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Abstract

A sharp L, inequality of Ostrowski type is established, which provides a generalization
of some previous results and gives some other interesting results as special cases.
Applications in numerical integration are also given.
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1. Introduction

In [1] and [2], we may find the following two interesting sharp bounds for the errors
in the corrected trapezoid rule and corrected midpoint rule.

THEOREM 1.1. Let f : [a, b] — R be such that f' is absolutely continuous on [a, b]
and " € Ls[a, b). Then

b—
a2 @+ o+ O e - (a)]‘
(b —a)b/?
- ” 1.1
< 23 a(f"), (1.1)
where o (-) is defined by
1 b 2
0(f)=||f||%—m(/ f(t)dt) (1.2)

and || fll2 = [fab f£2(t) dt1V?). Inequality (1.1) is sharp in the sense that the constant
(1/(12+/5)) cannot be replaced by a smaller one.

Institute of Applied Mathematics, School of Science, University of Science and Technology Liaoning,
Anshan 114051, Liaoning, China; e-mail: lewzheng @ 163.net.

© Australian Mathematical Society 2008, Serial-fee code 0334-2700/08

423

https://doi.org/10.1017/5144618110800014X Published online by Cambridge University Press


https://doi.org/10.1017/S144618110800014X

424 Z.Liu [2]

THEOREM 1.2. Under the assumptions of Theorem 1.1,

b a+b (b —a)? , ,
/f(t)dt—(b—a)f< . )— L6 - f@)
b—a)5/2
Bl vy (1.3)

1245

Inequality (1.3) is sharp in the sense that the constant 1/12+/5 cannot be replaced by
a smaller one.

In this work, we will derive a new sharp inequality of Ostrowski type for functions
whose first derivatives are absolutely continuous and whose second derivatives belong
to La(a, b). This will not only provide a generalization of inequalities (1.1) and (1.3),
but will also give some other interesting sharp inequalities as special cases. Moreover,
we show that the corrected Simpson rule (see [3-5]) gives better results than the
Simpson rule and, in particular, the corrected averaged midpoint-trapezoid quadrature
rule is optimal. Applications in numerical integration are also given.

2. The results

THEOREM 2.1. Let the assumptions of Theorem 1.1 hold. Then for any 0 € [0, 1] and
x €la, b],

b
/ f(t)dt—(b—a)[(l —-0)f(x)+06

f(a)+f(b)]
2

+1-=-0)b —a)(x — #)f/(x)

1—6 »\> 1-36
_[ <x_“+ ) + (b—a)z][f’(b)—f’(a)]‘

2 2 24
o(1 —0 p\* 302 -50+2 b\
< g(b—a)x—a—i_ + * (b—a)3x—a+
4 2 24 2
15602 — 150 + 4 a/72)
+ W(b — a)S} Vo (f". .1

The inequality (2.1) is sharp in the sense that the coefficient constant 1 of the right-
hand side cannot be replaced by a smaller one.

PROOF. Let us define the function
t—a)? 6B -—a)

_1 7 2
Keon:=1 ¢ Dy L0 -a

2 2

(t —a), te€l]a,x],

(t—0>0), te(x,b]
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Integrating by parts, we obtain

b b
/K(x,t)f”(t)dt:/ f(t)dt—(b—a)[(l—9)f(x)+9w:|
a+b\
+(1—0)(b—a)<x— > )f(x). 2.2)
We also have
b 1-6 a+b\* 1-36 ;
-/aK(x,t)dtzT(b—a)(x— 5 )—1— oy (b—a) (2.3)
and
b
/f"(t)dt=f/(b)—f/(a)- (2.4

From (2.2)—(2.4), it follows that

b 1 b 1 b
/ [K(x, ) — —— / K(x,s) ds] |:f”(t) - / £ (s) dsi| dt
a b—a J, b—a J,

b
:/ f(t)dt—(b—a)|:(1_Q)f(x)_{_gw}

+ (1 —-0)b— a)(x — #)f’(x)

1—90 p\> 1-30
—[ (x—” ) +— (b—a)2][f’(b)—f’(a)]- 2.5)

2 2 4

On the other hand,

b 1 b 1 b
/ |:K(x,t)——/ K(x,s)ds][f”(t)——/ f”(s)ds] dt
a b—a J, b—a J,

1 b 1 b
< |K(x, -)——/ K(x,s)ds f”——/ f(s)ds| . (2.6)
b—a ), 2 b—aJ, 2
We also have
1 b 2
HK(x, -)——/ K(x,s)ds
b—aJ, 5
0(1 —6) a+b\* 302-50+2 3 a+b\>
= b— — b— _
2 ( a)<x > ) + 2 ( a)’| x >
1562 — 1560 + 4
DO O )l @7

4
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and ) 5 )
1 (f'(b) — f(@))
‘ = P / flyds| =1£"15 - / / . (2.8)
From (2.5)—(2.8), we can easily get (2.1), since by (1.2),
(') — f@y* 1
Vo(f") = [IIf”II% _Y - A :
—a
In order to prove that the inequality (2.1) is sharp, we define the function
_er t €10, x]
24 127 , ’x’
t—-D* 6¢-1D> [1-0 1 1-360
t) = - — 2.9
f@) w1 T\ s) T (2.9)
] 1-6 1\° R
X _— p— _—
2 3 x 2 9 x’ 9
where x € [0, 1]. It follows that
AT L€ [0, %]
fo=1°% 4 o
- (t—1)3+9(t—1)2+1—9 1 2+1—39 re (e 1]
X — = , X,
6 4 2 2 24
(2.10)
and 5
t 0
— — —t, t €10, x],
£ = (Zt 12)2 . @.11)
> +§(t—1), te(x,1].

Clearly, the function given in (2.10) is absolutely continuous since it is a continuous
piecewise polynomial function.
We now suppose that (2.1) holds with a constant C > 0 as

f(a)+f(b)}

b
/ f(t)dt—(b—a)|:(1—0)f(x)+9 >

+A-6)®b —a)(x — #)f/(x)

1—9 p\> 1-30
_[ (x_” ) + (b—a)2][f/(b)—f/(a)]‘

2 2
6(1—6) a+b\* 36%—356042 3 a+b\*
= p— — b — —

§C|: 1 ( a)(x 5 ) + o (b—a)’|x >
1562 — 1560 + 4 1/2)
T()Jr(b — a)5] Vo (F. (2.12)
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Choosing a =0, b =1, and f defined in (2.9) with (2.10), (2.11), we get
/lf(t)dt_l—e N 1-96 1 3+1—9 1\’
0 g "2 6 \" 2 6 \" 72
11— 356
1920 °

F =0 f(1)=l_e(x—l)z—l‘e(x—l>3+l_39
’ 4 2 3 2 48
f(x)=i(;c—l)44rﬁ(;c—l)3+I_Z(Q(x—l)2
24 2 12 2 16 2

L 1-3 ), 140
3 \F T2 384

. ) 1-6 1\? 1-36
=0 f= > (x—§> +

o 1 1 3+1—0 1 2+1—29 1y, -3
xX)=—-|x—= —\x—= X — =
6 2 4 2 8 2 48

1 4 2 2 2
1—6 1 202 —30 + 1 1 2002 — 150 + 3

Nt 2dt= — — B — —_ — B —
/O(f (®)) 1 (x 2) + g (x 2) + 560

such that the left-hand side becomes
9(1—9)( 1)4+392—59+2( 1)2 1562 — 150 + 4
— _— x J— _—

and

LHS. (2.12) =

4 2 24 2 2880
(2.13)
We also find that the right-hand side is
R.HS. (2.12)
o(1 — 6 \* 362-5042 1\> 1502150 + 4
_c|?0 =0 1 PRty PR +—+.(2.14)
4 2 24 2 2880

From (2.12)—(2.14), we find that C > 1, proving that the coefficient constant 1 is the
best possible in (2.1).

COROLLARY 2.2. Let the assumptions of Theorem 2.1 hold. Then, for any 0 € [0, 1],

b
/ f(ﬂdt—(b—a)[(l—@)f(";rb)+9f(a);f(b)}

1—36
- b- a)’Lf'(b) — f’(a)]‘
_ )62
Lo 24‘33 (1567 — 156 + H V2 /o (f7). 2.15)
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PROOF. We set x = (a 4+ b)/2 in (2.1) to get (2.15). O

REMARK 1. If we take & =1 and 6 = 0 in (2.15), then the sharp corrected trapezoid
inequality (1.1) and the sharp corrected midpoint inequality (1.3) are recaptured. Thus
Theorem 2.1 may be regarded as a generalization of Theorems 1.1 and 1.2.

REMARK 2. If we take 6 = 1/3, we get a sharp Simpson-type inequality

b b—a a+b (b —a)®/? ~
/a f@)de — T[f(a)+4f<T> +f(b)” = W\/U(f()z-m)

If we take 6 = 7/15, we get a sharp corrected Simpson-type inequality

b b— b b —a)*
£y di — —"[ma) L6 f(%)+ 7f(b)} + O ) @)

(b —a)®/2
C60V3

From (2.16) and (2.17), we see that the corrected Simpson rule gives better results than
the Simpson rule.

a(f"). (2.17)

REMARK 3. If we take 6 =1/2, we get a sharp corrected averaged midpoint-
trapezoid-type inequality as

b b—a)?
/ f(t)dt——[f(a) 2f( ) f(b)} ( 48“) LF'5) — (@)
(b_a)(5/2)

TN
It is interesting to note that the smallest bound for (2.1) is obtained at x = (a + b)/2

and 6 = 1/2. Thus the corrected averaged midpoint-trapezoid rule is optimal in the
current situation.

(7). (2.18)

3. Applications in numerical integration

We restrict further considerations to the corrected averaged midpoint-trapezoid
quadrature rule. We also emphasize that similar considerations can be given for all
quadrature rules considered in the previous section.

THEOREM 3.1. Let m ={xgp =a < x| < - -+ < X, = b} be a given subdivision of the
interval [a, b] such that h;i = xj41 — x; = h = (b — a)/n and let the assumptions of
Theorem 2.1 hold. Then

h n—1 : : b — 2 , )
f Fyde == Z[f(x,) + 2f<w> + f(xim} + L9 ) -

2
= 48n

(b —a)®/?
48+/5n2

—= Vo). (3.1)
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PROOF. From (2.18) we obtain

Xi+1

l l h2 !/ /
f(o)dr — —[f(xz) +2f<w)+ f(xz'+1)] + E[f (xiy1) = f(xi)]

it " 2 1 I I 2 a2
[/ (f7 ()" dt — E(f (xi+1) — [ (xi)) ] . (3.2)

Xi

LG/
<
485

By summing (3.2) over i from O to n — 1 and using the generalized triangle inequality,
we get

h & ! Xi + Xig1 h2 / ’
(ndr =7 ZO [f(xl) + 2f<—> + f(xz‘+1)} + 5 ®) = [@]
p(5/2) n=l i 1, , 1/2)
SN ;0 [ f | (f"(0))*dr — S i) = f <xl->>2} : (3.3)

By using the Cauchy inequality twice, it is not difficult to obtain

n—1 Xit1 1 (1/2)
> [ / ) dr = (f i) = f/(xi))z]

n—1 (1/2)
<Vn [nf”n% — = Y () - f’(xi»z}
i=0

"b) — £ 29(1/2)
sﬁ[nf“n%— S A } — (. G4

Consequently, the inequality (3.1) follows from (3.3) and (3.4). d
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