TENSOR PRODUCTS OF BANACH ALGEBRAS*

Boaz Natzitz**

(received September 1, 1968)

Introduction. In [3] Gelbaum defined the tensor product $A \otimes_C B$ of three commutative Banach algebras, A, B and C and established some of its properties. Various examples are given and the particular case where A, B and C are group algebras of L.C.A. groups G, H and K respectively, is discussed there. It is shown there that if K is compact $L_1(G) \otimes_{L_1(K)} L_1(H)$ is isomorphic to $L_1(\hat{S})$ where \hat{S} is L.C.A. if and only if $L_1(G) \otimes_{L_1(K)} L_1(H)$ is semisimple.

It is the purpose of this paper to extend these results to the case where K is L.C.A. group and to point out the connection between the tensor product and spectral synthesis.

This paper is divided into three sections: section 1 is a collection of definitions and theorems which appear in [3]; section 2 deals with group algebras as a topological module; and in section 3 we discuss the case of the tensor product of group algebras.

1. <u>Preliminaries</u>. Let A, B and C be the commutative Banach algebras where A and B are C modules: $\|ac\| \le \|a\| \|c\|$, $\|bc\| \le \|b\| \|c\|$ for $a \in A$, $b \in B$ and $c \in C$.

We construct the commutative algebra

$$F_{C}(A, B) = \{f: f \in C^{A \times B}, f(a, 0) = f(0, b) = 0, \gamma_{1}(f) \}$$

= $\sum \| f(a, b) \| \cdot \| a \| \cdot \| b \| < \infty \}$

Canad. Math. Bull. vol. 11, no. 5, 1968

^{*} Supported by Air Force Grant AFOSR-407-63, Yale University and N.S.F. Grant G.24295, University of Minnesota.

^{**} The author wishes to thank Professor B.R. Gelbaum for his advice and encouragement.

where addition and multiplication by scalars are defined as usual and where multiplication of two elements f_1 , $f_2 \in F_C(A, B)$ is defined by

$$f_{1}*f_{2}(a,b) = \begin{cases} \{ \sum f_{1}(a_{1},b_{1})f_{2}(a_{2},b_{2}) \colon a_{1}a_{2} = a, b_{1}b_{2} = b \} & \text{if } ||a|| \cdot ||b|| > 0 \\ 0 & \text{otherwise} \end{cases}$$

In F $_{C}(A, B)$ we consider the closed ideal I (with respect to the semi-norm γ_{4}) generated by the functions of the following type:

1.
$$f(a_1 + a_2, b_1) = -f(a_1, b_1) = -f(a_2, b_1)$$

 $f(a, b) = 0$ otherwise

2.
$$f(a_1, b_1 + b_2) = -f(a_1, b_1) = -f(a_1, b_2)$$

 $f(a, b) = 0$ otherwise

3.
$$f(a_1 \phi_1, b_1) = -f(a_1, b_1 \phi_1)$$

 $f(a, b) = 0$ otherwise

4.
$$f(a_1 \phi_1, b_1) \phi_1 = -f(a_1, b_1)$$

 $f(a, b) = 0$ otherwise

where ϕ_1 represents either a scalar or an element of $\,$ C.

With the above notations the tensor product $D = A \otimes_C B$ is defined to be $F_C(A, B)/I$: D is then a commutative Banach algebra with γ_1 as a (quotient) norm. If C is the complex numbers we obtain the usual tensor product $A \otimes_{\gamma} B$ endowed with the "greatest cross norm" - the "projective tensor product".

As is customary we denote by ${}^{\mbox{$\backslash$}}_A$, ${}^{\mbox{$\backslash$}}_B$, ${}^{\mbox{$\backslash$}}_C$ and ${}^{\mbox{$\backslash$}}_D$ the maximal spaces of A, B, C and D respectively.

In order to simplify our next theorems we add the following assumption: For every $(M_A, M_B) \in \mathbb{N}_A \times \mathbb{N}_B$ there exist $a \in A$, $b \in B$, c_4 , $c_2 \in C$ such that $\hat{ac}_4(M_A)\hat{bc}_2(M_B) \neq 0$.

[In the general case the one point compactification of $\[Mathbb{M}_A\]$ (resp. $\[Mathbb{M}_B\]$) or equivalently the adjunction of module identity is needed.]

THEOREM 1. (i) There are continuous mappings $\mu: \mathbb{M}_A \to \mathbb{M}_C$, $\nu: \mathbb{M}_B \to \mathbb{M}_C$ such that, for (a, b, c) $\in A \times B \times C$ and $(M_A, M_B) \in \mathbb{M}_A \times \mathbb{M}_B$, $\hat{ac}(M_A) = \hat{a}(M_A)\hat{c}(\mu(M_A))$, $\hat{bc}(M_B) = \hat{b}(M_B)\hat{c}(\nu(M_B))$.

(ii) Let $\rho = \mu \times \nu : \mathbb{M}_A \times \mathbb{M}_B \to \mathbb{M}_C \times \mathbb{M}_C$ and let Δ be the diagonal of $\mathbb{M}_C \times \mathbb{M}_C$. Then there exists a homomorphism $\tau : \mathbb{M}_D \to \rho^{-1}(\Delta)$, a locally compact subset of $\mathbb{M}_A \times \mathbb{M}_B$. If $\tau(M_D) = (M_A, M_B)$ and if $\mu(M_A) = M_C = \nu(M_B)$ then for every $\overline{f} = f/I \in D$, with $f(a_n, b_n) = c_n$ $n = 1 \dots$ and f(a, b) = 0 otherwise,

$$\hat{f}(M_D) = \sum \hat{c}_n(M_C) \hat{a}_n(M_A) \hat{b}_n(M_B).$$

THEOREM 2. Let $\{c\}$ be an approximate identity for C. Then $\{c\}$ is also an approximate identity for A if and only if each $a \in A$ is of the form a_1c_1 where $a_1\in A$ and $c_1\in C$. Moreover, for $\epsilon>0$, a_1 and c_1 can be chosen to satisfy $\|c_1\|=1$ and $\|a_1-a\|<\epsilon$.

For the proofs of these theorems as well as several other applications we refer the reader to [1], [3] and [5].

In the next sections we shall denote by $\Sigma c_n(a_n, b_n)$ and $\Sigma c_n(a_n \otimes b_n)$ elements of $F_C(A, B)$ and D respectively.

2. Group Algebras. In this section we shall focus our attention upon group algebras with an additional module property. Although some of the results of this section hold for a larger class of multipliers [5] we shall restrict ourselves to the following particular case [3]:

Let G and K be two L.C.A. groups with dual groups \hat{G} and \hat{K} respectively. Let $\theta: K \to G$ be a (topological) homomorphism of K into G (so that $\theta(K)$ is locally compact and hence $\theta(k)$ is closed [6] and let $\theta*: \hat{G} \to \hat{K}$ be the (induced) dual mapping defined by [12]: $(\theta(k), \alpha) = (k, \theta*(\alpha))$ where $\alpha \in \hat{G}$.

With the above notations we define the "module action" as

$$ac(g) = \int_K a(g-\theta(k))c(k)dk \text{ for } a \in L_1(G), c \in L_1(K).$$

Under this definition $L_1(G)$ is an $L_1(K)$ module with $\|ac\| \le \|a\| \|c\|$ and $(a_1c)a_2 = (a_1a_2)c$ etc. Indeed, the usual proofs hold here with the obvious modifications.

We now prove several propositions which will be used in the sequel. $\label{eq:constraint}$

LEMMA 3. Let $\alpha \in \hat{G}$. Then $a\hat{c}(\alpha) = \hat{a}(\alpha)\hat{c}(\theta^*(\alpha))$ for $a \in L_1(G)$, $c \in L_1(K)$.

Proof.
$$a\hat{c}(\alpha) = \int_{G} ac(g)(\overline{g, \alpha})dg$$

$$= \int_{G} \int_{K} a(g-\theta(k))c(k)\overline{(g, \alpha)} dk dg$$

$$= \int_{K} \int_{G} a(g)c(k)\overline{(g, \alpha)}(\overline{\theta(k), \alpha}) dg dk$$

$$= \hat{a}(\alpha)c(\theta*(\alpha)).$$

Since \overline{A}^{1} is a closed ideal in $L_{1}(G)$ it suffices to show that \overline{A}^{1} is not contained in α for every $\alpha \in \widehat{G}$. [7, p. 148].

This clearly is the case since $\Phi(a, c) \equiv \hat{a}(\alpha) \equiv \hat{a}(\alpha)\hat{c}(\alpha) \neq 0$.

PROPOSITION 5. Let {u} be an approximate identity for $L_1(K)$. Then au \rightarrow a for every $a \in L_1(G)$.

<u>Proof.</u> Let $\epsilon > 0$. Choose $a_i \in L_i(G)$, $c_i \in L_i(K)$, $i = 1, \ldots, n$ and $u \in \{u\}$ such that

$$\| \mathbf{a} - \sum_{i=1}^{n} \mathbf{a}_{i} \mathbf{c}_{i} \| < \epsilon/3 \text{ and } \| \mathbf{c}_{i} - \mathbf{c}_{i} \mathbf{u} \| \le \epsilon/3\eta.$$

Then,

(
$$\parallel u \parallel \leq 1$$
, $\eta > max \parallel a_{j} \parallel$) $1 \leq j \leq n$

$$\| \, a - au \, \| \leq \, \| \, a - \Sigma \, a_i^{} c_i^{} \, \| + \| \, \Sigma \, a_i^{} c_i^{} - \Sigma \, a_i^{} c_i^{} u \| + \| \, \Sigma \, a_i^{} c_i^{} u \| < \, \varepsilon \, /_3^{} + \, \varepsilon \, /_3^{} \, + \, \varepsilon \, /_3^{} \, = \, \varepsilon \, .$$

PROPOSITION 6. (i) Let $a \in L_1(G)$, $c \in L_1(K)$. Suppose $\hat{c} = 1$ on supp(\hat{a}). Then a = ac.

- (ii) Let $a \in L_1(G)$, and let $\epsilon > 0$. Then there exist $a_1 \in L_1(G)$, $c_1 \in L_1(k)$ such that $\|c_1\| = 1$, $\|a a_1\| < \epsilon$ and $a = a_1c_1$.
- <u>Proof.</u> (i) $\hat{ac}(\alpha) = \hat{a}(\alpha)\hat{c}(\theta^*(\alpha)) = \hat{a}(\alpha)$ by Lemma 3 and our assumption. Hence, since $L_{A}(G)$ is semisimple ac = a.
 - (ii) Theorem 2.
- 3. Tensor Products by Group Algebras. We now turn our attention to a particular example by a tensor product over a Banach algebra the case where the algebras involved are group algebras of a locally compact abelian group and where the module action is in accordance with the previous section.

One purpose in the development will be the realization of D as a group algebra $L_1(\hat{S})$ of a L.C.A., \hat{S} constructible from G, H and K. Another equally important problem will be the semisimplicity of D. It is a well-known open question whether the tensor product of semisimple Banach algebras is again semisimple. In the case of group algebras this is true since $L_1(G) \otimes L_1(H) = L_1(G \times H)$ [2], [4] and [11]. Yet in the general case this is known to be true if the condition of "monomorphy" (A \bigotimes_{γ} B \rightarrow A \otimes B is 1-1) holds, which is the case if either one of the algebras satisfies the Grothendieck condition of approximation [2], [4], [10], and [11].

To focus our ideas let G, H, and K be three L. C. A. groups with dual groups \hat{G} , \hat{H} and \hat{K} respectively. Let $\theta \colon K \to G$ and $\psi \colon K \to H$ be homomorphisms of K into G and H respectively. With the previous definitions the tensor product $D = L_1(G) \otimes L_1(K) L_1(H)$ is a well-defined Banach algebra. We first characterize its maximal ideal space - which turns out to be L. C. A. group S - and then define a linear mapping $T \colon F_{L_1(K)}(L_1(G), L_1(H)) \to L_1(S)$ which turns out to be an isomorphism of D onto $L_1(S)$ provided D is semisimple. Several rather powerful theorems are used in this development. Besides Cohen's factorization theorem (Proposition 6) [1], [5] we need Grothendieck's characterization of the tensor product [4] (these are used in showing that T is surjective) and Calderon's result in spectral synthesis [8].

Some of the ideas involved in this discussion appear in [3]. However, our proof of the semisimplicity of D is entirely different.

To make our discussion complete we indicate the proofs of several

propositions which appear already in [3].

THEOREM 7. (i) The maps $\mu:\hat{G}\to\hat{K}$ and $\nu:\hat{H}\to\hat{K}$ are the duals θ^* and ψ^* of the maps θ and ψ .

(ii)
$$\tau$$
 (\mathbb{m}_{D}) = {(α , β): $\alpha \in \hat{G}$, $\beta = \hat{H}$, $\theta * (\alpha) = \psi * (\beta)$ } = $(\theta * \times \psi *)^{-1} \Delta$
where $\Delta = \underline{\text{diagonal of }} \hat{K} \times \hat{K}$. Hence τ (\mathbb{m}_{D}) is a closed subgroup of $\hat{G} \times \hat{H}$.

(iii)
$$\tau(h_D) = G \times H/\tau (h_D)^+$$
 where + is the annihilator.

(iv)
$$\tau \left(\bigcap_{D} \right)^{+} = (\theta \times - \psi) \Gamma = Q \text{ where } \Gamma = \text{diagonal of } K \times K$$
.

$$(v) \tau(m_D) = G \times H/C$$

(vi) If
$$\bar{z} \in D$$
 and $\bar{z} = \sum c_m (a_m \otimes b_m)$ then for $M_D \in M_D = \sum c_m (\gamma) \hat{a}_m (\alpha) \hat{b}_m (\beta)$, where $\tau(M_D) = (\alpha, \beta)$ and $\theta * (\alpha) = \psi * (\beta) = \gamma$.

<u>Proof.</u> (i), (ii) and (vi) follow from Theorem 1, (iii) follows from (ii) by duality and (v) follows from (iv) by duality. To prove (v) we first note that Q is closed since its locally compact group in the relative topology (the mappings are open) [6].

Next we show that $Q\subset_{\tau}(M_{\stackrel{}{D}})^+$. Indeed, for $g=\theta(k),\ h=\psi(k),\ k\in K$ and $(\alpha,\ \beta)\in_{\tau}(M_{\stackrel{}{D}})$, we have

$$(g, \alpha)(h, \beta) = (\theta(k), \alpha)(-\psi(k), \beta) = (k, \theta * (\alpha))(\overline{k, \psi * (\beta)})$$
$$= (k, \gamma)(\overline{k, \gamma}) = 1$$

by (ii) and (iii).

Finally, let $(\alpha_0, \beta_0) \in Q^+$ then $1 = (\theta(k), \alpha_0)(-\psi(k), \beta_0)$; hence $\theta * (\alpha_0) = \psi * (\beta_0)$. Hence $(\alpha_0, \beta_0) \in \tau (\mathbb{N}_D)$ (by (ii)) and this completes the proof since Q is closed.

Let T be the linear operator defined on the functions in $F_{L_1(K)}(L_1(G), L_1(H))$ with finite support and values in $L_1(G \times H/Q)$; T is defined by

$$Tc(a, b)(g, h) = \int_{Q} \int_{K} a(g-\theta(k_{1})-\theta(k_{2}))c(k_{1})b(h+\psi(k_{2}))dk_{1}dq_{2}$$

$$= \int_{Q} ac(g-\theta(k_{2}))b(h+\psi(k_{2}))dq_{2},$$

where dq represents the Haar measure on $Q = (\epsilon x - \psi)$ diag $(K \times K)$ and (g, h) represents the coset (g, h) + Q. By a proper choice of the Haar measures we have that the mapping $F \rightarrow \int\limits_{Q} F((g, h) + q) dq$ is surjective and

$$\int\limits_{Q} \int\limits_{Q} \mathbf{F((g, h) + q)} dq \, dg \, dh = \int\limits_{G \times H} \mathbf{F(g, h)} dg dh,$$

[7], [12].

PROPOSITION 8. (i) T is bounded, ($\| Tf \| \le \gamma_1$ (f)).

- (ii) T[I] = 0.
- (iii) T is multiplicative on D where T denotes the induced mapping by (ii).
 - (iv) T: D \rightarrow L₄(G \times H/Q) is surjective.
 - (v) T is isomorphic.

Proof. (i), (ii) and (iii) are straight-forward.

(iv) is a consequence of Propositions 6 and the isometric isomorphism between $L_1(G) \otimes_{\gamma} L_1(H)$ and $L_1(G \times H)$. Indeed, let $\Sigma a_n^{\dagger} b_n \in L_1(G \times H)$; write $a_n^{\dagger} = a_n^{\dagger} c_n$ and consider $\Sigma c_n(a_n \otimes b_n) \in D$ by proper choice of a_n and c_n . Then

$$T\Sigma c_n(a_n \otimes b_n) = \int_Q a_n c_n(g-\theta)(k_2) b_n(h+\psi(k_2)) dq_2$$

which is surjective.

(v) One half is obvious. The second follows directly from the identity $\hat{z}(M_D) = \hat{Tz}(\alpha, \beta)$ where $(\alpha, \beta) \longleftrightarrow M_D$ (Theorem 7).

We include a detailed proof of this identity since the involved computations are typical. To this end let $d\sigma$ = dgdh; then

In order to simplify some of the statement, we introduce the following definitions:

Let

$$S = \{(\alpha, \beta, \gamma); \alpha \in \hat{G}, \beta \in \hat{H}, \gamma \in K, \theta * (\alpha) = \psi * (\beta) = \gamma \}.$$

A <u>cube</u> is a set of the form $E = E_{\hat{G}} \times E_{\hat{H}} \times E_{\hat{K}}$ where $E_{\hat{G}}$, $E_{\hat{H}}$ and $E_{\hat{K}}$ are subsets of \hat{G} , \hat{H} and \hat{K} respectively and where $E \cap S = \emptyset$. An element $X = \sum_{i=1}^{N} a_i b_i c_i$ of $L_1(G \times H \times K)$ where $a_i \in L_1(G)$, $b_i \in L_1(H)$, $e_i \in L_1(K)$, $i = 1, \ldots, n$ will be called a generator. A term about be a component of the generator.

LEMMA 9. (i) S is a closed subgroup of $\hat{G} \times \hat{H} \times \hat{K}$.

(ii) If
$$E = E_{\hat{G}} \times E_{\hat{H}} \times E_{\hat{K}}$$
 is a cube then $\theta * (E_{\hat{G}}) \cap \psi * (E_{\hat{H}}) \cap E_{\hat{K}} = \phi$.

 $\frac{\text{Proof.}}{\theta*(\alpha)} = \frac{1}{\gamma_1} \neq \gamma \quad \text{(similarly for } \psi*(\beta) = \gamma_2 \neq \gamma \text{) we choose two disjoint}$ neighbourhoods (in \hat{K}) V_{γ} of γ and V_{γ_1} of γ_1 . Then $\theta*^{-1}(V_{\gamma}) \times \hat{H} \times V_{\gamma_1}$ is a cube neighbourhood of λ .

(ii) (By contradiction) If $\lambda \in \theta^*$ ($E_{\hat{G}}$) $\cap \psi^*$ ($E_{\hat{H}}$) $\cap E_{\hat{K}}$ then $\gamma = \theta^*(\alpha) = \psi^*(\beta)$ and $(\alpha, \beta, \gamma) \in S \cap E$.

LEMMA 10. Let $f \in L_1(G \times H \times K)$ with $\hat{f} = 0$ on S. Then for arbitrary $\epsilon > 0$ there exists a generator z with components z_i , $i = 1, \ldots, L = L(\epsilon, s, t)$ such that

(i) {supp.
$$\hat{z}_i$$
} are compact cubes;

(ii)
$$\|z-f\| < \epsilon$$
.

<u>Proof.</u> Without loss of generality we may assume that the support of \hat{f} is a compact set disjoint from S. For, by Calderon's Theorem, [1], S is a spectral set and the usual triangle inequality completes the argument.

Let supp. $\hat{f} = \Lambda$ be a compact set disjoint from S. Choose generators x and y such that $\hat{x} = 1$ on Λ and the supp. \hat{x}_i are compact cubes where x_i are the components for x for $i = 1, \ldots, n$ and $\|y-f\| < \epsilon/\|x\|$. Then z = x*y satisfies the lemma.

LEMMA 11. Let
$$\bar{f} = \sum_{C_n} (a_n \otimes b_n) \in L_1(G) \otimes_{L_1(K)} L_1(H)$$
.

Then
$$f = \sum_{n} b_n c_n \in L_1(G \times H \times K)$$
. If $\hat{f} \equiv 0$ then $f = 0$ on S.

$$\underline{\text{Proof}}.\quad \|f\| \leq \Sigma \|a_n\| \|b_n\| \|c_n\| = \gamma_1(\Sigma c_n(a_n(a_n,b_n)) < \infty.$$

Also, $f(\alpha, \beta, \gamma) = \sum a_n b_n c_n(\alpha, \beta, \gamma) = \sum \hat{a}_n(\alpha) \hat{b}_n(\beta) \hat{c}_n(\gamma) = f(\alpha, \beta, \gamma) = 0$ by Theorem 7.

LEMMA 12. Let
$$\bar{f} = c(a \otimes b) \in L_1(G) \otimes_{L_1(K)} L_1(H)$$
.

<u>Let</u> θ^* (supp \hat{a}), ψ^* (supp \hat{b}), supp \hat{c} be compact subsets of \hat{K} . Then, if θ^* (supp \hat{a}) θ^* (supp \hat{b}) θ supp $\hat{c} = \phi$, $\hat{f} = 0$.

Proof. Choose V_1 , V_2 , V_3 neighbourhoods of θ * (supp \hat{a}), ψ * (supp \hat{b}), supp \hat{c} respectively such that $V_1 \cap V_2 \cap V_3 = \phi$. Choose local identities c_1 , c_2 , $c_3 \in L_1(K)$ such that $\hat{c}_i = 0$ outside of V_i , i = 1, 2, 3 and $\hat{c}_1 = 1$ on θ * (supp \hat{a}), $\hat{c}_2 = 1$ on ψ * (supp \hat{b}), $c_3 = 1$ on supp \hat{c} . Now $V_1 \cap V_2 \cap V_3 = \phi$ implies $c_1 c_2 c_3 = 0$ whence $c(a \otimes b) = cc_1(ac_1 \otimes bc_2) = cc_1c_2c_3(a \otimes b) = 0(a \otimes b) = 0$.

COROLLARY. Let z be a generator with components $z_i = a_i b_i c_i$, i = 1, ..., n. Let supp \hat{z}_i be a compact cube. Then $z = \sum_{i=1}^{n} c_i (a_i \otimes b_i) = 0$.

<u>Proof.</u> By Lemma 9, $\theta*(\sup \hat{a_i}) \cap \psi*(\sup \hat{b_i}) \cap \sup \hat{c_i} = \phi$, i = 1, ..., n. Hence, by Lemma 11 and the compactness of $\theta*(\sup a_i)$ etc., we get the required result.

THEOREM 13. D is semisimple.

 $\begin{array}{lll} \underline{Proof}. & \text{Let } \overline{y} = \Sigma \, c_n(a_n \otimes b_n) \text{ be such that } \overset{\widehat{\bullet}}{y} \equiv 0. & \text{Consider, in} \\ \text{accordance with Lemma 11, } y = \Sigma \, a_n b_n c_n \in L_1(G \times H \times K). & \text{Let } \epsilon > 0. \\ \text{By Lemma 10 there exists a generator } z \text{ with components } z_i, i = 1, \ldots, L \\ \text{such that supp } \hat{z}_i \text{ are compact cubes and } \|z - y\| < \epsilon . & \text{By the previous} \\ \text{corollary } \Sigma \, c_i(a_i \otimes b_i) = 0. & \text{On the other hand we have that} \\ \gamma_1(\overline{y} - \Sigma \, c_i(a_i \otimes b_i)) \leq \|y - z\| < \epsilon . & \text{Hence } \gamma_1(\overline{y}) < \epsilon \text{ , and } D \text{ is semisimple.} \end{array}$

REFERENCES

- 1. P.J. Cohen, Factorization in group algebras. Duke Math. J. 26 (1959) 199-205.
- 2. B.R. Gelbaum, Tensor products and related questions. Trans. Amer. Math. Soc. 103 (1962) 525-547.
- 3. B.R. Gelbaum, Tensor products over Banach algebras. Trans. Amer. Math. Soc. 118 (1965) 131-149.
- 4. A. Grothendieck, Produits tensoriels topologiques et espaces nucleaires. Mem. Amer. Math. Soc. 16 (1955).
- 5. E. Hewitt, The range of certain convolution operators. Math. Scand. 15 (1964) 147-155.
- 6. E. Hewitt and K. Ross, Abstract harmonic analysis I (Springer, Berlin-Göttingen-Heidelberg, 1963).
- 7. L.H. Loomis, An introduction to abstract harmonic analysis. (Van Nostrand, New York, 1953).
- 8. W. Rudin, Fourier analysis on groups. (Interscience, New York 1962).
- 9. H. Schaefer, Topological vector spaces. (Macmillan, New York 1966).
- L. Schwartz, Produits tensoriels topologiques d'espaces vectoriels topologiques. Fac. Sci. de Paris, Seminaire Schwartz (1953-1954).

- 11. J. Tomiyama, Tensor products of commutative Banach algebras Tohoku, Math. J. 12 (1960) 147-154.
- 12. A. Weil, L'integration sans les groupes topologiques et ses application. (Hermann, Paris 1953).

McGill University