡ 0 mod n to hold, i must be a multiple of n

d . Since i has to lie between 0 and
n − 1 and there are d multiples of n

d lying between 0 and n − 1, ϕ has d fixed points. �

Lemma 2.7. Let G be a group, ϕ ∈ End(G) and N a ϕ-invariant normal subgroup of
G (i.e., ϕ(N) ≤ N). Let ϕ̄ denote the induced endomorphism on G/N and ϕ′ the induced
endomorphism on N. Then R(ϕ) ≥ R(ϕ̄).
If, moreover, G is finite abelian, then R(ϕ′) ≤ R(ϕ).

Proof. The first inequality is well known, see, for example, [10, Lemma 1.1]. For the
second, if G is finite abelian, we know that R(ϕ) = |Fix(ϕ)| and R(ϕ′) = |Fix(ϕ′)|. As
Fix(ϕ′) ≤ Fix(ϕ), the inequality R(ϕ′) ≤ R(ϕ) follows. �

We end with introducing some notation and terminology.

Definition 2.8. Let n be a positive integer. We define E(n) to be

E(n) := {(e1, . . . , en) ∈ Zn | ∀i ∈ {1, . . . , n− 1} : 1 ≤ ei ≤ ei+1}.

Given a prime p and e ∈ E(n), we define the abelian p-group of type e to be the group

Pp,e :=
n⊕

i=1

Z/peiZ.

By the fundamental theorem of finite abelian groups, we know that, for each non-trivial
finite abelian p-group P, there exists a unique n ≥ 1 and a unique e ∈ E(n) such that
P ∼= Pp,e. We say that P is of type e. For the trivial group, we take n =0 and e the
‘empty’ tuple.
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3. Reidemeister spectrum of finite abelian p-groups with p odd prime

For p an odd prime, the computation of the Reidemeister spectrum of a finite abelian
p-group of type e is a straightforward application of Lemma 2.6 and Proposition 2.4.

Lemma 3.1. Let p be an odd prime and n ≥ 1 a natural number. Then

SpecR(Z/pnZ) = {pi | i ∈ {0, . . . , n}}.

Proof. The ⊆-inclusion follows from Corollary 2.2. For the other inclusion, we use
Lemma 2.6. For i ∈ {0, . . . , n}, define ϕi : Z/pnZ → Z/pnZ : 1 7→ pi + 1. Since gcd(pi +
1, p) = 1, as p is odd, ϕi is an automorphism of Z/pnZ. By Lemma 2.6, R(ϕi) = pi. �

Remark. This approach fails for p=2, for then the map ϕ0 is not an automorphism of
Z/2nZ. Indeed, ϕ0 : Z/2nZ → Z/2nZ is given by ϕ0(1) = 2, and since 2 is not invertible
in Z/2nZ, ϕ0 is not an automorphism. We can argue, more generally, that there is no
automorphism on Z/2nZ with no non-trivial fixed points: if ϕ ∈ Aut(Z/2nZ) is given by
ϕ(1) = k, then k must be odd. Consequently, k − 1 is even and thus is

|Fix(ϕ)| = R(ϕ) = gcd(k − 1, 2n) ≥ 2

by Lemma 2.6. All other ϕi from Lemma 3.1, however, are automorphisms if p=2, so
SpecR(Z/2nZ) equals {2, 22, . . . , 2n}.

For e ∈ E(n), we put Σ(e) :=
∑n

i=1 ei. Then, for P a p-group of type e, we have
|P | = pΣ(e).

Proposition 3.2. Let p be an odd prime and P a finite abelian p-group of type e ∈
E(n). Then

SpecR(P ) = {pi | i ∈ {0, . . . ,Σ(e)}}.

In other words, SpecR(P ) is the set of all divisors of |P |.

Proof. By Corollary 2.2, we only have to prove the ⊇-inclusion, and this essentially
boils down to Proposition 2.4. Let m ∈ {0, . . . ,Σ(e)} and let j ∈ {1, . . . , n + 1} be the
(unique) index such that

j−1∑
l=1

el ≤ m <

j∑
l=1

el,

where we put en+1 := ∞ for convenience. By Lemma 3.1, there are automorphisms ϕi of
Z/peiZ such that

R(ϕi) =


pei if i ≤ j − 1,

pm−
∑j−1

l=1
el if i = j,

1 if i > j.
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Then ϕ := (ϕ1, . . . , ϕn) is an automorphism of P and

R(ϕ) =
n∏

i=1

R(ϕi) = p
∑j−1

l=1
el+m−

∑j−1
l=1

el = pm.

�

We explained earlier that SpecR(Z/2nZ) = {2, . . . , 2n}. As a consequence, the construc-
tion from Proposition 3.2 does not work either for p=2, as we cannot find automorphisms
with Reidemeister number 1 on the cyclic factors. If P is an abelian 2-group of type
e ∈ E(n), the smallest number in SpecR(P ) we can find with that approach is 2n ,
which comes from picking an automorphism with Reidemeister number 2 on each of the
cyclic factors. However, computer calculations show that, for example, 2 is contained
in the Reidemeister spectrum of Z/2Z ⊕ Z/4Z. Thus, the minimum of SpecR(P ) is not
necessarily 2n . On the other hand, the identity map on P has Reidemeister number
2Σ(e) = |P |, so determining the upper end of the Reidemeister spectrum should not yield
major difficulties.

4. Fixed points on finite abelian p-groups

Due to the absence of 1 in the Reidemeister spectrum of cyclic 2-groups, we need a
different approach to determine the Reidemeister spectrum of abelian 2-groups, especially
a lower bound on the Reidemeister numbers. This different approach consists of studying a
more general phenomenon concerning fixed points of automorphisms on abelian p-groups,
which is valid for all prime numbers, not only for p=2.
Let p be a prime number, n ≥ 1 and e ∈ E(n). Let P := Pp,e be the finite abelian

p-group of type e. For i ∈ Z coprime with p, let µi denote the automorphism of P given
by µi(x) = ix. For ϕ ∈ Aut(P ), we then define

Π(ϕ) :=

p−1∏
i=1

|Fix(µi ◦ ϕ)| .

Finally, we put SpecΠ(P ) := {Π(ψ) | ψ ∈ Aut(P )}. The goal is to fully determine
SpecΠ(P ). Note that Π(ϕ) is always a power of p; hence, SpecΠ(P ) ⊆ {pi | i ∈ N}. If
p=2, then

Π(ϕ) = |Fix(µ1 ◦ ϕ)| = |Fix(ϕ)| = R(ϕ)

by Proposition 2.1; hence, SpecΠ(P ) = SpecR(P ) in that case. This shows that SpecΠ(P )
is a generalization of SpecR(P ) of some sort.
We start by determining an upper bound for SpecΠ(P ), which can also be used to give

an interpretation of Π(ϕ) that resembles the notion of diagonalisable transformations
from linear algebra1. Afterwards, we tackle the more difficult and involved problem of
determining a lower bound for SpecΠ(P ). Finally, we prove that every power of p lying
between those two bounds lies in SpecΠ(P ).

1 A word of gratitude goes to the anonymous referee for suggesting this interpretation.
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4.1. Upper bound

As said earlier, we start with the upper bound for SpecΠ(P ).

Proposition 4.1. Let P be a finite abelian p-group of type e. Let ϕ ∈ Aut(P ). Then
Π(ϕ) ≤ |P | = pΣ(e).

Proof. Fix ϕ ∈ Aut(P ). We first prove that

Fix(µi ◦ ϕ) ∩ 〈Fix(µj ◦ ϕ) | j 6= i〉

is trivial for all i ∈ {1, . . . , p− 1}. We proceed by induction, namely by proving that, for
all k ∈ {1, . . . , p− 2} and all J ⊆ ({1, . . . , p− 1} \ {i}) with |J | = k, the intersection

Fix(µi ◦ ϕ) ∩ 〈Fix(µj ◦ ϕ) | j ∈ J 〉

is trivial. We start with k =1, that is, with J = {j} with j 6= i. An element x in
the intersection then satisfies x = iϕ(x) = jϕ(x), or equivalently, (i − j)ϕ(x) = 0. As
i 6= j and both lie in {1, . . . , p− 1}, we know that i − j is an invertible modulo p, hence
ϕ(x) = 0. Since x = iϕ(x), we conclude that x =0. This proves the claim for k =1.
Now, suppose that it holds for all J of size k or less. Let J be a set of size k +1 not

containing i and let x be an element in the intersection Fix(µi◦ϕ)∩〈Fix(µj ◦ ϕ) | j ∈ J 〉.
Write x =

∑
j∈J xj , with xj ∈ Fix(µj ◦ ϕ). On the one hand, we have

x = iϕ(x) = i
∑
j∈J

ϕ(xj) =
∑
j∈J

iϕ(xj),

while, on the other hand, we have

x =
∑
j∈J

xj =
∑
j∈J

jϕ(xj).

Therefore,

0 =
∑
j∈J

(j − i)ϕ(xj).

Now, let j0 ∈ J be arbitrary but fixed and put J ′ := J \ {j0}. We can rewrite the
equality above to

(j0 − i)ϕ(xj0) =
∑
j∈J ′

−(j − i)ϕ(xj).

Since ϕ is an automorphism, we can apply ϕ−1 to get

(j0 − i)xj0 =
∑
j∈J ′

−(j − i)xj
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The left-hand side lies in Fix(µj0
◦ ϕ), and the right-hand side is an element of

〈Fix(µj ◦ ϕ) | j ∈ J ′〉. Applying the induction hypothesis to j 0 and J ′, we find that
both sides are trivial, that is, (j0 − i)xj0 = 0 =

∑
j∈J ′ −(j− i)xj . As i 6= j0, this implies

xj0 = 0.
Since j0 ∈ J was arbitrary, we conclude that xj = 0 for all j ∈ J . This finishes the

induction. The original claim then follows from the case where J = {1, . . . , p− 1} \ {i}.
From the above, it follows that

pΣ(e) = |P | ≥ |〈Fix(µi ◦ ϕ) | i ∈ {1, . . . , p− 1}〉| =
p−1∏
i=1

|Fix(µi ◦ ϕ)| = Π(ϕ),

which proves the upper bound. �

Remark. We can now give the aforementioned interpretation of the value Π(ϕ) of an
automorphism ϕ. Let i ∈ {1, . . . , p− 1}. Then

Fix(µi ◦ ϕ) = {x ∈ P | iϕ(x) = x} = {x ∈ P | ϕ(x) = jx},

where j is the (multiplicative) inverse of i modulo p. In other words, Fix(µi ◦ ϕ) can be
thought of as the eigenspace of the eigenvalue j for ϕ. In the proof of Proposition 4.1, we
essentially showed that the subgroup generated by all of these eigenspaces splits as the
direct sum of the individual eigenspaces, that is,

〈Fix(µi ◦ ϕ) | i ∈ {1, . . . , p− 1}〉 =
p−1⊕
i=1

Fix(µi ◦ ϕ),

where the direct sum is an internal direct sum in this case. We then see that Π(ϕ), which
is the size of this internal direct sum, equals |P | if and only if P equals this direct sum.
In other words, Π(ϕ) = |P | if and only if P decomposes as a direct sum of eigenspaces of
ϕ. Using terminology from linear algebra, one could say that Π(ϕ) = |P | if and only if ϕ
is diagonalisable. So, Π(ϕ) measures in some sense to what extent ϕ is diagonalisable.

4.2. Lower bound

Now, we determine a lower bound for SpecΠ(P ). Throughout this section, let p be a
prime number, n ≥ 1 and e ∈ E(n). Let P := Pp,e be the finite abelian p-group of type
e. To formulate the lower bound, we construct a decomposition of e.

Definition 4.2. Given e ∈ E(n), we construct the abc-decomposition of e into three
types of blocks in the following way:
Step 1: Each maximal constant subsequence of e1, . . . , en of length at least 2

forms one block, which we call an a-block.
Step 2: Among the remaining numbers, we look for successive numbers ei and

ei+1 such that ei+1 = ei+1, starting from the left. Each such pair forms
one block, which we call a b-block.
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Step 3: By Step 1 and Step 2, the remaining ei are all distinct and differ at least
2 from each other. Each of these numbers forms one block, which we call
a c-block.

We define a(e), b(e) and c(e) to be the number of a-, b- and c-blocks, respectively, in
this decomposition.

For instance, consider e = (1, 1, 2, 3, 4, 4, 6, 7, 8, 10, 12, 13). We go through the steps one
by one and mark the blocks in e. There are two a-blocks, namely (1, 1) and (4, 4), hence
we get

((1, 1), 2, 3, (4, 4), 6, 7, 8, 10, 12, 13).

Next, there are three b-blocks, namely (2, 3), (6, 7) and (12, 13), so we get

((1, 1), (2, 3), (4, 4), (6, 7), 8, 10, (12, 13)).

The remaining elements, 8 and 10, each form a single c-block, which yields

((1, 1), (2, 3), (4, 4), (6, 7), (8), (10), (12, 13)).

Thus, in this example, a(e) = 2, b(e) = 3 and c(e) = 2.

Remark. This construction implies that if a b-block of the form (ei, ei + 1) succeeds
a c-block (ei−1), then ei ≥ ei−1 +2, since we form the b-blocks by starting from the left.

We now use this decomposition to formulate the lower bound of SpecΠ(P ).

Theorem 4.3. Let ϕ ∈ Aut(P ). Then Π(ϕ) ≥ pb(e)+c(e).

Remark. While (the proof of) Proposition 4.1 tells us how far ϕ is from being com-
pletely diagonalisable, this theorem tells us to what minimal extent every automorphism
on P is diagonalisable.

The remainder of this section is devoted to proving this theorem. To do so, we construct
a suitable characteristic subgroup of P to which we then aim to apply Lemma 2.7 (recall
that a subgroup H of a group G is called characteristic if ϕ(H) = H for all ϕ ∈ Aut(G)).
This subgroup is of the following form:

Definition 4.4. For non-negative integers d1, . . . , dn with di ≤ ei for all i, we define
P (d1, . . . , dn) to be the subgroup

P (d1, . . . , dn) :=
n⊕

i=1

pdiZ/peiZ

of P.
Equivalently, if we let π : Zn → P be the natural projection, then P (d1, . . . , dn) =

π(pd1Z⊕ · · · ⊕ pdnZ).

We also need to know the behaviour of the automorphism induced by ϕ on the charac-
teristic subgroup. To that end, we use the general description of automorphisms of finite
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abelian p-groups, which is proven by Hillar and Rhea [11]. We write πP : Zn → P for
the natural projection. If P is clear from the context, we omit the subscript and simply
write π. We write elements in Zn as column vectors xT.

Theorem 4.5. ([11, Theorems 3.3 and 3.6]). Let P be a finite abelian p-group of
type e. Put A(P ) := {M ∈ Zn×n | ∀j ≤ i ∈ {1, . . . , n} : pei−ej |Mij} and let π : Zn → P
be the natural projection. Define Ψ : A(P ) → End(P ) :M 7→ Ψ(M), where

Ψ(M) : P → P : π(xT) 7→ Ψ(M)(π(xT)) := π(MxT).

Then A(P) is a ring under the usual matrix operations, Ψ is a well-defined ring morphism
and Aut(P ) is precisely the image of {M ∈ A(P ) |M mod p ∈ GL(n,Z/pZ)} under Ψ.

If ϕ ∈ Aut(P ) is the image of M under Ψ, we say that ϕ is represented by M.

Theorem 4.6. Let d1, . . . , dn be non-negative integers with di ≤ ei for all i. Then
Q := P (d1, . . . , dn) is characteristic in P if and only if the following two conditions hold:

(i) for all i ∈ {1, . . . , n− 1}, we have di ≤ di+1.
(ii) for all i ∈ {1, . . . , n− 1}, we have ei − di ≤ ei+1 − di+1.

Moreover, if Q is characteristic, di < ei for all i ∈ {1, . . . , n} and ϕ ∈ Aut(P ) is
represented by the matrix M as in Theorem 4.5, then the induced automorphism on Q is
represented by the matrix D−1MD, where D := Diag(pd1 , . . . , pdn).

Proof. For the first part, we use [12, Theorem 2.2]. There it is proven that the con-
ditions on d1, . . . , dn are equivalent with the subgroup P (e1 − d1, . . . , en − dn) being
characteristic. However, if the n-tuple d := (d1, . . . , dn) satisfies the two conditions, then
so does the n-tuple d′ := (e1−d1, . . . , en−dn), and vice versa. Indeed, the second condi-
tion for d implies the first one for d ′, and by symmetry, the first for d implies the second
for d ′. Moreover, since 0 ≤ di ≤ ei for all i, also 0 ≤ ei − di ≤ ei for all i. This proves the
first part.
Suppose now that Q is characteristic in P and that di < ei for all i ∈ {1, . . . , n}. Fix

ϕ ∈ Aut(P ) and suppose that it is represented by M. In order to use Theorem 4.5 to talk
about the matrix representation of automorphisms of Q, we have to write Q as a direct
sum of cyclic groups of prime-power order. It is readily verified that

Φ :
n⊕

i=1

Z/pei−diZ →
n⊕

i=1

pdiZ/peiZ : (x1, . . . , xn) 7→ (pd1x1, . . . , p
dnxn)

is an isomorphism, which implies that Q is an abelian p-group of type (e1 − d1, . . . , en −
dn). Let Q̃ denote the group on the left-hand side. Write πP : Zn → P and πQ̃ :

Zn → Q̃ for the natural projections onto P and Q̃, respectively. Then ϕ(πP (x
T)) =

πP (MxT) for all xT ∈ Zn. Let ϕQ denote the induced automorphism on Q and put
ψ := Φ−1 ◦ ϕQ ◦ Φ. Now, suppose that xT ∈ Zn is such that πP (x

T) ∈ Q. Then we have
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x = (pd1y1, . . . , p
dnyn) for some y1, . . . , yn ∈ Z. Put y := (y1, . . . , yn). Then x

T = DyT

and therefore, πQ̃(y
T) = Φ−1(πP (x

T)). Thus,

ψ(πQ̃(y
T)) = (Φ−1 ◦ ϕQ ◦ Φ ◦ Φ−1)(πP (x

T))

= Φ−1(ϕQ(πP (x
T)))

= Φ−1(ϕ(πP (x
T)))

= Φ−1(πP (MxT))

= Φ−1(πP (MDyT)).

Note that we can rewrite the equality πQ̃(y
T) = Φ−1(πP (x

T)) as

πQ̃(y
T) = Φ−1(πP (Dy

T)),

which holds for arbitrary yT ∈ Zn. Since we know that πP (MDyT) ∈ Q, we know that
D−1MDyT is a well-defined element of Zn. Thus, using the equalities above, we get

ψ(πQ̃(y
T)) = Φ−1(πP (MDyT))

= Φ−1(πP (DD
−1MDyT))

= πQ̃(D
−1MDyT).

We conclude that the matrix representation of ψ is given by D−1MD, which finishes the
proof. �

We now construct the aforementioned suitable characteristic subgroup by specifying
the non-negative integers di.

Definition 4.7. Given e ∈ E(n) and its abc-decomposition as in Definition 4.2, we
define a new n-tuple d = (d1, . . . , dn) recursively. Put d1 := 0. Given di, we define

di+1 :=


di if ei and ei+1 lie in the same block or ei+1 lies in an a-block

di + 1 if ei and ei+1 do not lie in the same block and ei+1 lies in a b- or

c-block.

We let d(e) denote this sequence.

For example, given e = ((1, 1), (2, 3), (4, 4), (6, 7), (8), (10), (12, 13)) as before with its
abc-decomposition marked, we find that

d(e) = (0, 0, 1, 1, 1, 1, 2, 2, 3, 4, 5, 5).

Lemma 4.8. Given e ∈ E(n), its associated n-tuple d(e) has the following properties:

(i) for all i, j ∈ {1, . . . , n} with i< j, we have di ≤ dj with strict inequality if ej is the
first element of a b- or c-block.
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(ii) for all i, j ∈ {1, . . . , n} with i< j, we have dj − di ≤ ej − ei, with strict inequality
if ei is the first element of a b- or c-block.

(iii) for all i ∈ {1, . . . , n}, we have di < ei.

Proof. The sequence d(e) is non-decreasing by construction, which proves the inequal-
ity in the first item. For the strictness part, note that it follows by construction if i = j−1,
and the general case follows from the chain di ≤ dj−1 < dj .
For the second item, we first prove it for j = i+ 1. By definition, we have

di+1 − di =


0 if ei and ei+1 lie in the same block or ei+1 lies in an a-block

1 if ei and ei+1 do not lie in the same block and ei+1 lies in a b- or

c-block.

We now consider ei+1 − ei. We distinguish several cases based on the type of blocks in
which ei+1 and ei lie:

• ei and ei+1 lie in the same a-block: then ei+1−ei = 0, by definition of an a-block.
Since di+1 − di = 0, we have di+1 − di ≤ ei+1 − ei.

• ei and ei+1 lie in the same b-block: then ei+1 − ei = 1, by definition of a b-block.
Since di+1 − di = 0, we have di+1 − di < ei+1 − ei.

• ei lies in an a- or b-block, ei+1 does not lie in the same block: then ei+1 − ei ≥ 1,
for otherwise ei+1 and ei would be part of an a-block. Since di+1 − di ≤ 1, we
have di+1 − di ≤ ei+1 − ei.

• ei lies in a c-block, ei+1 lies in an a-block: then ei+1 − ei ≥ 1 for the same reason
as in the previous case. Since di+1 − di = 0, we have di+1 − di < ei+1 − ei.

• ei lies in a c-block, ei+1 lies in a b-block: then ei+1−ei ≥ 2 by the remark following
Definition 4.2. Since di+1 − di = 1, we have di+1 − di < ei+1 − ei.

• ei lies in a c-block, ei+1 lies in a c-block: then ei+1 − ei ≥ 2, for otherwise ei+1

and ei would be part of an a-block or one or more b-blocks. Since di+1 − di = 1,
we have di+1 − di < ei+1 − ei.

We see that in all cases, the inequality di+1 − di ≤ ei+1 − ei holds. Moreover, in the
cases where ei is the first element of a b- or c-block, we have proven that in fact the strict
inequality holds. This finishes the proof for j = i+ 1.
We prove the general case by induction on j − i, with base case j − i = 1. Suppose it

holds for all i < j with j − i < k. Suppose that j − i = k. Note that

ej − ei − dj + di = (ej − ej−1 − dj + dj−1) + (ej−1 − ei + di − dj−1).

Both terms on the right-hand side are non-negative by the induction hypothesis; hence,
the left-hand side is non-negative as well. Moreover, if ei is the first element of a b- or
c-block, then ej−1 − ei + di − dj−1 > 0, which implies that also ej − ei − dj + di > 0.
Finally, for the third item, we again proceed by induction. For i =1, we have d1 = 0 <

1 ≤ e1. So, suppose di < ei. Then by the second item, we know that di+1−di ≤ ei+1−ei.
Adding the inequality di < ei side by side yields di+1 < ei+1. �

Corollary 4.9. The subgroup P (d1, . . . , dn) is a characteristic subgroup of P.
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Proof. By the previous lemma, d(e) satisfies all the conditions from Theorem 4.6. �

We will use the subgroup Q := P (d1, . . . , dn) to prove the lower bound on Π(ϕ) from
Theorem 4.3. Before doing so, we need two additional lemmata.

Lemma 4.10. Let ϕ ∈ Aut(P ) be represented by a matrix M ∈ Zn×n. Put D :=
Diag(pd1 , . . . , pdn) and let i 6= j ∈ {1, . . . , n}. Then the following hold:

(i) (D−1MD)ij ≡ 0 mod p if ej is the first element of a b- or c-block.
(ii) (D−1MD)jj 6≡ 0 mod p if ej is the first element of a b- or c-block.

Proof. For a ∈ Z, let νp(a) denote the p-adic valuation of a. First, note that
(D−1MD)ij = D−1

ii MijDjj , as D is diagonal. Next, by the properties of M and the
definition of D, we have that

νp((D
−1MD)ij) = νp(D

−1
ii MijDjj) ≥

ei − ej + dj − di if i > j

dj − di if i < j.

Suppose that ej is the first element of a b- or c-block. Then by Lemma 4.8, each of the
expressions above is at least 1. Therefore, (D−1MD)ij ≡ 0 mod p.
For (D−1MD)jj , note that D−1MD is the matrix representation of ϕQ, by

Theorem 4.6. Moreover, it has to be invertible modulo p in order to define an auto-
morphism on Q/pQ. Since the j th column of D−1MD is zero modulo p everywhere
above and below the diagonal entry, the entry on the diagonal must be non-zero modulo
p. �

The quotient group P/pP is an abelian group of exponent p, hence it carries a Z/pZ-
vector space structure. Note that the type of P/pP is then given by all ones vector of
length n.

Lemma 4.11. Let ϕ ∈ Aut(P ) be represented by M. Let zTi ∈ Zn be the vector with
a 1 on the ith place and zeroes elsewhere and let ρ : Zn → P/pP be the projection. If
we view P/pP as a vector space over Z/pZ, the matrix representation of the induced
automorphism on P/pP with respect to the basis {ρ(zT1 ), . . . , ρ(zTn)} is the matrix M mod
p ∈ GL(n,Z/pZ).

Proof. Let π̄ : P → P/pP be the projection and let ϕ̄ be the induced automorphism
on P/pP . Then π̄ ◦ π : Zn → P/pP is the natural projection from Zn onto P/pP .
Therefore, ρ = π̄ ◦ π. We also have that

ϕ̄(π̄(π(xT))) = π̄(ϕ(π(xT))) = π̄(π(MxT)).

Now, this implies that

ϕ̄(ρ(zTi )) = ρ(MzTi ),

which shows that M mod p is the matrix representation of ϕ̄. �
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Finally, we prove Theorem 4.3. For a matrix A ∈ Zn×n, we write Ā for the matrix
A mod p ∈ (Z/pZ)n×n.

Proof of Theorem 4.3. Let ϕ ∈ Aut(P ) be represented by M ∈ Zn×n and let
d1, . . . , dn, Q and D be as before. Since di < ei, the group Q has type (e1 − d1, . . . , en −
dn) ∈ E(n). The matrix representation of ϕQ is given by N := D−1MD, by Theorem 4.6.
Let ϕ̄ denote the induced automorphism on the exponent-p factor group Q/pQ. By
Lemma 4.11 applied to Q and ϕ̄, the matrix representation of ϕ̄ with respect to the basis
(1, 0, . . . , 0), . . . , (0, . . . , 0, 1) is given by N̄ . By Lemma 4.10, each column corresponding
to a c-block and to a first element of a b-block in N is zero modulo p, except for the
element on the diagonal.
Next, note that for i ∈ {1, . . . , p − 1}, the automorphism µi is represented by the

matrix Xi := Diag(i, . . . , i). The automorphism µi ◦ ϕ is then represented by XiM and
the automorphism µ̄i ◦ ϕ̄ on Q/pQ by X̄iN̄ . Fix j ∈ {1, . . . , n} such that ej is the first
element of a b- or c-block. Then Njj 6≡ 0 mod p by Lemma 4.10; hence, there is a unique
i ∈ {1, . . . , p− 1} such that iNjj ≡ 1 mod p. For that i, we have that the j th column of
X̄iN̄ − Īn is zero.
Now, let J be the set of indices j such that ej is the first element of a b- or c-block.

For i ∈ {1, . . . , p − 1}, let Ji := {j ∈ J | iNjj ≡ 1 mod p}. Note that J is the disjoint
union of J1 up to Jp−1 and that |J | = b(e) + c(e). Then by the arguments above, µ̄i ◦ ϕ̄
has at least p

∣∣Ji∣∣ fixed points. Indeed, for each j ∈ Ji, the j th column of X̄iN̄ − Īn is
zero; hence, ker(X̄iN̄ − Īn) has at least dimension |Ji|. By Proposition 2.1, we know that
R(µ̄i ◦ ϕ̄) = |Fix(µ̄i ◦ ϕ̄)| and R(µi ◦ ϕ) = |Fix(µi ◦ ϕ)|. By Lemma 2.7, we know that

R(µ̄i ◦ ϕ̄) ≤ R
(
(µi ◦ ϕ)

∣∣
Q

)
≤ R(µi ◦ ϕ).

Combining these inequalities, we conclude that

p−1∏
i=1

|Fix(µi ◦ ϕ)| ≥
p−1∏
i=1

p
∣∣Ji

∣∣
= p

p−1∑
i=1

∣∣Ji
∣∣
= p|J | = pb(e)+c(e).

�

4.3. Filling in the gaps

We now completely determine SpecΠ(P ).

Theorem 4.12. Let P be a finite abelian p-group of type e. Then

SpecΠ(P ) = {pm | m ∈ {b(e) + c(e), . . . ,Σ(e)}}.

In order to prove this theorem, we first prove it for three special cases, one for each
of the different block types in the abc-decomposition of e: Z/pkZ (corresponding to
c-blocks), Z/pkZ ⊕ Z/pk+1Z (corresponding to b-blocks) and

⊕n
i=1 Z/pkZ with n ≥ 2

(corresponding to a-blocks). We start with the first case that corresponds to c-blocks.
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Proposition 4.13. Let k ≥ 1 be a natural number. Then SpecΠ(Z/pkZ) =
{pi | i ∈ {1, . . . , k}}.

Proof. Since the type of Z/pkZ is e = (k), b(e) = 0 and c(e) = 1. The ⊆-inclusion
then follows from Proposition 4.1 and Theorem 4.3. Conversely, let m ∈ {1, . . . , k} be
arbitrary. Define ϕm : Z/pkZ → Z/pkZ : 1 7→ pm + 1. Since m ≥ 1, we know that
gcd(pm + 1, p) = 1. Therefore, ϕm defines an automorphism of Z/pkZ. Moreover, for
i ∈ {1, . . . , p− 1}, we know by Proposition 2.1 and Lemma 2.6 that

|Fix(µi ◦ ϕm)| = R(µi ◦ ϕm) = gcd(i(pm + 1)− 1, pn) =

pm if i = 1,

1 otherwise,

as i(pm + 1)− 1 ≡ i− 1 6≡ 0 mod p when i 6≡ 1 mod p. Therefore, Π(ϕm) = pm. �

Next, we move on the groups corresponding to b-blocks. Proposition 2.4 has the
following analogue for SpecΠ(P ):

Lemma 4.14. Let P1, . . . , Pn be abelian p-groups and put P := P1 ⊕ · · · ⊕Pn. For i ∈
{1, . . . , n}, let ϕi ∈ Aut(Pi). Put ϕ := (ϕ1, . . . , ϕn) ∈ Aut(P ). Then Π(ϕ) =

∏n
i=1 Π(ϕi).

Consequently,
∏n

i=1 SpecΠ(Pi) ⊆ SpecΠ(P ).

Proof. Let µi be multiplication by i on P and let µi,j denote its restriction to Pj. We
then have that

Π(ϕ) =

p−1∏
i=1

|Fix(µi ◦ ϕ)|

=

p−1∏
i=1

∣∣Fix ((µi,1 ◦ ϕ1, . . . , µi,n ◦ ϕn)
)∣∣

=

p−1∏
i=1

n∏
j=1

|Fix(µi,j ◦ ϕj)|

=
n∏

j=1

p−1∏
i=1

|Fix(µi,j ◦ ϕj)|

=
n∏

j=1

Π(ϕj).

�

Proposition 4.15. Let k ≥ 1 be a natural number and put P := Z/pkZ ⊕ Z/pk+1Z.
Then SpecΠ(P ) = {pi | i ∈ {1, . . . , 2k + 1}}.

Proof. Since the type of P is e := (k, k + 1), b(e) = 1 and c(e) = 0. Consequently,
the ⊆-inclusion again follows from Theorem 4.3 and Proposition 4.1. Conversely, let
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m ∈ {1, . . . , 2k + 1}. For m ≥ 2, we can find an automorphism ϕ with Π(ϕ) = pm using
Lemma 4.14 and Proposition 4.13. Thus, suppose that m =1. Consider the matrix

M =

(
1 1

p 1

)
.

By Theorem 4.5, M defines an automorphism ϕ on P. First, we determine the fixed points
of ϕ. If ϕ(π((x, y)

T
)) = π((x, y)

T
), thenx+ y ≡ x mod pk

px+ y ≡ y mod pk+1.

This implies that y ≡ 0 mod pk as well as x ≡ 0 mod pk. Therefore, the fixed points of ϕ

lie in the subgroup
〈
π((0, pk)

T
)
〉
and it is easily verified that ϕ(π((0, pk)

T
)) = π((0, pk)

T
).

Consequently, |Fix(ϕ)| = p.

Now, let i ∈ {2, . . . , p−1} and consider µi ◦ϕ. If (µi ◦ϕ)(π((x, y)T)) = π((x, y)
T
), then

ix+ iy ≡ x mod pk

ipx+ iy ≡ y mod pk+1.

The second congruence yields (i − 1)y ≡ −ipx mod pk+1. Since i ∈ {2, . . . , p − 1}, the
number i − 1 has an inverse modulo pk+1, say, j. Substituting y = −jipx in the first
congruence then yields

x(i− i2jp− 1) ≡ 0 mod pk.

Since i− i2jp− 1 ≡ i− 1 6≡ 0 mod p, it is invertible modulo pk . Therefore, x ≡ 0 mod pk.
Combined with (i − 1)y ≡ −ipx mod pk+1, this yields y ≡ 0 mod pk+1. Consequently,
|Fix(µi ◦ ϕ)| = 1. We conclude that Π(ϕ) = p. �

Lastly, we deal with the groups corresponding to a-blocks.

Lemma 4.16. Let n, k be integers with n ≥ 2, k ≥ 1. Put P :=
⊕n

i=1 Z/pkZ. Let
ϕ ∈ Aut(P ) and let ϕ̄ denote the induced automorphism on P/pP . If ϕ̄ has no non-trivial
fixed points, then neither does ϕ.

Proof. We proceed by contraposition. Let ϕ be represented by M and let π : Zn → P
be the natural projection. Suppose that MxT ≡ xT mod pk for some xT ∈ Zn with
π(xT) 6= 0. Here, MxT ≡ xT mod pk means that (MxT)i ≡ xTi mod pk for each i ∈
{1, . . . , n}. Write xT = plyT with yT ∈ Zn and l maximal. Then l < k, otherwise π(xT) =
0. In particular, yT 6≡ 0 mod p.
Since MxT ≡ xT mod pk, we find plMyT ≡ plyT mod pk. Dividing by pl yields MyT ≡

yT mod pk−l. As l < k, we have that k−l ≥ 1. In particular,MyT ≡ yT mod p. Thus, with
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ρ : P → P/pP denoting the canonical projection, it follows that ρ(π(yT)) is a non-trivial
fixed point of ϕ̄, since yT 6≡ 0 mod p. �

Proposition 4.17. Let n, k be integers with n ≥ 2 and k ≥ 1. Put P :=
⊕n

i=1 Z/pkZ.
Then SpecΠ(P ) = {pi | i ∈ {0, . . . , nk}}.

Proof. Here, the type of P is e := (k, . . . , k) (with n occurrences of k). Hence, b(e) =
0 and c(e) = 0, thus the ⊆-inclusion follows from Theorem 4.3 and Proposition 4.1.
Conversely, form ≥ n, we can find an automorphism ϕ with Π(ϕ) = pm using Lemma 4.14
and Proposition 4.13. Thus, we are left with arguing that pm ∈ SpecR(P ) for m ≤ n− 1.
We start with m =0. Using a primitive element of the finite field of pn elements, we can

find a polynomial fn of degree n that is irreducible over Z/pZ. Its companion matrix Cfn

(seen as matrix over Z) is invertible modulo p. Consequently, it induces, by Theorem 4.5,
an automorphism ϕfn of P. Since fn has no roots in Z/pZ (recall that n ≥ 2), the
matrix Cfn has no eigenvalues in Z/pZ. Therefore, iCfn does not have eigenvalue 1 for
i ∈ {1, . . . , p−1}. Thus, Lemma 4.16 implies that µi ◦ϕfn has no non-trivial fixed points
for each i ∈ {1, . . . , p− 1}. Consequently, Π(ϕfn) = 1.
Next, we prove the result for n =2. We already know that {1, p2, p3, . . . , p2k} ⊆

SpecΠ(P ). Thus, we have to find an automorphism ψ such that Π(ψ) = p. An argu-
ment similar to the one for Proposition 4.15 shows that the automorphism ψ induced by
the matrix

M =

(
1 1

p 1

)

does the job. Consequently, SpecΠ(P ) = {pi | i ∈ {0, . . . , 2k}} for n =2.
We now proceed to general n. So, let n ≥ 3 be arbitrary. If n is even, write

P =

n
2⊕

i=1

(
Z/pkZ

)2
.

Then the result for n =2 combined with Lemma 4.14 implies that

SpecΠ

((
Z/pkZ

)2)(n
2

)
= {pi | i ∈ {0, . . . , 2k}}

(
n
2

)

= {pi | i ∈ {0, . . . nk}}
⊆ SpecΠ(P ),

which proves the result for n even. Next, suppose that n is odd. We know that
1 ∈ SpecΠ(P ) by the case m =0 above. Write

P = Z/pkZ⊕

n−1
2⊕

i=1

(
Z/pkZ

)2
.
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Then the result for n =2 combined with Lemma 4.14 and Proposition 4.13 yields

SpecΠ(Z/pkZ) · SpecΠ
((

Z/pkZ
)2)(n−1

2

)
= {pi | i ∈ {1, . . . , k}}·

{pi | i ∈ {0, . . . , 2k}}
(
n−1
2

)
= {pi | i ∈ {1, . . . , nk}}
⊆ SpecΠ(P ),

which proves the result for n odd and finishes the proof. �

Finally, we can completely determine SpecΠ(P ) for arbitrary finite abelian p-groups.

Proof of Theorem 4.12. We factorize P using the abc-decomposition of e, that is,
we write

P =

a(e)⊕
i=1

(Z/paiZ)ni

⊕

b(e)⊕
i=1

(
Z/pbiZ⊕ Z/pbi+1Z

)⊕

c(e)⊕
i=1

Z/pciZ

 ,

where all ai, bi, ci are positive integers, the ni are the lengths of the a-blocks in the abc-
decomposition of e and satisfy ni ≥ 2 for all i ∈ {1, . . . , a(e)}, and where ci ≥ ci−1 + 2
for all i ∈ {1, . . . , c(e)}. By Theorem 4.3 and Proposition 4.1, we know that

SpecΠ(P ) ⊆ {pi | i ∈ {b(e) + c(e), . . . ,Σ(e)}}.

Conversely, by Lemma 4.14 and Propositions 4.15, 4.13 and 4.17, SpecΠ(P ) contains

a(e)∏
i=1

SpecΠ ((Z/paiZ)ni) ·
b(e)∏
i=1

SpecΠ
(
Z/pbiZ⊕ Z/pbi+1Z

)
·
c(e)∏
i=1

SpecΠ (Z/pciZ)

=

a(e)∏
i=1

{pj | j ∈ {0, . . . , aini}} ·
b(e)∏
i=1

{pj | j ∈ {1, . . . , 2bi + 1}} ·
c(e)∏
i=1

{pj | j ∈ {1, . . . , ci}}

= {pi | i ∈ {b(e) + c(e), . . . ,Σ(e)}},

which proves the theorem. �

In particular, since SpecΠ(P ) = SpecR(P ) for finite abelian 2-groups, we have the
following:

Corollary 4.18. Let P be a finite abelian 2-group of type e. Then

SpecR(P ) = {2i | i ∈ {b(e) + c(e), . . . ,Σ(e)}}.

At last, by combining Corollaries 2.5 and 4.18 and Proposition 3.2, we can determine
the Reidemeister spectrum of an arbitrary finite abelian group.
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Theorem 4.19. Let A be a finite abelian group. Suppose its Sylow 2-subgroup is of
type e. Then

SpecR(A) = {d ∈ N | d divides |A| and ν2(d) ≥ b(e) + c(e)}.

In particular, for finite abelian groups of odd order, the Sylow 2-subgroup is trivial.
So, in that case, the Reidemeister spectrum takes on a simple form:

Corollary 4.20. Let A be a finite abelian group of odd order. Then SpecR(A) is the
set of all divisors of |A|.

Remark. The erratic behaviour of the Reidemeister numbers on finite abelian groups
disappears when we consider all endomorphisms instead of only the automorphisms.
Analogous to the Reidemeister spectrum, the extended Reidemeister spectrum of a group
G is defined as the set

ESpecR(G) : ={R(ϕ) | ϕ ∈ End(G)}.

The analogues of Proposition 2.4 and Corollary 2.5 hold for endomorphisms and the
extended Reidemeister spectrum, and the extended Reidemeister spectrum of a finite
abelian group is also completely determined by the extended Reidemeister spectrum of
its Sylow subgroups. For a finite abelian p-group P, the techniques from Lemma 3.1
and Proposition 3.2 can be used for all prime numbers to prove that ESpecR(P ) is the
set of all divisors of |P |. Consequently, the extended Reidemeister spectrum of a finite
abelian group A is the set of all divisors of |A|. For more details, we refer the reader to
[15, Var. 9].
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