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Introduction. In [3] Gelbaum defined the tensor product A ®CB

of three commutative Banach algebras, A, B and C and established
some of its properties. Various examples are given and the particular
case where A, B and C are group algebras of L.C.A. groups G, H
and K respectively, is discussed there. It is shown there that if K is
compact Li(G) ®L1(K) Li(H) is isomorphic to Li(S) where S is L.C.A.

if and only if Li(G) ® Li(H) is semisimple.

L,(K)

It is the purpose of this paper to extend these results to the case
where K is L.C.A. group and to point out the connection between the
tensor product and spectral synthesis.

This paper is divided into three sections: section 1 is a collection
of definitions and theorems which appear in [3]; section 2 deals with
group algebras as a topological module; and in section 3 we discuss the
case of the tensor product of group algebras.

1. Preliminaries. Let A, B and C be the commutative Banach
algebras where A and B are C modules: |ac]| < lallll<l, ”bc”g ”b" ”c”
for acA, beB and ceC.

We construct the commutative algebra

F oA, B) ={r:1cC? P, (e, 0) = £(0, b) = 0, V(@)

=zl f@ b . lal.lbl<w?
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where addition and multiplication by scalars are defined as usual and
where multiplication of two elements f1Y fzeFC(A, B) is defined by

£,41,(a,b) = {zf,(a;,b )i, (a),, b)) aa

)t aa, =a bb, =b} if [lall. bl >0

0 otherwise .

In FC(A, B) we consider the closed ideal I (with respect to the

semi-norm ’Yi) generated by the functions of the following type:

1. f(a1 ta,, b) = —f(ai, bi) = -f(az, b1)
f(a, b) = 0 otherwise
2. f(ai, b1+b2) = —f(ai, bi) = —f(ai, bZ)
f(a, b) = 0 otherwise
3. f(a1¢1, b1) = -f(a1, b1¢1)
f(a, b) = 0 otherwise
4. fla, ¢, b )o,= -fla,, b, )
f(a, b) = 0 otherwise

where ¢1 represents either a scalar or an element of C.

With the above notations the tensor product D = A ®CB is defined
to be FC(A, B)/1: D is then a commutative Banach algebra with "\/1 as

a (quotient) norm. K C is the complex numbers we obtain the usual tensor
product A Q,YB endowed with the '"greatest cross norm" - the '"projective

tensor product'.

As is customary we denote by mA, Tn,B, m and mD the maximal

C
spaces of A, B, C and D respectively.

In order to simplify our next theorems we add the following
assumption: For every (MA, MB)e mA X m B there exist

acA, beB, Ci’ czeC such that aci(MA)bCZ(MB) # 0.
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[In the general case the one point compactification of mA (resp. mB)

or equivalently the adjunction of module identity is needed. ]

THEOREM 1. (i) There are continuous mappings p: mA—> m

C,
v mB—»mC such that, for (a, b, C)E,AXBT C and (MA,MB)emAxm
ac(MA) = a(MA)C(H(MA)), bC(MB) = b(MB) c (v (MB))-

B’

. - i % < .
(ii) Let p pXV o mA mB - mc mc and let A be the diagonal

of ch mC . Then there exists a homomorphism - : mD - p_i(A),

1 11 b X . = i
a locally compact subset of mA mB I T(MD) (MA, MB) and if

=M = t T = 1 = =1..
H(MA) c v(MB) hen for every f /1D, with f(an, bn) c, n 1
and f(a, b) =0 otherwise,

E(MD) =z & (M ) 21n(M A)Bn(MB).

THEOREM 2. Let {c} be an approximate identity for C. Then
{c} is also an approximate identity for A if and only if each acA is of
the form aic where aieA and 01 ¢C. Moreover, for ¢ >0, ay and

1

<y can be chosen to satisfy ”C1” =1 and ﬂ a1-a” <e€.

For the proofs of these theorems as well as several other
applications we refer the reader to [1], [3] and [5].

In the next sections we shall denote by = cn(an, bn) and

Zc (a ®b ) elements of F_(A, B) and D respectively.
n n n C

2. Group Algebras. In this section we shall focus our attention

upon group algebras with an additional module property. Although some of
the results of this section hold for a larger class of multipliers [5] we shall
restrict ourselves to the following particular case [3]:

Let G and K be two L. C.A. groups with dual groups & and K
respectively. Let 6 : K-~ G be a (topological) homomorphism of K
into G (so that 6(K) is locally compact and hence 0(k) is closed [6] and
let 6%: G~ K be the (induced) dual mapping defined by [12]:

(8(k), @) = (k, 6% (a)) where aeG.
With the above notations we define the ""module action' as

ac(g) = f a(g-0(k))e(k)dk for aeL,(G), ceL (K) .
K
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Under this definition Li(G) is an L (K) module with

lac|< | all || ¢ and (aic)a2 = (aiaz)c etc. Indeed, the usual

proofs hold here with the obvious modifications.

We now prove several propositions which will be used in the
sequel.

LEMMA 3. Let aeG. Then ac(a) = 2(a)é(6%(a)) for acL, (G),
ceLi(K).

Proof. ac(a) = ac(g) (g, a)dg

a(g- 6(k))c(k)(g, a) dk dg

"

L
5
/

a(g)e(k)(g, a)(6(k), o) dg dk

fK
L

K
= A(a)c(6%(a)) .
LEMMA 4. Let A' = {Taje;;ael,(G), ceL (K)}. Then A' =L (G).
Since A' is a closed ideal in L1(G) it suffices to show that A'
is not contained in a for every we G. [7, p. 148].

This clearly is the case since ®#(a, c) = ac(a) = a(a)ll) # O.

PROPOSITION 5. Let {u} be an approximate identity for L1 (K).

Then au — a for every ac L1(G).

Proof. Let ¢ > 0. Choose aieLi(G), ce Li(K)’ i=1,..., n and

ue{u} such that

n
| a- ifi a;c, ” < ¢/3 and | c,-c.u | < ¢/3q.

Then,
(ol <tn >max]la]) 1<j<n

[a-au |[< [[a-= a.c, ”+”Eaici—2 aiciu”+”2aiciu” < e/3+ 5/3 + e/3 = e .
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PROPOSITION 6. (i) Let a eLy(G), ceLi(K). Suppose & =1

on supp(3a). Then a = ac.

(ii) Let a€L1(G), and let ¢ > 0. Then there exist aieLi(G),

c1eL1(k) such that ”C1” =1‘, I a-a, | < ¢ and a=ac, .

Proof. (i) ac(a) = a(e)c(6%(a)) = 3(a) by Lemma 3 and our
assumption. Hence, since L1(G) is semisimple ac = a.

(ii) Theorem 2.

3. Tensor Products by Group Algebras. We now turn our
attention to a particular example by a tensor product over a Banach
algebra - the case where the algebras involved are group algebras
of a locally compact abelian group and where the module action is in
accordance with the previous section.

One purpose in the development will be the realization of D as
a group algebra L1(S) of a L.C.A., S constructible from G, H and

K. Another equally important problem will be the semisimplicity of D.
It is a well-known open question whether the tensor product of semi-
simple Banach algebras is again semisimple. In the case of group
algebras this is true since Li(G) @ Li(H) = L1(G X H) [2], [4] and

[11]. Yet in the general case this is known to be true if the condition of
"monomorphy' (A ®'Y B - A®B is 1-1) holds, which is the case

if either one of the algebras satisfies the Grothendieck condition of
approximation [2], [4], [10], and [11].

To focus our ideas let G, H, and K be three L. C. A. groups with
dual groups G, H and K respectively. Let 6: K-> G and
$: K= H be homomorphisms of K into G and H respectively. With
the previous definitions the tensor product D = Li(G) () L (K) Li(H) is
1
a well-defined Banach algebra. We first characterize its maximal ideal
space - which turns out to be L.C.A. group S - and then define a
linear mapping T : F L1 (K)(Li(G)’ L1(H) ) =~ Li(S) which turns out to be
an isomorphism of D onto Li(S) provided D is semisimple. Several

rather powerful theorems are used in this development. Besides Cohen's
factorization theorem (Proposition 6) [1], [5] we need Grothendieck's
characterization of the tensor product [4] (these are used in showing
that T is surjective) and Calderon's result in spectral synthesis [8].

Some of the ideas involved in this discussion appear in [3].
However, our proof of the semisimplicity of D is entirely different.

To make our discussion complete we indicate the proofs of several
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propositions which appear already in [3].

THEOREM 7.

(ii) -r(mD) = {(a, B): e G

(1)

A

The maps p.:é—’K and vy :ﬁ»K are the
duals 6% and (% of the maps 6 and .

~ A

B = H, e%(a) = y*(B)} = (6% X ¢*)”1A

where A = diagonal of K X K. Hence T(mD) is a closed subgroup of G x H.

(iii) Tﬁﬂ;) =
(v) T (n )=

(v) T(mD) =

(vi) ¥ zeD and =z

Ze () am (a)fam(m,

G X H/~r (mD)+ where + is the annihilator.

(6 X

-y T = Q where I' = diagonal of KX K.

/\
G X H/
Q

= Zcm(am ®bm) then for MDesz(MD) =

where T(MD) = (a, B) and €% (a) = ¢*(B) =

Proof. (i), (ii) and (vi) follow from Theorem 1, (iii) follows
from (ii) by duality and (v) follows from (iv) by duality. To prove (v) we
first note that Q 1is closed since its locally compact group in the relative
topology (the mappings are open) [6].

Next we show that QCr (MD)+. Indeed, for g = €(k), h =-y(k), ke K

and (o, B)er (MD), we have

(g, a)(h, B)

by (ii) and (iii).

Finally, let (ozo s

(6(k), ))( - (k), B) = (k, 6% ())(k, y* (B))

(k, PY) (k’ 'Y) = 1

p )eQ" then 1 = (8(k), @ )(~ (k) B_); hence
b*(ao) = Pk (‘30)_ Hence (ao, [30) eT (mD) (by (ii)) and this completes the

proof since Q is closed.

Let T be the linear operator defined on the functions in
F (L (G), Li(H)) with finite support and values in L1(G X H/Q);

L (K)
T 1is defined by

o O

Tc(a, b)(g,

h)

i

J
Q
J
Q

[ ale- e(k,)-6(k,)clk, b(h +y (k,))dk, dq,
K

ac(g-6(k ))b(h+~b(k ))dq2
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where dq represents the Haar measure on Q = (€x- ) diag(K X K)
o o
and (g, h) represents the coset (g, h) + Q. By a proper choice of the Haar

measures we have that the mapping F— f F((g, h) + q)dq is surjective
Q

and
o O
/ J F(g h) +qdqdgdh = [ F(g, h)dgdh,
Q
GXH

G><1-1/Q X

[7], [12].
PROPOSITION 8. (i) T is bounded, (| Tf]l< vy ().
(i) T[] = 0.

(iii) T is multiplicative on D where T denotes the induced

mapping by (ii).

(iv) T:D - Li(G X H/Q) is surjective .
(v) T is isomorphic .
Proof. (i), (ii) and (iii) are straight-forward.

(iv) is a consequence of Propositions 6 and the isometric
isomorphism between Li(G) ®'Y Li(H) and L1(G>< H). Indeed, let

Za'b ¢ L (GXH); write a' = a ¢ and consider Zc (a_ @b )e D by
n n 1 n nn n n n

proper choice of a and c- Then

TZc (a_®b ) = fQancn(g—ﬁ)(kz)bn(h+¢(k2))dq2

which is surjective.

(v) One half is obvious. The second follows directly from the

identity E(MD) = Tz(a, B) where (a, p) — MD (Theorem 7).

We include a detailed proof of this identity since the involved

o o
computations are typical. To this end let do = dgdh; then
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Za c (ab ({s fG {{ an(g-€(k1))cn(k1)bn(h)(g,a) (h, ) dkdgdh

= ZGXH/ fQ{{an(g—e(ki+k2))cn(k1)bn(h+¢;(k2))(g—e(kz),a)(h—¢(k2),ﬁ)dk1dq2dcr

O O

zGiH/ fo a_(g-0(k, +k,))e (k)b (h+y(k,))(g, h), (e p))dk, dq,do

oo oo
= f T(cn(an @bn)(g, h)((g, h)(a,p))do = TZ c (a_ @b )ap) .
G><H/Q

In order to simplify some of the statement, we introduce the
following definitions:

Let

S= {(ep,V); @G, BGI:L veK, 0%() = k(@) = v}

s = ~ X ~ X g 1 ~ L !
A cube is a set of the formh E EG EH EK where EG, EH &

are subsets of é, H and K respectively and where E(S= &. An

m

element X = ab.c., of L (GXHXK) where a.cL (G), b.cL, (H),
joq 1B 1 i~ 1 i 1

€€ Li(k)’ i=1,...,n will be called a generator. A term abc will be

a component of the generator.

LEMMA 9. (i) S is a closed subgroup of Gx ﬁXI& .

i = Ea ~ ~ i H(Ex ) Ok (E .~ A=
(ii) ¥ E EGXEHX EK is a cube then 6 (EG) ’WLJ)‘(EH)F\ EK )

Proof. (i) If X\ = (a, B, v) does not belong to S then for
0% () = 'Y1 # v (similarly for % (p) = 'YZ # v) we choose two disjoint
A ._1 2
neighbourhoods (in K) V'Y of Y and V of Yy Then 6% (V )X H><Vry

Y4 Y1
is a cube neighbourhood of X\ .

(ii) (By contradiction) If \eb% (Eé)m P (Eﬁ)ﬂ Ef{ then v = 6%(a) = % (g)
and (@, B, Y)eSE.

LEMMA 10. Let feL, (GXHXK) with {=0 on S. Then for

arbitrary ¢ > 0 there exists a generator z with components zg

i=41,..., L =L(e¢, s, t) such that
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(i) {supp. Qi} are compact cubes;

(i) |Jlz-f]] < e .

. Proof. Without loss of generality we may assume that the support
of f is a compact set disjoint from S. For, by Calderon's Theorem,
[1], S is a spectral set and the usual triangle inequality completes the
argument.

Let supp. f=A bea compact set disjoint from S . Choose
generators x and y such that x =1 on A and the supp. ﬁi are compact
cubes where x, are the components for x for i=4,...,n and

i

ly-£] < « /“x” . Then z = x¥y satisfies the lemma.

LEMMA 11. Let {=2g,(a®b ) ¢ L, (G) @ L, (H) .

L,(K)

>

Then f =2Za b ¢ ¢ L (GXHXK)., If f =0 then f =0 on S.
— nnn 1 —_—

Proof. [l = flall o [l e ll=7,Ec (@@, b)<w.

Also, f(a,p,Y) = Za:t?cn(a, B,v) = Zan(a)B‘n(ﬁ)en(’Y) = flo, B, Y) =0 by

Theorem 7.

LEMMA 12. Let f= c(a®b)eL, (G) ® L, (H) .

L,(K)

Let 6% (supp 2), y* (supp B), supp ¢ be compact subsets of 12 . Then,,
if 6% (supp a)(y* (supp b) M) supp € = ¢, f=0.

Proof. Choose V1, V_, V_ neighbourhoods of 6% (supp a),

2 3
¥ (supp b), supp c respectively such that V1m vzﬁ V3 = ¢ . Choose

local identities c¢,, c_, c eL1(K) such that €i= 0 outside of V.,
i

1 2 3 “
i=1,2,3 and 81 =1 on 6% (supp 2 ), 62 = 4 on ¢* (supp b), g = 1
on supp ¢. Now v, M Vzﬂ V3 = ¢ implies € C,C5 = 0 whence
= = =0(a ®b) = 0.
c(a @ b) cc:i(ac1 ® bCZ) cc102c3(a ®b) (a )

COROLLARY. Let z be a generator with components z; = aibici’
n
.,n. Let supp Z, be a compact cube. Then z =X Ci(ai () bi) =0.
— i
1

=
1
-

Proof. By Lemma 9, 0% (supp Qi) M y* (supp gi)ﬂ supp Ei = ¢,
i=1,...,n. Hence, by Lemma 11 and the compactness of 6%(supp ai)

etc., we get the required result.
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THEOREM 13. D is semisimple.

Proof. Let ;r- = Ecn(an ® bn) be such that ;;E 0. Consider, in
accordance with Lemma 11, y=Z anbncn eLi(GX HXK). Let ¢ >0.
By Lemma 10 there exists a generator z with components zi, i=1,...,L
such that supp Qi are compact cubes and ” z—y” < e .. By the previous
corollary Z Ci(ai Q bi) = 0. On the other hand we have that
«Y1(§- Zci(ai ® bi)) < ” y-z || < ¢ . Hence 'V1 (_y) <e¢ ,and D is semisimple.
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